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Abstract: Electron and positron charge densities are calculated as a function of position in the unit cell for Aluminum 

Bismuth binary compound. Wave functions are derived from pseudopotential band structure calculations and the independent 

particle approximation (IPM), respectively, for the electrons and the positrons. It is observed that the positron density is 

maximum in the open interstices and is excluded not only, from the ion cores but also to a considerable degree from the 

valence bonds. Electron-positron momentum densities are calculated for (001, 110) planes. The results are used to analyze the 

positron effects in AlBi. 

Keywords: Positron, Band Structure, Charge Density, Momentum Density 

 

1. Introduction 

The surfaces of III-V semiconductor compounds are of 

vital importance because the functioning of modern 

electronic devices is strongly influenced by their cleanliness, 

geometries, and photoelectric properties [1, 2]. Compared to 

other III-V materials, less is known about bismuth GaBi, 

AlBi and InBi binaries. While Bi is the last element in the 

Group-V column in the Periodic Table, it has been largely 

neglected as a member of the III-V compound semiconductor 

family which plays a significant role in modern electronic 

and optoelectronic device applications nowadays. This is, to 

large extent, due to the difficulties in synthesizing high 

quality binary III-Bi crystals and alloying Bi into host III-Vs. 

the first interest to incorporate Bi into III-Vs was stimulated 

by the isoelectronic trap discovered in O-doped ZnTe in 1962 

[3] and later in N-doped GaP in 1965 [4]. When the 

substituted Group-V element has a large difference in 

electronegativity (3.04, 2.19, 2.18, 2.05 and 2.02 in Pauling 

scale for N, P, As, Sb and Bi, respectively) with respect to 

the host Group-V element, isoelectronic traps can be formed. 

Positron annihilation experiments [5] have been used to 

investigate the electronic structure of pure metals, alloys and 

metals containing defects such as mono-vacancies, 

dislocations and large voids resulting from neutron 

irradiation. If the results of the experiments are to be used to 

obtain information about the electronic structure in these 

systems, it is important to have some knowledge of the 

spatial distribution of the annihilating positron. 

Experiments and theory indicate that the measured two-

photons angular correlation curves reflect the momentum space 

density of the electrons seen by injected positrons and contain 

information about the occupied regions of k-space [6], i.e. the 

Fermi surface [7]. The investigation of the electronic properties 

of solid by use of electronic and positronic charge densities 

represents an area of increasing importance. So far, most of the 

work has concerned electron charge densities as this has been 

found useful for the understanding of chemical bonds and 

recently for the modification of band structures by interstitial 

impurities [8, 9]. The great success of recent developments in 

this field provokes us to ask for a better understanding of the 

charge densities. We will show that both electronic and 

positronic charge densities could provide complementary 

information about the structure of semiconductors. 

On the theoretical side, there has been some attempt to 

study the behavior of the positron wave function in 

compound semiconductors and alloys. This paper reports a 

theoretical framework for calculating the distribution of 

thermalized positrons and the electron pseudo-charge density 

for AlBi compound. The theoretical calculations of the line 

shapes are carried out employing the pseudopotential band 

model for the computation of the electron wave function. The 

positron wave function is evaluated under the point core 
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approximation (the independent particle model). The crystal 

potential experienced by a positron differs from that 

experienced by an electron. Since we assume that there is at 

most one positron in the crystal at any time, there are no 

positron-positron interactions, i-e. exchange or corrections. 

Thus positron potential results from a part due to the nuclei 

and another part due to the electrons, both components being 

purely Coulombic in nature. 

The density functional theory (DFT) combined with the 

local density approximation (LDA) or with the generalized 

gradient approximation (GGA) [10, 11, 12] is one of the most 

efficient methods for electron-structure calculations, it has also 

been used for positrons states in bulk metals in order to 

determine the momentum distribution of the annihilating 

positron-electron pairs [13]. However, those calculations are 

technically difficult and computationally time consuming. It is 

well known that electronic structure based on the DFT 

calculations underestimates the band gaps by as much as 50-

100%. The LDA, also overestimates the positron annihilation 

rate in the low-momentum regime, thus giving rise to shorter 

positron lifetimes than the experimental values. Moreover, the 

LDA overestimates the cohesive energy in electronic structure 

calculations, for reasons connected with the shape of the 

correlation hole close to the nucleus. The empirical methods 

[14, 15, 16], while simple in nature, and with the drawback 

that a large number of fitting parameters are required, are very 

accurate and produce electronic and positronic wave functions 

that are in good agreement with experiments. This approach 

was encouraged by the work of Jarlborg et al who discovered 

that the empirical pseudopotentials gave a better agreement 

with the experimental electronic structures than the first-

principles calculations [17]. 

Computational details are given in section 2, and section 3 

is devoted to the discussion of the results. 

2. Method 

The calculations are performed within the framework of 

the empirical pseudo-potential method, that has shown to 

give excellent results to experiments for bulk materials, and 

the coupling of this method to the independent particle model 

(IPM) is able to predict interesting properties of the 

positron’s behavior in semiconductors. 

The electron and positron wave functions are essential 

ingredients in the calculation of the electron-positron k-space 

densities. We therefore focus our attention to the evaluation of 

electron wave function derived from band structure calculation. 

One of the central problems in the band theory of solids is to 

find the propagating solution of a Schrodinger equation in 

which the potential has the periodicity of the lattice. Exact 

solutions of this problem are in general not possible, and so a 

number of approximation methods have been used in the past. 

2
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In our case, we have used the empirical pseudo-potential 

method (EPM) [18], which involves a direct fit of the atomic 

form factors V(G) to the experimental band structure. 

Therefore, the first step in this calculation is to choose the 

best possible set of form factors, which will probably 

describe the band structure. The experimentally known 

energy gaps at Γ, X and L points of the Brillouin zone are 

taken as criteria. 
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The pseudo-potential Hamiltonian contains an effective 

potential which is expended as Fourier series in reciprocal 

lattice space. For a binary compound, the expansion is 

written in two parts which are symmetric and antisymmetric 

with respect to an interchange of two atoms about their 

midpoint. 
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The structure and form factors are as follows: 

( ) cos( . ), ( ) sin( . )S AS G G S G Gτ τ= =            (4) 
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Here, τ=(a/8) (111) is half the vector between two atoms 

contained in the unit cell and V
c
(G) and V

A
(G) are the 

pseudo-potential from factors of the individual atoms (we 

shall refer, hereafter, to the two sites A and C in the unit cell 

as anion and cation sites, respectively). 

The pseudo wave functions ( )nk rψ  have the Bloch form and 

they can be expanded in a set of plane waves, then we have: 

1
( ) ( )exp( )nk nkr C G iGrψ =

Ω∑                (7) 

The coefficients ( )nkC G  are found out by solving the 

secular equation. 

The valence electron density is defined as 

2
( ) 2 ( )nk

n k

r rρ ψ= ∑∑                        (8) 

Where nkψ  is the wave function of the valence electron 

with the wave vector k in the n-th valence band. The 

summations are taken over the occupied states (we have used 

about 1200 k-points). The charge density is eρ(r), where e is 

the electron charge. 

This has the Fourier transform given by 

31
( ) ( ) exp( . )G r iG r d rρ ρ=

Ω ∫                    (9) 

)r(ρ
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We follow the approach presented in. [19] for evaluating 

the positron wave function. With the assumption that there is 

only one positron for many electrons, there is no exchange 

part because there is no positron-positron interaction. The 

total positron potential can be expressed as 

( ) ( ) ( ) ( )p i c epV r V r V r V r= + +                    (10) 

where ( )iV r , ( )cV r , and ( )epV r  are the ionic, Coulomb, and 

electron-positron correlation potentials, respectively. As 

explained in section I the electron-positron potential is not 

considered here. 

In the point core approximation 

2
( )i

Zev r
r

=                                (11) 

Since the positron moves in the Coulomb field of the 

nuclei and the electron, the corresponding potential may be 

written in atomic units as 

' 3

'

( )
( ) 2c

r d r
v r

r r

ρ= −
−∫                         (12) 

The wave function of the thermalized positron is given by: 

1
( ) ( )exp( )r A G iGrψ + =

Ω∑                 (13) 

The coefficients A(G) are found out by solving the secular 

equation for the positron. The positron can be described by a 

band model with one positron per unit cell independent-

particle model (IPM) (20, 21). A fully thermalized positron is 

assumed to be, in good approximation, at the bottom of the 

positron band with k=0 and n=1. 

The probability of annihilation of the  pair with 

momentum p is proportional to the pair momentum density: 

2
2 3

,

,

( ) ( ) exp( . ) ( ). ( )n n k

n k

p k d r ip r r r
γρ η ψ ψ += −∑ ∫  (14) 

where , ( )n k rψ  and ( )rψ +  are the electron and positron 

Block wave functions and ( )n kη  is the occupation number. 

In the long-slit angular correlation experiment one measures 

a component of the pair momentum density as given by 

2
( ) ( )z x yN p p dp dp

γρ= ∫∫                    (15) 

The parameters used for this calculation are listed in table 

1, the calculated Fourier coefficients of the valence charge 

densities for AlBi are given in table 2. 

3. Results 

In the first step of our calculations, we have computed the 

Fourier coefficients of the valence charge densities using the 

empirical pseudopotential method (EPM). This method has 

been proved to be largely sufficient to describe qualitatively 

the realistic charge densities. As input, we have introduced 

the form factors (the symmetric and antisymmetric parts) and 

the lattice constant for AlBi. The resulting Fourier 

coefficients are used to generate the corresponding positron 

wave function using the IPM. 

 

Figure 1. Positron band structure versus K-points. 

The positron band structure for Albi is displayed in figure 

1, we note the astonishing similarity with its electron 

counterpart, with the exception that the positron energy 

spectrum does not exhibit a band gap. This is consistent with 

the fact that these bands are all conduction bands. The 

calculated positron charge densities in the (110) plane and 

along the <111> direction are displayed in Figures (2a, 2b), it 

is seen that the positron is located in the interstitial region 

and that the probability is low around the positions of the 

nuclei. The positron is repelled by the positively charged 

atomic cores and tends to move in the interstitial regions. The 

maximum of the charge is located at the tetrahedral site. 

From a quantitative point of view, there is a difference of 

charge in the interstitial regions, the positron distribution is 

more pronounced in the neighborhood of the Bi cation than 

in that of the Al anion. These differences in profiles are 

immediately attributable to the cell which contains the larger 

valence and the larger ion core. We are considering the 

implications of this in regard to the propensity for positron 

trapping and the anisotropies that might be expected in the 

momentum densities for both free and trapped positron states. 

We should point out that the good agreement of the band 

structure and charge densities were used as an indication of 

both the convergence of our computational procedure and the 

correctness of the pseudopotential approach using the 

adjusted form factors, these latter as well as the lattice 

constant have been adjusted to the experimental data before 

the calculations. 

+− − ee
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Figure 2a. Positron charge density versus Atomic position. 

 

Figure 2b. Position versus position. 

Let us now discuss the results of the calculated 2D-electron-

positron momentum density for AlBi, obtained by integration 

of the appropriate plane along the <110> and <001> directions 

(Figures 3 and 4), the first obvious observation is that the 

profiles exhibit marked departures from simple inverted 

parabola, suggesting that for AlBi the electrons behave as 

nearly free (NFE). At the low momentum region, the profile 

along the <001> direction is seen to be flat as observed in Ge 

and Si [22]. Compared to this, the profile along the <110> 

direction is sharply peaked. However, the valleys and dips 

observed in ( )pρ  for AlBi are very shallow as compared with 

those of Si and Ge. This fact clearly tells us that the 

momentum dependence of ( )pρ  is very much different 

between elemental and compound semiconductors. In the case 

of Si, the symmetry is 
7
hO  which contains 48 symmetry 

operations including glide and screw, in the case of AlBi, the 

symmetry is lowered from 
7
hO  to 

2
dT : the two atoms in each 

unit cell are inequivalent and the number of symmetry 

operations thus decreases from 48 to 24. Since the glide and 

the screw operations are not included in this space group, this 

crystal is symmorphic. It is emphasized that the symmetry 

lowering from Oh to Td revives some of the bands which are 

annihilation inactive in the case of Si. If this symmetry 

lowering effect is large enough, the ratio in the annihilation 

rate of the [110] line to the [001] one becomes small since the 

bands become annihilation active for both ridge [110] and 

valley [001] lines. From the calculations performed by Saito et 

al. [23] in GaAs, it was found that the contribution of these 

revived bands to the annihilation rate is small. The sharp 

peaking along the <110> direction and the flatness of the peak 

along the <001> direction could also be understood in terms of 

the contribution of σ and π
*
 orbitals to the ideal sp

3
 hybrid ones. 

Since the electronic configuration of Aluminum is 

1s
2
2s

2
2p

6
3s

2
3p

1
 and that of Bismuth is [Xe] 4f

14
5d

10
6s

2
6p

3
, the 

interaction between second neighbor σ bonds is equivalent to a 

π antibonding interaction between neighboring atoms. As a 

consequence, there is a strong (2p, 2p) σ bond along <110> 

direction and an admixture of (2p, 2p) σ and (2p, 2p) π
*
 bonds 

along <001> direction, the explanations are in good agreement 

with an earlier analysis based on group theory [8]. 

 

Figure 3. Momentum density versus angle (001). 

 

Figure 4. Momentum density versus angle (110). 
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The calculated electron-positron momentum density 

(contour maps and bird’s eye view of reconstructed 3D 

momentum space density) in the (110-001) plane is displayed 

in Figure 5 and 6. There is a good agreement in the qualitative 

feature between our results and experimental data obtained by 

Berko and co-workers for carbon [24], one can notice that 

there is a continuous contribution, i.e. there is no break, thus 

all the bands are full. The contribution to the electron-positron 

momentum density are at various p= k+G. In case of 

elemental semiconductors like Si, a set of bonding electrons is 

composed of 3p electrons, the distortion is expected to be 

observed since both of the 2p and 3p set of electrons possess a 

perfect point symmetry. But it can be seen that for AlBi, the 

degree of distortion is smaller than in Si. Compared to this 

result, the number of contour lines is smaller and the space 

between the contour lines is wider in AlBi system. 

Figure 7 gives the calculated LCW folded distribution for 

AlBi. The momentum distribution in the extended zone 

scheme is represented by n(k) in the reduced zone scheme. 

We can deduce from the map that the electronic structure 

consists entirely of full valence bands, since the amplitude 

variation in the LCW folded data is merely constant. 

 

Figure 5. Angle versus angle (001-110). 

 

Figure 6. Angle versus angle (eye view). 

 

Figure 7. Momentum along y versus momentum along x. 

Table 1. The adjusted symmetric and antisymmetric form factors (in Ry), and the lattice constant ao (in atomic units) for AlBi used in these calculations. 

Compound Adjusted lattice constant ao Experimental lattice constant ao [25] Adjusted form factors Experimental form factors [26] 

AlBi 6.3354890 6.448270 

Vs(3)=-0.31017 

Vs(8)=0.00172 

Vs(11)=0.0451 

Va(3)=0.13225 

Va(4)=0.09655 

Va(11)=0.01513 

Vs(3)=-0.29476 

Vs(8)=0.00385 

Vs(11)=0.09565 

Va(3)=0.11583 

Va(4)=0.03084 

Va(11)=0.01265 

 

Table 2. The calculated Fourier coefficients of the valence charge densities 

for AlBi. 

G( ) Fourier coefficients (e/Ω) for AlBi 

000 8.0000 0.0000 

111 0.3327 -0.1258 

220 0.0199 0.0736 

311 -0.0199 -0.0187 

222 0.0001 -0.1158 

400 0.0001 0.0323 

331 -0.0242 0.0075 

4. Conclusion 

In the present paper we have reported positronic 

distributions for AlBi calculated within the pseudopotential 

formalism and employing the independent particle model 

(IPM). These distributions are found to be strongly 

influenced by the actual symmetry of the orbitals taking part 

in bonding, therefore, it is expected that the positron-

a
2π
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annihilation technique is an effective tool and a sensitive 

microscopic probe of semiconductors; we have shown that by 

performing the electron-positron momentum densities, a deep 

insight into the electronic properties can be achieved. More 

importantly, because of its relatively few assumptions, the 

present theory yields a reliable single-particle description of 

positron annihilation. As a consequence, it represents an 

excellent starting point for a systematic many-particle 

description of the process. 
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