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Abstract: In this article the author introduces the notions of combinatorial and of polynomial combinatorial sets in 

enumerative combinatorics. Formulates the problem of finding in combinatorial set of element with an easily recognizable 

property. The author proposes an efficient algorithm for solving this problem, which cancels known in the theory of algorithms 

abstract Turing, Church and Markov. We prove the criterion of polynomiality of the formulated problem. As a special case of 

this problem considers the problem of recognition of a Hamiltonian cycle in an undirected graph. We prove non-polynomiality 

this problem, which implies in particular the hypothesis of Jacques Edmonds P≠NP. 
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1. Introduction 

In 1964 A. Cobham [1] and, independently, in 1965 J. 

Edmonds [2] introduced the concept of complexity class P . 

Definition [1-2]. A problem (language) L  belongs to P  if 

there exists an algorithm A  that decides (recognizes) L  in a 

polynomial number of steps ( ( )
k

O n< ), where n  is the 

length of the input, and k  is some constant. The class of 

problem P  is called polynomial (practical). 

According to [3] J. Edmonds also introduced the 

complexity class NP . This class of problems (languages) 

that can be checked by polynomial algorithms. 

Definition 2 [3]. A problem (language) L  belongs to NP  

if there exists a two-input polynomial-time algorithm A  and 

a polynomial ( )p x  with integer coefficients that 
*

{ {0,1} :L x there= ∈  exists  a  certificate  y  with  

( )y p x≤ and  ( , ) 1}A x y =  

In this case we say that algorithm A  verifies the solution 

x  in polynomial number of steps of the length x . 

According to definition 2, if L  belongs to P  and 

( )y p x≤ , then L NP∈ . But, if L P∈  and the length of 

certificate is not bounded from above by a polynomial of the 

length of x  then L NP∉  and P  is not subset of NP . Note 

that in [3-5] P NP⊆ , that is the erroneous statement. 

According to [3] J. Edmonds also expressed the hypothesis 

P NP≠ . In [6-10] we have constructed classes of 

polynomial problems with not polynomial certificates. 

According to the reasoning above this implies the positive 

solution of problem S. A. Cook [11] and the hypothesis of J. 

Edmonds P NP≠ . In definition 2 of the class NP  there is a 

limit to the length of the certificate generated by the 

inspection algorithm, apparently caused by the algorithm for 

checking the correctness of solution of the classical algebraic 

problem of solving algebraic equation. It is well known that 

if 0
x  is a solution of the equation ( ) 0p x = , where ( )p x  is a 

polynomial from x  with integer coefficients, then the 

verification of the correctness of the decision 0
x  is the 

equality 0
( ) 0.p x =  Obviously, if the solution is sought in a 

polynomial number of steps, then the validation also is 

carried out in a polynomial number of steps. Of course, the 

way to check the correctness of the solution of the problem 

depends on the nature of the problem. There are problems 

that have no solutions, and hence can’t be checked, although 

the certificates to verify the correctness of the decision and 

there are. For example, in the thirties of the 19 th century 

Galois was able to prove [12] that for any 5n ≥  you can 

specify unsolvable by radicals of equation n  degree with 

integer coefficients. 

Naturally, according to definition 2 of the class NP , any 

polynomial problem belongs to NP , since the composition 

of polynomials is a polynomial. But if to remove restriction 

on length of the certificate that is explainable because the 
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way of check of correctness of the decision depends both on 

a problem, and from properties of the decision which 

correctness is checked. Therefore the verification of decision 

may not be polynomial. 

If we are interested not only a solution, but also check of 

its correctness, usually believe that the decision is a direct 

task, and check of its correctness – inverse. So finding of the 

cipher in a cryptosystem is a direct problem, and the 

decryption is the inverse problem. Therefore in cryptography 

it is very important that the transcript was algorithmically 

more difficult than finding the cipher. In this interpretation, a 

cryptographic system is the solution S. A. Cook’s problem, 

proposed by the Institute Clay among the seven Millennium 

problems whose solution was presented in [6-10]. Although 

this problem was resolved already, we can say, seven years 

ago [7] and published on International conferences [6, 9] and 

in licensed journals [13-14] and notified to the Institute Clay, 

but the result is still the Clay Institute not recognized and 

therefore in [15] this problem is considered not solved. Note 

that in [16-17] there are positive feedbacks on our work on 

this issue. 

2. NP-complete Problems and Their 

Complexity 

In 1971 S. A. Cook [18] in the class of NP  allocated a 

subclass of the most difficult problems of the so-called NPC  

( NP -complete) problem and proved NP  completeness of 

two specific problems. Independently the concept of NP -

completeness has also introduced L. A. Levin [19], who also 

proved the NP  completeness of several problems. Since then 

many authors have proved the NP  completeness thousands 

of problems, but the nature of their complexity not officially 

clarified. 

Definition 3 [3]. We will say that a language 
*

1 {0,1}L ⊆  

polynomial-time reducible to language 
*

2 1 2{0,1} , ( )PL L L⊆ ≤ , if there exists a computable in 

polynomial number of steps the function 
* *

:{0,1} {0,1}f →  

such that for all 
*

1{0,1}x x L∈ ∈  if and only if 2
( )f x L∈ . We 

call the function f  the reducing function, and a polynomial-

time algorithm F that computes f  is called a reducing 

algorithm. 

Definition 4 [3]. A language 
*

{0,1}L ⊆  is called NP  

complete, if 

1. L NP∈ , and 

2. '
P

L L≤  for any 'L NP∈ . 

According to the definition 3, 4 if some NP  complete 

problem is polynomial, then all NP  complete problems are 

polynomial, and Vice Versa, if some NP  complete problem 

is not polynomial, then all NP  complete problems are not 

polynomial. All attempts to prove, that some NP  complete 

problem is polynomial were in vain. In [20] we built NP

complete problem that is not polynomial. 

In this paper we propose one method of proving this fact 

using enumerative combinatorics and we prove that the 

recognition problem undirected Hamiltonian graph, NP

completeness of which was proven in 1972 R. M. Karp [21], 

is not polynomial. 

Mathematical Institute Clay explains the problem of S. A. 

Cook [11] by the following example: let’s say someone in a 

big company wants to make sure that in this company there is 

one of his friends. If he is told that his friend is sitting in the 

corner, then only a fraction of a second to make sure that it is 

so. However, if no such information, he will be forced to 

circumvent the entire room, examining visitors. Note that this 

example fails because in modern conditions this problem is 

easily solved, e.g., using a microphone. Another thing, if we 

want to find some object with easily verifiable (in 

polynomial time of the length of the input) a symptom among 

the many combinatorial objects. 

Enumerative combinatorics [22] deal with counting the 

number of elements in the finite set S . In enumerative 

combinatorics, the combinatorial elements of set S  have a 

simple combinatorial definition, and some additional 

structure. Shows that the set S  contains many elements and 

the main question is to determine (estimate) their 

combinatorial number, not a search, for example, some 

special item. The problem, the solution of which we intend to 

present in this work is, precisely, to build an effective search 

algorithm is a special element among the elements of some 

combinatorial sets. 

In enumerative combinatorics [22] is usually given an 

infinite class of finite sets 
i

S , where i  runs over some set of 

indices I (the set of nonnegative integers N), and we want to 

count combinatorial number 
iS  of elements in each 

i
S  

“simultaneously”. The set 
i

S  we will call combinatorial sets. 

However, for our purposes it is sufficient to know the 

particular answer to the question: “ iS  polynomial or not 

from the i ?” In the case of an affirmative answer to the 

question we have to prove that ( ),k

iS O i<  where k  is some 

constant. 

Definition 5 [23]. Combinatorial set i
S  is called 

polynomial if ( )k

iS O i≤ , where k  is a constant; otherwise 

it is called non-polynomial. 

Problem statement: let i
S  combinatorial set and x  some 

object from i
S  with easy to verify (in a polynomial number 

of steps of x ) characteristic (property) α . It is necessary to 

construct an algorithm that for iS≥  the number of steps 

finds the object (element) x . The following algorithm is 

proposed to solve the problem: we assume that a finite set i
S  

of combinatorial objects is in some capacity Ω . From Ω  we 

derive successively without returning all objects to the last, 

inclusive. For the latter object we check that the properties 

α . If the last retrieved object has the property α , then the 

problem is solved. If this object does not have property α , 

then all of the extracted of Ω  objects we returned in Ω  and 

renewable the extraction process of Ω  objects, but with each 
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subsequent extraction of the object check whether the 

extracted object is α  property or not. Obviously, for some 

,i iS m m S+ ≤  step, the object will have the property α  

and the problem will be solved. From the constructed 

algorithm follows theorem. 

Theorem [23]. If the combinatorial set i
S  is polynomial, 

the formulated problem can be solved in polynomial number 

of steps, namely, the number of steps t  of the constructed 

algorithm satisfies the inequalities i iS t C S≤ ≤ , where C  

is some constant 1≥ . If combinatorial set i
S  is not a 

polynomial, then the problem is not polynomial. Obviously, 

if , 2i

iS k k≥ ≥ , then the combinatorial set i
S  is not a 

polynomial. 

The algorithm, which implies the above theorem obviously 

satisfies all the requirements of the intuitive notion of 

algorithm, but does not fit [23] the formal definition of the 

algorithm (for example, “Turing machine”). Therefore, the 

algorithm cancels famous Turing thesis: “any algorithm can 

build a Turing machine that is equivalent to a given 

algorithm”. Due to the equivalence of a Turing other well-

known formal algorithms (recursive function, normal 

algorithms) relevant abstracts are also voided. 

The problem of finding a Hamiltonian cycle in a 

undirected graph were studied [3] for over a hundred years. 

Some Hamiltonian cycle of an undirected graph ( , )G V E=  

is a simple cycle that contains each vertex of V . A graph 

which contains some Hamiltonian cycle is called 

Hamiltonian; otherwise, the count is not Hamiltonian. 

However, not all graphs are Hamiltonian. Every bibartite 

graph with odd number of vertices is not Hamiltonian [3]. We 

[3] to formulate the Hamiltonian cycle problem, “does some 

given graph G  Hamiltonian cycle? As a formal language: 

HAM-CYCLE={ :G G  is  a  Hamiltonian  graph }”. 

Let 1 2
( , )G V V V E= = ∪  be a bipartite graph such that 

1 2, ,
2 2

i i
V V i

   = =   
   

 is an odd natural number, 

2 2

i i
E

   =    
   

. Thus, in the graph G  every vertex from 1V  is 

connected with each vertex of 2V . Furthermore, let 

' ( , ')G V E=  is the graph obtained from graph G  by adding 

one edge u , connecting two vertices 2 2, 'v V v V∈ ∈ . As the 

combinatorial set i
S , we consider the set of all simple paths 

from a vertex v in the graph G  that contains each vertex in 

V . Obviously, all simple paths from vertex v  to vertex 'v  in 

graph G , that contains each vertex in V , adding edge u  in 

graph 'G  are transformed into Hamiltonian cycles. Thus, 

combinatorial number iS  for graph G  and 'G  are the 

same. It is obvious that 
2( !)

2
i

n
S

 =  
 

. Since iS  is not a 

polynomial, then according to the theorem, the Hamiltonian 

cycle problem is not polynomial. It also follows the results. 

Corollary 1. All NP  complete problems are not 

polynomial. 

Corollary 2. Hypothesis J. Edmonds P NP≠  is correct. 

3. Conclusions 

Certainly, there are polynomial problems, check of which 

correctness of the decision demands the polynomial number 

of steps (for example, problems of sorting [24]), however it 

doesn’t mean that the class of polynomial problems enters 

the class NP, i.e. P NP⊆  as it was noted in introduction, is 

the wrong statement. 

Thus, the problem P NP= , it is trying to solve the authors 

[25-26] does not exist in nature. Therefore, it is impossible to 

solve by any means, and not only natural [24]. Once again 

we repeat: on the one hand, we have shown [6-10] the 

existence of polynomial problems the verifying the 

correctness of the decision which requires a non-polynomial 

number of steps that need cryptography on the other hand, 

we have proved that NP  complete problems are not 

polynomial. 
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