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Abstract: The paper describes the results of numerical experiments on the decomposition of some sounds and words of a 

person's speech into separate waves with slowly drifting amplitudes, frequencies, phases and their reverse summation in order 

to identify factors that are both important and not important for automatic speech recognition. The objective of this study is 

investigation the mathematical features of various sounds and words of human speech without using the method of Fourier 

transforms. Instead of Fourier transforms, the approximation method developed earlier by the author is used. This method 

allow expand of periodic or almost periodic functions to sum of modes with slowly varying (drifting) parameters - amplitudes, 

frequencies, phases. Such decompositions were carried out for samples of vowel sounds, simple syllables and words. After 

that, the reverse summation of the drifting modes was carried out. Before summation the modes, their parameters were 

deliberately distorted in order to identify factors, both significant and insignificant for the essence of sounds. The functions 

obtained in this way are of the nature of artificial sound functions It turned out, that for vowel sounds amplitudes of modes 

may be averaged over long time without lost the essence of sounds. The phases of sounds may be changed by adding any 

random constant value without lost their essence too. It has been found that In many cases, for to find the parameters, it is 

convenient use not the sound function itself, but its time derivative. It was shown, that amplitude of summing modes of sound 

function may be represent as sum of several Gaussian function as for simple sounds, as for syllables. The appropriate 

mathematical formulas and tables of parameters of artificial sound functions presented 

Keywords: Speech and Person Recognition Throw Voise, Speech Technologies, Data Processind, Fourier Transform, 

Transform Voice, Expand the Quasiperiodical Sygnals into Base Frequencies 

 

1. Introduction 

Despite enormous efforts and financial investments, the 

problem of speech recognition still does not have a 

satisfactory solution [1]. The famous American researcher 

Marvin Minsky recently argued that the pace of progress in 

speech recognition has recently slowed down, and some of 

the achievements, which nevertheless took place, were not 

achieved as a result of new breakthrough ideas, but as a result 

of an increase in the technical capabilities of computers - 

speed, memory growth, etc. Perhaps the reason for the 

slowdown in progress lies in the fact that the approaches and 

methods that were used earlier have already worked out their 

resources and it is necessary to do something fundamentally 

new to move forward further? Perhaps the reason for the 

slowdown in progress was the use of Fourier transforms? At 

present some investigators prefers use not Fourier transforms, 

but other ways [2, 3]. In spite of that, nevertheless majority 

of investigators use method of Fourier transformations (See 

[4-11] and the literature, indicated there). 

As it well known, the Fourier transformations method, 

used for the analysis of (quasi) periodic signals has a number 

of significant drawbacks [4-7, 12-16]. The signal spectra are 

blurry (in quantum mechanics, this circumstance is the 

mathematical background of the uncertainty relation), the 

degree of blur depends on the duration of the signal segment 

- if the duration is too short, the blur of the lines becomes so 

great that adjacent lines of the spectrum can absorb each 

other. If the duration is too long a lot of false lines appear on 

the spectrum. The longer the signal, the more of these lines. 

False lines are present in spectrograms even in the case of 

ideal harmonic signals specified for a limited period of time. 



 Science, Technology & Public Policy 2021; 5(2): 115-123 116 

 

All this also affects the tasks of automatic recognition of 

human speech and verification and identification of a person 

by voice. An indirect sign that the Fourier transform method 

is not suitable for solving these problems is that, despite 

numerous efforts, serious financial investments, these 

problems still do not have a satisfactory solution. 

In this regard, in [6, 7, 12-16], an approximation method 

was proposed, which is designed to solve the same problems, 

but which does not have the inherent drawbacks of the 

Fourier transformations method. A number of fundamental 

results were obtained based on the approximation method. It 

turned out that in the spectrum of individual, long 

pronounced sounds, there are half-integer (with respect to the 

baseline) frequencies acting in “bursts”, there is a “hard” 

modulation of the amplitudes of higher modes by the base 

frequency. Modulation not continious, but broken. Thus, an 

explanation was found for the failures of the Fourier 

transform method. 

In connection with the certain successes of the 

approximation method, it makes sense to apply it to create 

artificial sounds and words of human speech. 

If artificial words and sounds be create, then it will 

become clear for what exactly should be paid attention to 

during automatic speech recognition, what features of sound 

signals make it possible to distinguish one speaker from 

another, and which ones, on the contrary, have no meaning, 

they are random, introduced by imperfection of the human 

speech-making apparatus, they only “get underfoot”, 

distracting the attention of researchers and forcing them to 

scatter their efforts. 

The solution to the problem of generating sounds and words 

should be started precisely with identifying the mathematical 

features of various sound units of human speech. 

Deciphering the mathematical features of various human 

speech sounds is also the key to deciphering the 

mathematical features of speech sounds and other creatures 

living on Earth, primarily dolphins, elephants, whales, and, in 

a more distant perspective, to understanding their semantics 

2. Approximation Method 

The method is based on the functional [6, 7, 12-16]. 
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is approximating function, b0,i- drifting zero (origin), ak,i, bk,i - 

drifting amplitudes of sine- and cosine- waves (parameters of 

the approximating function), - ωi their carrier frequencies, l - 

number of waves (modes) in the approximating function. In 

(1) and (2), for simplicity, we can accept ti=i. 

Functional (1) is designed as a sum of terms of two types: 

terms that do not contain the parameter α are responsible for 

the proximity between the approximated and approximating 

functions, terms containing α are responsible for smoothing 

the jumps of the drifting amplitudes of waves of the 

approximating function when passing along the time axis 

between adjacent sampling moments. 

The larger the value of α is chosen, the smoother the wave 

amplitudes will be. By calculating partial derivative S 

( formula 1) with respect to ak,i, bk,i and b0,I for all k and i and 

further equating the results to zero, we obtain a system of 

linear algebraic equations with respect to the parameters of the 

approximating function. Having solved this system, we find 

these parameters. Then this parameters may be substituted in 

(2) and thus we will expand the approximated function into the 

sum of waves with slowly varying amplitudes. The resulting 

approximating function may called reconstructed sound. 

If we then subtract the reconstructed sound from the 

original (approximated) sound and subject the difference to 

Fourier transforms, it turns out that there are often some 

other carrier frequencies that were not noticed during the first 

expansion in the Fourier series (integral) due to the small 

intensity of the modes they carry. 

In particular, by this way in [12] it was found that in the 

spectrum of many sounds there are half-integer (with respect 

to the base) carrier frequencies. Accordingly, the sound 

contains whole and half-whole, albeit low-intensity, modes. 

Each of the modes included in (2) can be rewritten in a 

physically more informative form: 

, , , ,sin( ) cos( ) sin( ),+ = +k i k i k i k i k i k i k ia t b t c tω ω ω φ  

k=1…l, i=1…n                                (3) 

Then the approximating function looks like this 
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Here ,k ic  is the drifting total amplitude of the wave 

(mode), ,k iφ  is the drifting phase. Everywhere below, the 

term amplitude will be understood as the total amplitude 

3. Synthesis of Artificial Mono Sounds 

We studied those vowel sounds that could be pronounced 

for a long time - these are the sounds (mono sounds) "A", 

"O", "U", "E", "Y", "I", received from several respondents, 

womens and mens. The sounds were decomposed into modes 

by a proportional catching network [6] and then restored. In 

all cases, the reconstructed sound sounded the same as the 

original sound. 
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In order to answer the question of what exactly makes the 

sound "A" as namely sound "A", the sound "O" as namely 

sound "O", etc., before summation (4), mathematical 

experiments were carried out for the purpose of deliberate 

distortion of amplitudes and phases. 

First, the phases of all integer modes, except for the basic 

one, were replaced by artificially calculated ones related to 

the phase of the basic mode by the formula 

, 1,k i i kk rφ φ= + , k=1…l, i=1...n.                  (5) 

Here k is the mode number, 
i,1ϕ  is the time-dependent 

phase of the base mode, rk is an array of arbitrary numbers. 

The phase of base mode not changes. Amplitudes of all 

modes not change too. As it turned out, the sounding of 

sounds not change. 

Secondly, let us pay attention to the behavior of the drifting 

amplitudes of one of the sound samples "A" (Figure 1). 

 

Figure. 1. Behavior of first 3 lower amplitudes of whole modes of sound “A”. The red line is the amplitude of mode No. 1, the green line is the amplitude of 

mode No. 2, the blue line is the amplitude of mode No. 3. Since the sound was recorded at a sampling rate of 44100, here and everywere below 1/44100 part of 

a second is taken as a unit oh time. 

As can be seen from Figure 1, the drifting amplitudes 

vibrate, as it were, chaotically around their mean values. The 

very fact of the chaotic behavior of general amplitudes 

suggests that chaos is something introduced that has nothing 

to do with the individuality of sounds. And so it turned out. 

Drifting amplitudes can be averaged over a segment of the 

sound, and then the actual drifting amplitudes can be 

replaced with their averaged values, which are constant over 

the entire segment of the sound. The sound obtained after this 

amplitude distortion sounded the same as the original. 

Third, it turned out that when the modes are summed, the 

drifting zero and half-integer modes can be omitted. By this 

rejection, the sound did not change. But if the phase of each 

of the modes, including the base one, is replaced with a 

constant but random number throughout the entire sound 

segment, then the sound quality deteriorated significantly. 

Instead of a clear sound, what could rather be called the 

sound of a buzzer was heard. 

In search of explanations for this phenomenon, the 

following mathematical experiments were performed. The 

averaged amplitude spectrum of each of the studied sounds 

was combined in formula (4) with drifting phases from any 

other of the same sounds and from any of the other 

respondents. After this operation, the sound did not change, 

sounded clear and corresponded precisely to the amplitudes 

So what explains the deterioration in sound quality when 

replacing drifting phases with constants? It turned out that in 

all cases the real phases are not strict constants, but drift 

(float) around some average values with an unstable period 

from 1.5 to 2.5 Hz and an unstable amplitude of 0.5-2 

radians. They are, as it were, "spoiled." 

In this regard, the assumption arose that this is how it 

should be. That the listener's brain is already ready for the 

fact that the speaker will produce a signal with a corrupted 

phase, and the sound with an uncorrupted phase is not 

perceived by the listener's brain as a sound. This assumption 

came true. When a chaotically changing (within certain 

limits) value was taken as a phase, the sound again sounded 

clearly and recognizably 

Summing up all of the above, we find that for the synthesis 

of the above sounds, instead of (4), as one of the options, we 

can take the formula 

1

1

( ) sin( sin( / 3300) ),
l

k k k

k

y i c i kp i rω
=

= + +∑  i=1…n    (6) 

where the averaged values of the amplitudes are given in the 

following table 1, ωk are the carrier frequencies proportional 

to the base frequency, the value of which is given in the last 

line of table 1, rk is an array of arbitrary numbers, n is the 

length of the sound segment (in sampling counts). 

The p factor in (6) can take any value in the interval [1, 

10], but the best sound is observed when p = 2 for the sounds 

"E", "Y", and p = 4 for the sounds "A", "O", "U", "I". The 
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author's voice was taken as the basis for obtaining the 

averaged total amplitudes in Table 1. It is also accepted in 

(6). The internal sine in (6) provides phase damage. (Other 

options for phase damage are also possible). 

Table 1. Values of amplitudes of different modes of simple vowel sounds. 

Mode number А О U E Y I 

1 637 613 1060 566 1757 914 

2 375 714 814 540 354 112 

3 674 836 303 1007 65 22 

4 794 495 0 61 0 0 

5 753 51 0 114 25 0 

6 180 0 0 123 51 0 

7 49 0 0 90 140 0 

8 19 0 0 97 32 0 

9 15 0 0 183 54 16 

10 17 0 28 93 111 49 

11 17 10 0 114 14 30 

12 21 17 0 120 10 35 

13 8 0 0 44 22 71 

14 16 0 34 31 92 135 

15 16 0 7 42 26 147 

16 16 15 17 54 26 110 

17 30 30 8 79 8 35 

18 34 12 0 45 0 6 

19 13 0 0 37 0 8 

20 0 0 0 18 7 5 

21 0 0 0 45 0 14 

22 0 0 0 25 9 21 

23 0 12 0 0 6 14 

24 0 0 0 0 12 5 

25 0 0 10 0 10 9 

26 0 0 10 0 8 22 

27 0 0 5 0 7 16 

28 0 0 3 0 0 24 

29 0 11 4 0 0 42 

30 0 15 8 0 0 18 

31 0 18 13 0 0 14 

32 0 18 15 0 0 13 

Base frequency 0.0269 0.0262 0.0305 0.0268 0.0302 0.0291 

Note: small (within 10-30 percent) amplitude changes are permissible, which do not noticeably affect the sound. A simultaneous proportional change in all 

amplitudes of a certain sound is also possible - this corresponds to a change in volume. The data were obtained by averaging over 20 samples with a duration 

of 2-3 seconds each. 

4. Synthesis of Artificial Words 

When studying words, the problem of edge effects arises 

first of all. In the case of long vowels, this problem was easy 

to solve. The beginning and end of the recording were simply 

cut off by 10-30 percent of the total length of the recording, 

after cutting, there was a sufficient segment of the sound 

curve for studying 

When studying words, you cannot do this, since during 

circumcision it was possible to accidentally cut off the 

sounds that are included in the word and are essential for its 

recognition 

Therefore, the following decision was made: instead of a 

certain word, in one breath, a sequence of 3 of the same 

words was pronounced, forming a multiword in total. So, to 

study the word MALINA, the multiword 

MALINAMALINAMALINA was written down (it is more 

convenient to denote it as 3MALINA), if possible, so that it 

was represented by one word for the speaker. 

Then the base frequency of the multiword was determined 

and the sound curve was decomposed according to the 

proportional catching network [5]. After that, the drifting 

amplitudes were visualized and a search was made for 

recurring characteristic areas (notches), at least for one of the 

modes 

In some cases, it turned out that it makes sense to perform 

some mathematical transformations in order to search for 

notches. So, for example, for the multiword 4MALINA it 

turned out that if we carry out the numerical differentiation of 

the amplitudes in time, then the notches are clearly visible in 

mode No. 3 (Figure 2). 
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Figure 2. Graphs of the derivatives of the total amplitudes of the first 6 integer 

modes of one of the samples of the multiword 3MALINA in time. For ease of 

viewing, the graphs are spaced vertically, in accordance with the mode number, 

from top to bottom. Notches are marked on the graph of fashion # 3 (blue line) 

with vertical black straight lines intersecting the blue one. 

As can be seen from Figure 2, the notches are also clearly 

visible for modes 5 and 6, albeit at points slightly shifted 

relative to the notches of mode No. 3 on the time axis. 

Obviously, in the interval between adjacent notches, each of 

the sounds of the word (phonemes) occurs exactly once, 

although the word does not necessarily begin with the notch. 

Thus, everything that is between adjacent notches should 

be considered not as a word, but as a representative of the 

word. The word differs from the word representative in that 

some part of the word is cut off from its beginning and 

transferred to the end, as a result of which a word 

representative is created. For analysis, it is more convenient 

to use word representatives, which is done in this article. 

Since in all samples a multiword consisted of 3 joined 

words, respectively, in each sample of a multiword 4 notches 

were searched for and, accordingly, 3 representatives of the 

word were selected. After the decomposition of the 

representative of the word into modes, the restoration of the 

representative of the word was carried out, several identical 

copies of which were successively docked with each other. 

As expected, the recovered multiword sounded the same as 

the original multiword. 

To create those words that can be called artificial, one 

should find a certain mathematical formula, like formula (6), 

the use of which will allow generating a word. Below will be 

presented mathematical formulas obtained on the basis of one 

of the samples of representatives of the word MALINA 

Finding these formulas began with the expansion of the 

sound curve of the multiword 4MALINA in a proportional 

catching network where number of modes is equal to 24 and 

at the base frequency ω1 = 0.025. Then, the notches were 

visually found and the representatives of the words were 

distinguished, which were subjected to further study. 

Since the word includes different sounds, and since the 

corresponding amplitudes of modes, in accordance with 

Table 1 - are different, then it will not work to approximate 

the amplitudes of the modes of the word representative with 

constant numbers. Therefore, a different path was chosen. As 

it turned out, for all modes, their amplitudes look like the 

sums of bell-shaped functions partially drifting over each 

other. (See Figure 3 below). Consequently, the amplitudes of 

the modes can be approximated by the sum of several 

Gaussian functions with different parameters 

2

,

,

1 ,

( )
( ) exp

m
k l

k k l

l k l

i
C i A

µ
σ=

 −
= − 

  
∑  i=1…n, k=1…24     (7) 

Here i is the time (the number of the record count), Ck - is the 

drifting amplitude of the mode number k, m is the number of 

Gaussian functions approximating the amplitude of the mode 

number k, (in the present study, everywhere m = 6), Ak,l, µk,l, σk,l 

are the parameters of the Gaussian functions, n is the word 

length (in sampling counts, in the present study n = 29299). 

These parameters can be selected by one of the known 

methods - for example, the coordinate-wise approximation 

method, the steepest descent method, or any other of the 

nonlinear approximation methods. Let us present the result of 

such an approximation using the example of the amplitudes 

of the first 8 modes of the representatives of the word 

MALINA (Figure 3). 

 

Figure 3. Amplitudes of the first 8 modes of the word MALINA 

representative, from top to bottom in numerical order. The colored curved 

line is the amplitude of the drifting mode, the flat horizontal line of the same 

color is its zero point. The black line superimposed on the colored line and 

partially covering it is the result of the approximation of the amplitude by the 

sum of the Gaussian functions. Word length is 29299 points. 

As can be seen from Figure 3, there is some difference 

between the approximated and approximated functions. 

However, when you reversely synthesize a multiword, this 

difference is not audible. 
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Table 2. Parameters of Gaussian functions (7) approximating the amplitudes of modes 1-8. 

  k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

l=1 

µkl 16730 17893 4323 2354 2774 2145 22530 21836 

σkl 9721 13579 1530 1707 2384 1639 350 1305 

Akl 424 349 1174 943 337 168 205 293 

l=2 

µkl 16849 6563 22228 22501 380 23359 2596 4208 

σkl 815 1432 1743 2002 250 591 1435 1965 

Akl 157 627 911 319 425 208 420 134 

l=3 

µkl 13573 21594 1483 827 22480 1107 22082 20307 

σkl 3011 1231 1279 684 1870 410 1854 213 

Akl 384 405 329 355 214 490 218 168 

l=4 

µkl 6006 14569 4854 23225 24021 23927 23285 5312 

σkl 6638 847 493 212 433 284 440 340 

Akl 681 255 713 155 81 536 504 84 

l=5 

µkl 24635 647 279 4650 1030 21712 5313 3885 

σkl 198 471 286 1464 116 1733 953 326 

Akl 135 270 469 211 56 162 120 69 

l=6 

µkl -378 23894 23649 23884 622 3490 19962 21669 

σkl 1913 446 688 224 83 2242 233 661 

Akl 98 207 409 145 59 171 161 166 

Table 3. Parameters of Gaussian functions (7) approximating the amplitudes of modes 9-16. 

  k=9 k=10 k=11 k=12 k=13 k=14 k=15 k=16 

l=1 

µkl 4954 15200 5119 13537 21521 14556 10661 11294 

σkl 1093 322 922 1386 4111 586 572 856 

Akl 215 98 121 104 59 115 164 82 

l=2 

µkl 21888 6992 6721 5376 5298 11574 13438 13950 

σkl 1400 5854 9238 759 1723 1333 1106 1157 

Akl 163 43 17 127 117 45 56 21 

l=3 

µkl 7889 22192 9970 22117 13747 23722 5219 21801 

σkl 1079 1783 294 1547 2486 10699 2266 1931 

Akl 94 52 99 61 61 23 25 14 

l=4 

µkl 5338 5452 22145 13225 9907 9927 22018 6065 

σkl 468 654 2018 287 452 321 4521 9833 

Akl 451 48 48 39 59 50 18 7 

l=5 

µkl 15522 10650 11319 14229 21835 13606 11831 4696 

σkl 383 781 961 658 1086 208 391 1292 

Akl 68 30 91 156 115 37 61 10 

l=6 

µkl 6301 21104 14450 5738 23694 5702 13329 21273 

σkl 299 693 1095 11539 146 690 112 351 

Akl 121 46 58 22 28 15 22 8 

Table 4. Parameters of Gaussian functions (7) approximating the amplitudes of modes 17-24. 

  k=17 k=18 k=19 k=20 k=21 k=22 k=23 k=24 

l=1 

µkl 11001 10789 11399 22447 2957 7025 6663 5063 

σkl 895 551 1552 1584 2224 14510 13426 721 

Akl 57 41 99 58 22 4 3 23 

l=2 

µkl 23261 21952 22397 10229 11011 4883 9687 5555 

σkl 853 1969 1744 5447 6237 275 213 211 

Akl 18 31 40 24 9 7 8 19 

l=3 

µkl 13741 4245 3968 5305 22491 9632 5377 3792 

σkl 1698 3442 3829 569 2104 226 279 412 

Akl 20 20 35 57 10 12 3 13 

l=4 

µkl 4561 11603 21250 12022 3705 3806 12670 8576 

σkl 3661 412 530 726 209 1759 251 13198 

Akl 16 41 73 35 16 7 4 4 

l=5 

µkl 20353 12337 23905 1647 1398 8543 14156 1789 

σkl 256 3179 414 1451 283 296 358 243 

Akl 19 25 37 48 13 6 3 6 

l=6 

µkl 21393 20473 22888 3798 10113 7368 11834 22493 

σkl 726 200 204 461 389 381 227 901 

Akl 30 17 42 46 11 7 3 4 

 

Thus, the drifting amplitudes of word representatives can 

be represented in the form (7). The necessary values of the 

parameters of the Gaussian functions for the amplitudes of 

the modes of the word MALINA are given in Tables 2-4. 



121 Viachaslau Vladimirovich Mitsianok:  On the Synthesis of Some Artificial  

Sounds and Words of Human Speech 

The number k in the tables 2-4 means the number of the 

mode, the number l is the number of the Gaussian function 

included in the approximating sum (7). 

As for the phases, their typical behavior is presented below 

(Figure 4). 

 

Figure 4. Normalized phases of the first 8 modes of one of the representatives of the word MALINA (Normalized phase is the phase divided by the mode 

number 1). The first fashion at time=1 is red, the second is green, the third is blue, the fourth is purple, the fifth is black, the sixth is turquoise, the seventh is 

blue, the eighth is brick. 

As can be seen from Figure 4, in some cases, the phases 

experience a sharp break. Such functions are inconvenient for 

approximation by power functions, therefore, it was decided 

to split the entire length of a word representative into sections, 

and as the boundaries between these sections, select those 

moments in time where at least one of the phases experiences 

a break. 

Between the boundaries of the sections, the phases can be 

linearly interpolated. The boundaries of the sections of linear 

interpolation and the phase values at the boundary points for 

modes 1-24 are given in Tables 5-7. 

Tables 5-7 X-coordinates of the boundary points of the 

splitting sections of the representative of the word MALINA 

are given in the first column. The number k in these tables 

denotes the mode number. 

Table 5. Boundaries of sections and phase values at boundary points for modes 1-8. 

i k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

1 0.95 3.09 -50.42 -79.36 -159.87 20.04 -102.84 -69.90 

690 -0.82 -0.32 -53.68 -86.03 -166.07 13.17 -112.42 -69.32 

1290 -1.95 -2.64 -57.09 -90.63 -172.00 8.63 -119.83 -82.09 

2700 -2.86 -3.44 -59.62 -94.68 -177.02 3.75 -125.56 -89.04 

3390 -2.46 -2.29 -58.44 -93.57 -175.31 6.15 -122.18 -85.93 

4590 -0.66 1.55 -53.65 -86.50 -166.43 16.94 -108.39 -99.99 

5100 0.43 3.82 -51.29 -82.91 -160.86 22.05 -113.91 -105.02 

6330 3.37 9.17 -42.68 -88.78 -161.90 13.28 -126.01 -113.96 

7200 5.27 12.25 -36.78 -81.00 -157.86 16.27 -124.09 -122.30 

8640 8.67 18.36 -25.95 -81.88 -143.67 11.49 -138.23 -132.82 

9420 10.15 21.75 -21.34 -78.87 -140.03 22.89 -147.16 -139.02 

9840 11.08 23.42 -24.56 -76.15 -137.24 27.44 -148.26 -134.91 

10200 12.06 25.03 -22.28 -79.62 -134.69 29.55 -151.03 -136.51 

12000 17.33 35.56 -6.47 -108.76 -153.05 11.13 -164.12 -144.46 

13050 19.94 40.81 1.70 -120.18 -149.94 11.30 -174.91 -153.02 

14100 22.41 45.86 8.73 -119.74 -138.03 5.91 -186.72 -162.71 

15600 24.75 50.67 16.90 -109.56 -125.63 21.17 -191.30 -177.79 

15990 24.63 49.94 13.26 -108.77 -123.90 22.69 -190.08 -177.05 

18600 21.37 43.47 3.62 -120.96 -137.45 34.35 -188.69 -184.76 

20550 14.43 30.03 -14.32 -107.43 -154.79 31.90 -189.90 -199.34 

21030 12.47 26.16 -12.31 -112.03 -154.90 29.84 -184.95 -196.84 

22530 5.56 13.18 -1.39 -108.91 -157.91 22.02 -172.21 -191.61 

24180 -2.59 -2.91 7.84 -106.53 -164.44 23.60 -178.08 -203.46 

24720 1.36 -9.13 5.98 -106.10 -168.19 21.67 -179.16 -207.24 

26070 -4.77 -21.34 13.36 -100.27 -174.73 30.70 -172.06 -211.59 

29299 -14.84 -41.38 -15.57 -79.23 -213.37 33.12 -162.31 -227.07 
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Table 6. Boundaries of sections and phase values at boundary points for modes 9-16. 

i k=9 k=10 k=11 k=12 k=13 k=14 k=15 k=16 

1 -92.32 16.92 39.61 97.73 69.52 -25.98 20.94 66.23 

690 -94.15 14.08 38.91 96.60 71.09 -23.75 21.16 55.62 

1290 -90.37 16.36 41.01 96.95 70.02 -26.78 32.21 60.45 

2700 -95.54 8.80 33.78 99.68 63.88 -25.78 74.95 59.93 

3390 -93.66 12.37 30.53 103.55 65.19 -18.26 79.34 61.52 

4590 -107.07 12.51 19.12 102.16 56.60 1.04 77.11 58.67 

5100 -110.23 9.75 17.81 101.71 57.36 3.60 79.86 61.54 

6330 -115.97 6.94 17.68 105.23 62.37 17.89 90.07 63.83 

7200 -122.30 2.14 15.88 106.60 62.89 19.71 96.10 72.20 

8640 -128.94 -0.82 15.96 107.97 68.99 28.68 100.70 70.22 

9420 -130.67 -4.61 13.61 107.98 73.08 32.71 108.13 74.33 

9840 -132.28 -6.98 10.53 104.97 73.94 29.25 109.08 78.31 

10200 -134.09 -7.00 10.31 106.36 75.45 30.39 106.68 75.77 

12000 -136.47 -4.13 21.38 119.18 95.21 51.75 100.23 61.34 

13050 -142.32 -7.20 20.59 122.07 100.95 58.69 111.28 61.51 

14100 -149.07 -12.20 18.20 122.29 102.97 63.19 117.27 65.99 

15600 -145.22 -0.29 7.60 115.94 96.14 54.98 121.72 71.91 

15990 -144.82 2.14 10.01 118.42 99.13 53.86 126.75 88.93 

18600 -149.07 13.85 12.70 123.59 107.83 47.48 125.86 122.16 

20550 -155.03 18.73 15.98 126.84 108.99 56.81 127.40 237.54 

21030 -152.85 18.49 13.69 125.05 113.08 50.36 127.90 236.43 

22530 -153.01 13.90 2.66 135.48 116.89 47.44 120.85 220.89 

24180 -156.85 19.39 -0.02 131.12 117.59 42.29 115.12 211.79 

24720 -154.47 21.82 -0.76 133.71 116.95 43.36 114.07 205.35 

26070 -154.04 26.22 4.62 134.15 111.33 39.10 114.49 218.35 

29299 -164.19 18.14 17.06 149.54 109.52 43.21 113.47 209.18 

Table 7. Boundaries of sections and phase values at boundary points for modes 17-24. 

i k=17 k=18 k=19 k=20 k=21 k=22 k=23 k=24 

1 311.71 169.99 63.09 227.08 526.45 768.11 2296.48 2576.68 

690 314.96 170.97 70.72 221.12 522.02 833.38 2408.22 2630.22 

1290 313.03 174.25 73.20 222.69 515.66 848.96 2460.27 2647.50 

2700 310.35 177.35 74.92 223.61 510.13 841.25 2618.07 2683.95 

3390 316.31 178.84 77.35 226.18 519.47 837.06 2666.77 2717.94 

4590 317.54 179.83 79.75 229.42 519.95 841.05 2879.09 2734.03 

5100 321.17 185.15 85.74 225.66 514.90 837.70 2973.62 2739.71 

6330 322.84 182.18 76.59 219.42 530.76 862.17 3068.99 2744.20 

7200 337.69 192.95 72.04 209.48 550.89 881.98 3096.14 2741.58 

8640 344.20 184.58 61.81 203.30 564.57 893.97 3115.68 2786.30 

9420 351.35 179.09 58.09 196.83 564.57 891.53 3122.48 2835.03 

9840 350.60 180.05 60.11 196.94 563.20 889.42 3119.50 2833.54 

10200 347.37 179.22 59.97 197.40 563.21 909.04 3142.71 2834.43 

12000 337.43 174.29 60.18 203.58 577.18 1048.50 3272.57 3064.90 

13050 349.22 162.46 52.16 198.51 589.21 1119.77 3284.78 3211.02 

14100 360.48 164.60 43.24 190.17 590.02 1152.99 3391.66 3292.31 

15600 362.49 169.46 48.20 198.29 604.64 1217.41 3533.45 3523.92 

15990 374.23 167.94 78.91 213.47 607.16 1309.90 3545.69 3526.30 

18600 446.67 166.39 107.26 276.56 845.99 1377.37 3798.80 3770.87 

20550 516.49 181.20 157.22 349.10 985.36 1720.73 4068.01 3976.55 

21030 517.00 178.78 160.18 348.40 1001.69 1767.36 4115.29 4034.23 

22530 524.84 181.85 156.67 338.35 1028.70 1864.55 4308.88 4169.39 

24180 528.21 185.49 156.04 330.36 1016.32 1946.68 4486.44 4257.09 

24720 528.74 203.07 167.02 333.34 1012.97 1976.87 4534.50 4376.86 

26070 563.06 213.81 171.87 356.10 1021.57 2163.41 4688.76 4581.78 

29299 752.59 310.47 253.59 460.31 1177.22 2282.86 4856.29 4771.62 

 

5. Conclusion 

The amplitudes of each of the modes can be approximated 

by the sum of Gaussian functions, the phases can be 

approximated piecewise linearly. After such an 

approximation, itis possible, according to formula (4), to 

recreate a word representative, sequentially join anynumber 

of identical word representatives, and thereby obtain a 

reconstructed multiword, which can be converted into any of 

the audio formats and listened to. 

Note. The numbers in columns 2-9 of tables 5-7 are given 

with an accuracy of 0.01. These numbers can be multiplied 

by 100, added to them the numbers from tables 2-4 and the 
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first column of tables 5-7, the result is a set of 1082 integers, 

which occupy 4328 bytes in computer memory. The word 

MALINA written in. Wav format is about 59600 bytes. Thus, 

the content of tables 2-7 can be considered as a result of 

compression of the word MALINA, the compression ratio is 

about 14. (Moreover, it can be increased due to more 

economical methods of writing numbers, discarding low-

intensity modes, etc.). 
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