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Abstract: Nowadays, transport network of electrical energy operate beyond their thermal limit, due to growing populations, 

industrialization and modernization needs. To this end, multi-term power lines are erected in order to ensure the transit of the 

requested energy while ensuring the stability of the electrical network. But when there is loss of one term of these lines for 

various reasons (short circuits and others), a problem of transit of this energy is posed. Sure, several research works have been the 

subject of publications in terms of power transit optimization, however the case of the loss of a term of a transmission line is still 

a challenge. It is clear that when there is a loss of a term of a line, the power transmitted is reduced because of the increase in the 

impedance of this line. This study proposes an approach that optimizes the transit of electrical energy post-incident. To do this, 

the use of the third generation FACTS in this case the UPFC allows us to obtain the expected results. The interest of this work is 

to satisfy even in emergency or post-contingency conditions the demand for electrical energy while ensuring the stability of the 

system. 

Keywords: Optimization, Double Term Electrical Energy, FACTS, Emergency Regime, System Stability,  

Post Contingency and UPFC 

 

1. Introduction 

Electric energy is an essential energy vector for human 

activities and an essential factor in the development of 

humanity. And therefore, power grids are key infrastructures 

that allow this energy to be transported from the production 

center to the consumption center or to a system of infinite 

power. 

However, the transort of electrical energy is subject to the 

various problems of voltage drops, joule losses, reactive 

power transit, overvoltages, voltage imbalances, rotor angle 

oscillations or transport and losses of a network element 

(generators, transformers or lines). All of these hazards are 

known as power grid instability, which you have to 

understand. 

The study of the stability of an electrical network allows to 

examine behavior the behavior of the network in the face of 

small or large disturbances. Continuous variations of 

consumption or production represent only small disturbances. 

Faults, such as short circuits, loss of a network element 

(generator, line or transformer) represent major disturbances. 

The latter are at the origin of the appearance of a difference 

between mechanical power and electrical power. To have a 

balance between production and consumption, it is at first 

sight necessary to increase the number of power stations, lines, 

transformers, etc., which implies an increase in cost and a 

degradation of the natural environment [1]. The transient 

stability and dynamic stability of electrical networks are their 

ability to ensure synchronous operation of its generators when 

they are subjected to significant and moderate disturbances. 

The appearance of such disturbances can lead to large 

excursions of the rotor angles of some generators or even to 

the breaking of synchronism which generally develops in a 

few seconds [1-3]. 

A variety of approaches allowing the evaluation of the 

stability of electrical networks has been proposed in the 
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literature, in particular: indirect numerical integration methods 

[3], direct energy methods [4-6], probabilistic methods [7, 8], 

methods based on pattern recognition [8], adaptive nonlinear 

methods [11] and hybrid methods [9]. Likewise, the means for 

improving stability have been proposed in the literature, 

namely: improving stability by conventional means [2], by 

PSS [13] and by FACTS [12]. 

In some networks, multi-term power lines are built to 

transport a large amount of electrical energy. This also 

honorable technique has limits in the case of loss of a term of 

the line because of the increase in the impedance of this one, 

significantly reducing the power to be transported, and 

therefore a problem of congestion of the line. To pretend to 

decongest this line, the network may be exposed to the 

problem of stability of the transport angle during this 

emergency regime. 

The interest of this work is to optimize the transit capacity 

of the line and the voltage at the interconnection node without 

veiling the limits of stability of the transport angle in 

emergency mode. To do this, we will use the indirect method 

of numerical integration (the theory of equality of areas) 

which consists in evaluating the transit capacity before, during 

and after the loss of a term of the line. To optimize the transit 

capacity and the transport angle, the FACTS device, in this 

case the UPFC, will be used. 

2. Stability of Electrical Networks 

2.1. Definitions 

For years, various and complex research was carried out to 

understand the stability problems of power systems. Thus, 

many definitions of the stability of power systems were 

offered with emphasis on the various aspects that reflect the 

manifestation of the stable state of the system. The most recent 

definition, which we will adopt, is the result of a joint working 

group (IEEE / CIGRE, 2004). 

The stability of a power system is the ability of an electrical 

energy system, for a given initial operating condition, to return 

to the same or another state of equilibrium after having 

undergone a physical disturbance, while maintaining the most 

of the system variables within their limits, so the entire system 

remains virtually intact. Thus, a power system having a state 

of equilibrium is considered to be stable, if following a 

disturbance, the system returns to the same position of 

equilibrium. The system is also considered stable if it tends to 

another position of equilibrium located in the vicinity of the 

point of initial equilibrium. 

2.2. Types of Stability 

There are several forms of stability of electrical networks, 

structured according to Figure 1 below: 

 

Figure 1. Different forms of stability. 

2.2.1. Voltage Stability 

The voltage stability of an electrical network is the capacity 

of this network to keep the voltage at each node and at all 

times within the allowable range. In other words, if after 

disturbances the voltages at each node of the network are 

within the allowable range, we say that there is voltage 

stability. Otherwise, it is said that there is voltage instability 

which manifests itself in the worst case by a collapse or 

blackout of the network. There are several types of voltage 

stability: transient stability due to large disturbances (short 

circuits or losses of a network element); dynamic stability 

corresponding to small disturbances (variations in load or 

production) and static stability (voltage drops or increases in 

steady state or post-incident regime). 

2.2.2. Rotor Angle Stability 

It is defined as the ability of a set of interconnected 

synchronous machines to maintain synchronism under normal 

operating conditions or after being subjected to a disturbance. 

Rotor angle instability manifests itself as an increasing gap 

between the rotor angles of one machine and the rest of the 

system or group of machines and the rest of the system. A 

machine which has lost synchronism will be triggered by an 

over speed protection or by a loss of synchronism protection. 

Like voltage stability, angular stability manifests itself 

according to the magnitude of the disturbance; in this dispute, 

one speaks of angular stability at large disturbances (transient 

stability), of angular stability at small disturbances (dynamic 

stability) and of static stability which concerns the permanent 



 Science Journal of Energy Engineering 2020; 8(4): 44-53 46 

 

regime or post incident regime. 

2.2.3. Frequency Stability 

Frequency stability concerns the capacity of the system to 

keep the frequency close to the nominal value, following a 

severe incident which may or may not have led to a 

fragmentation of the system. Frequency stability is closely 

related to the overall balance between production and 

consumption. When instability is noted, various frequency 

adjustments are made. In this dispute, we are talking about the 

primary adjustment which takes place during the first 15 

minutes of the disturbance, of the secondary adjustment after 

the 15 minutes of the disturbance and of the tertiary 

adjustment after the 30 minutes of the disturbance. 

 

2.3. Angular Stability Analysis 

Angular stability has transient and dynamic aspects. Static 

stability is often integrated either in the dynamic part 

corresponding to small disturbances or simply treated as a 

problem of production-consumption balance. Synchronous 

machines therefore play an essential role in the analysis of 

angular stability. Their representation and modelization are 

therefore the fundamental elements in the analysis of the 

stability. Since the rotor angle and the transport angle are 

closely related and can overlap, then the analysis of the 

transport angle can be inferred from that of the rotor angle. 

Also, we will not approach this theory without presenting the 

simplified model of the production system for the analysis of 

angular stability [10]. 

 

Figure 2. General diagram of the generator connected to the electrical network. 

2.3.1. Equation of Motion 

The basic equations describing the reaction of the rotating 

masses of synchronous machines to various disturbances are 

in fact related to the inertia of the synchronous machine and 

describe the resulting imbalance between the electromagnetic 

torque and the mechanical torque of these machines. This 

imbalance can be expressed by the following relation [10]: 

�� = �� − ��                  (1) 

1) ��: mechanical torque in N.m; 

2) ��: electromagnetic torque in N.m; 

3) ��: acceleration torque in N.m. 

This equation applies to both generators and motors. 

However, for generators, ��  and ��  are positive while for 

motors they are negative. In the case of generators, �� represents the mechanical torque produced by the turbine 

in the direction of rotation (at the level of the machine shaft). It 

allows therefore the rotor to be accelerated in the positive 

direction of the rotation. The electromagnetic torque �� , 

created by the interaction of the magnetic fluxes of the rotor 

and the stator, in fact opposes the mechanical torque and 

corresponds to the electrical power at the level of the air gap of 

the machine. Under steady-state conditions, the acceleration is 

zero because �� = �� . In this case, there is neither 

acceleration nor deceleration of the moving masses. Thus, the 

speed is constant and corresponds to the speed of 

synchronism. 

When an imbalance occurs between �� and ��, there is an 

acceleration (or deceleration) of the rotating masses. The latter 

is expressed as the product of the moment of inertia of these 

masses by its angular acceleration, which gives: 

�� = � 	
�	� = �� − ��             (2) 

with  

1) J: moment of inertia of all rotating masses (generator and 

turbine); 

2) 
�: angular speed of the rotor in mechanical radians per 

second. 

In fact, the equation (2) sometimes contains an additional 

term opposing the mechanical torque. This term includes all 

the resistive torques corresponding to friction and 

electromagnetic losses such as the windings of the 

synchronous machine dampers. This torque also opposes the 

rotation of mechanical masses. Under these conditions, 

equation (2) becomes: 
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J 	
�	� � �� � �� � 
����            (3) 

with ��� the damping torque coefficient. 

This additional torque is relatively low and is often 

neglected compared to the mechanical �� and 

electromagnetic ��  torques. However, for some studies, the 

resistive torque due to the damper windings is taken into 

account, especially for the study of sustained oscillations. 

In what follows and in the context of transient stability, we 

will not take this additional torque into account. Equation (2) 

remains in force. 

The relation which binds the couples to the powers is given 

by: 

1) Pm � 
��� mechanical power supplied by the turbine; 

2) �� � 
���  electromagnetic power. 

We then have: 

�
� 	
�	� � �� � ��              (4) 

The coefficient �
� represents the angular momentum of 

the rotor. We then introduce the notion of relative inertia 

constant H (in reduced value) frequently used for stability 

studies. It is defined by the relation: 

H=

�� �
²�� ����  (kinetic energy of rotating masses at the 

reference speed) /����. 

with: 

1) 
��:  synchronous angular speed of the rotor in 

mechanical radians per second; 

2) ����: reference (basic) electrical power of the alternator. 

After a few mathematical manipulations, we obtain the final 

reduced-value equation (pu) below: 

� 
�
	²!	�² � "� � "�                (5) 

This equation is known as the equation of motion and is the 

basis of the analysis of transient angular stability. The solution 

of this equation for δ, gives us the temporal evolution of this 

angle, often referred to as the internal angle of the machine, 

and makes it possible to follow the behavior of the machine 

with respect to synchronism when a fault occurs in the 

network. Assuming that 
� � 2$%  where %  represents the 

network frequency, equation (5) becomes: 

 &� 	²!	�² � "� � "�                (6) 

2.3.2. Rotor Angle or (Transport) Power Considerations in 

STEADY State 

Given the simplified model of the alternator shown in 

Figure 3 below, the emf induced by the excitation winding is 

given by: 

'( � )*	+ , - .�/                 (7) 

*	 being the reactance of the direct axis in steady state. It 

corresponds to the synchronous reactance. 

 

a) 

 

b) 

Figure 3. a) simplified model of an alternator and b) corresponding Fresnel 

diagram. 

By taking .�  as the phase reference, and the angle δ 

(internal angle) between E and .�, we can deduce the complex 

power per phase: 

�, � .�/ . + , � .�/ 12(34�(((567 8              (8) 

By developing (8), we have: 

�, � 49267 :51;�3!8 � ) 49�67  

with 

< � ='>?^.>?�A 

We separet the imaginary and real parts, we obtain: 

�, � 49267  BCD< - ) 149267 EFB< � 49678        (9) 

we deduce: 

1) Active power 

" � 49267 BCD<                (10) 

2) Reactive power 

G � 4�267 cos < � 49�67              (11) 

Expression (10) therefore corresponds to "� in the equation 

of motion. Likewise, expression (11) highlights the link that 

exists between the reactive power Q and the emf E of the 

machine and therefore of the excitement. From expression 

(10), if we increase "�, by acting on the turbine, while keeping .� and E constant (Xd remains constant), we see that the angle 

δ also increases. This maximum power is obtained at the 

bridge where the angle δ=90°. In these conditions: 

"��K � 4�267   

This limit is better known as the static stability limit. Indeed, 

if the machine is called upon to increase its output power 

while it is at the Pmax point, it will no longer be able to remain 
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synchronized with the rest of the network. Figure 4 below 

schematizes this characteristic P=f (δ). 

 

Figure 4. Variations of Pe as a function of δ. 

2.3.3. Dynamic Analysis 

We examine the case where the synchronous machine 

connected to a network of infinite power experiences small 

variations in the load. For illustration purposes, the actions of 

various regulations will not be considered. The initial equation 

(5) is then written as [10]: 

� 
�
	²!	�² � "� � "� � "� � "��KBCD<        (12) 

This equation highlights a nonlinear relationship between 

the equation of motion and the internal angle δ. However, for 

small disturbances resulting in small movements, we can 

examine the behavior of the machine by linearizing the motion 

equation around the equilibrium position of the machine rotor. 

This point is represented by <L such that: < � <L  and "� � "�. So it follows: 

� 
�
	²∆!	�² � ∆"� � ∆"�   

This equation therefore expresses the effect of the deviation 

from the equilibrium position. Considering the constant 

mechanical power, we will have ∆"� � 0. For low values of 

∆δ, the difference in the electrical power becomes: 

∆"� � �"��K sin=<L - ∆<A Q �"��KEFB<L. ∆<  (13) 

We will then have: 

 
� 
�

	²∆!	�² � �"��KEFB<L. ∆<         (14) 

The equation to be solved is therefore: 

� 
�
	²∆!	�² - "��KEFB<L. ∆< � 0        (15) 

It is a 2nd order equation in ∆δ which has solutions of the 

form : ��. Always considering that the losses are negligible, 

for the movement to be stable the response must be decreasing, 

that is to say, r² ≤ 0. We then have two roots in the complex 

plane and the movement becomes oscillatory but damped. 

Otherwise, that is to say, r²>0, the response is exponentially 

increasing which induces a loss of stability. 

2.3.4. Transient Analysis 

We are developing here the area equality method, because it 

is the case of a group of machines connected to a network of 

infinite power. It is based on the exploitation of Figure 4 to 

predict the stability of the system following a disturbance. 

Indeed, the energy stored in the rotating masses of machines 

can be interpreted graphically in Figure 4 before and after the 

disturbance. This method is therefore important to understand 

the bases of the phenomena related to transient stability. 

Consider again a synchronous machine connected to a 

network of infinite power through a line. The phenomena 

occurring in the synchronous machine before, during and after 

the disturbance are at the heart of this analysis. The transients 

in question are considered very fast and the various 

regulations of the machine have not acted. From the equation 

of motion (5), we can deduce: 

	²!	�² � 
�� ="� � "�A              (16) 

By multiplying the two sides of this equation by the term 2 	! 	� , we will have: 

R2 	!	�S 	�!	�� � 
�� ="� � "�A R2 	!	�S  

This equation can be written in the form: 

		� T1	!	�8�U � 
� ="� � "�A 	!	�           (17) 

Integrating this equation gives us: 

T1	!	�8�U � 
� V ="� � "�A!L W<        (18) 

And therefore: 

1	!	�8 � X
� V ="� � "�AW< !L          (19) 

The variation of the speed (with respect to the speed of 

synchronism expressed by the term 
	! 	�  is initially zero 

(equilibrium position)). The position of the internal angle δ 

corresponding to this initial position is designated by <L . 

When the system undergoes a disturbance, the imbalance 

between the mechanical power and the electrical power 

expressed by the term ="� � "�A will induce a change in the 

term 
	! 	�  and therefore a deviation in the internal angle δ. 

However, for stability to be assured, the term 
	! 	�  must 

become zero once the disturbance has disappeared. One thus 

deduces a criterion for the stability such that: 

1	!	�8 � 0 Y V ="� � "�AW< � 0 !!Z   

To better understand this equation, we will illustrate it on a 

graph representing the curve " � % =<A. To do this, consider 

again Figure 4 but taking into account a form of disturbance 

such as an increment in mechanical power. In this example, 

the initial operating point corresponds to an internal angle < � <L and "�[ � "�[. This initial point is represented in 

the graph of figure 5 by the point “a”. So when the mechanical 

power undergoes a sudden change, it goes from an initial state "�[ to a new state "�\ , figure 6. An imbalance then occurs 
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between the mechanical power and the electrical power. As 

the mechanical power "�\  of the new state is greater than the 

electric power, the resulting acceleration power "� becomes 

positive and the rotor is accelerated. However, given the 

mechanical inertias, the angle δ cannot instantly adjust. The 

angle δ therefore remains at its initial position <L at the very 

first moments of the disturbance, which is reflected in the 

graph of figure 5 by an instantaneous passage from point "a" 

to point "a’ ". The rotor, by accelerating, generates an increase 

in the angle δ going from δ=<L  to δ=<]  corresponding to 

point "b" of equality between the mechanical power and the 

electrical power. The excess energy stored during this 

acceleration phase can be expressed by: 

V ="� � "�!�!Z AW< � ^C_:=^^`aA � ^C_: b]    (20) 

 

Figure 5. Graphic representation of the area equality method. 

However, stabilization is not yet achieved because although 

the acceleration is theoretically zero, the speed of the rotor is 

greater than the speed of synchronism. The rotor therefore 

cannot stop at point "b" because of mechanical inertia. The 

angle δ then continues to increase. But for values of < c  <], 

the mechanical power becomes less than the electric power 

and the acceleration power becomes negative. The rotor then 

begins to slow down to return to synchronous speed until the 

stabilization point "b" is reached. During this phase the 

excursion of the angle δ can go up to a maximum value of < � <�. The rotor thus loses the energy it has accumulated 

during the acceleration phase. The return to point "b" is 

accompanied by oscillations around this point (between <L 

and <� ). The various damping elements present in the 

machine allow these oscillations to be damped to finally 

stabilize at < � <]. which will then correspond to the new 

stable equilibrium state. 

During the deceleration phase of the rotor, the energy lost 

(or restored) is: 

V ="� � "�AW< � ^C_:=aa`EA � ^C_: b� !�!]      (21) 

For a system in which we have neglected losses and 

depreciation, the energy accumulated during the acceleration 

phase is equal to that lost during the deceleration phase. The 

corresponding areas are then equal (b] � b� ). This is the 

criterion of equality of areas. If <� is not known, the area A2 

can be calculated by: 

V ="� � "�AW< � ^_:^ =aa`EA � ^_:^ b� &3!�!]   (22) 

Under these conditions ( b] d b�A  to confirm that the 

system is stable at an adopted degree of compensation. 

3. Applications 

The contribution to the study of angular stability is applied 

to the Congolese network, which will incorporate the 

FACTS of type UPFC in order to optimize the transit 

capacity of electrical energy and the voltage at the 

connection node. 

3.1. Description and Operation of the UPFC 

The UPFC consists of two transformers T1 and T2 used to 

provide galvanic isolation and adjust voltage levels in the 

power system, two PWM (Pulse Width Modulation) 

controlled inverters and a common circuit (capacitor bank). 

One transformer is connected in parallel and the other in series 

with the transmission line, Figure 6 [14, 17]. It can be installed 

at the start or end of the transmission line. 

 

Figure 6. Block diagram of the UPFC. 

3.2. Description of the Electrical Network 

The power grid in Figure 7 consists of a power station 

connected to the high-power electrical system through two 

transformers in parallel in series with the double-term line. 

The electrical system represents the existing Congolese grid 

considered as load, and the power plant being the new 

production infrastructure. 

 

Figure 7. Schematic diagram of the electrical network. 

where: 

A designates all the alternators of the power plant; 

JB is the busbars; 

L denotes the double term line; 

R denotes the infinite power network. 
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3.3. Modeling of the UPFC and the Electrical Network 

3.3.1. Modeling of the UPFC 

The simplified circuit of the UPFC control and 

compensation system is shown in Figure 8. The modeling of 

this circuit is based on the following assumptions [14, 17]: 

1. All switches are assumed to be ideals;  

2. The three voltages of the alternative source are balanced;  

3. All voltage drops in the series compensator are 

represented by resistance _; 

4. All voltage drops in the parallel compensator are 

represented by resistance _e; 

5. Harmonics caused by the opening and closing action of 

switches are neglected. 

6. The line inductance f� plus the leakage inductance of 

the T2 series transformer are represented by the inductance f; 

7. The leakage inductance of the shunt transformer is 

represented by the inductance fe. 

 

Figure 8. UPFC model. 

The UPFC controls [14, 17, 18]: 

1. the injected voltage .g in phase with the voltage .�  of 

the line. 

2. the line impedance, the injected voltage being in 

quadrature with the line current +� . 

3. the voltage phase or the transport angle. 

The main purpose of these three operating modes is to 

control the active and reactive power passing through the line. 

In addition, the UPFC is able to combine serial and parallel 

compensation and switch from one operating mode to another. 

(i) Modeling of the Parallel Part of the UPFC 

The dynamic equations of the parallel part of the UPFC are 

obtained by applying KIRCHHOFF's laws relating to the three 

phases [14, 17, 18]: 

hij
ik 	lmn	� � � �mom Ce� - ]om p.e� � .g� � .��q

	lmr	� � � �mom Ces - ]om p.es � .gs � .�sq
	lmt	� � � �mom Ceg - ]om p.eg � .gg � .�gq

    (23) 

Where +e,�sg  the currents of the UPFC shunt are, .e,�sg  

are the voltages generated by inverter 1, _e and fe are the 

resistance and inductance of the UPFC shunt respectively. 

The system of equations (21) can be rewritten in the matrix 

form (22): 

v.e�.es.eg
w � v_e - B. fe  0 00 _e + B. fe 00 0 _e + B. fe

w vCe�CesCeg
w + x.g� + .��.gs + .�s.gg + .�g

y    (24) 

Of which Ce� , Ces ^DW Ceg  represent the shunt currents, 

moreover .e�, .es ^DW .eg  are the voltages generated by the 

shunt inverter. In matrix form the system (21) become 

		� vCe�CesCeg
w = v −_e/fe 0 00 −  _e/fe 00 0 − _e/fe

w vCe�CesCeg
w + ]om x.g� + .��.gs + .�s.gg + .�g

y   (25) 

(ii). Modeling of the Serial Part of the UPFC 

By applying Kirchhoff's laws to the serial part of the UPFC 

in figure 9, we will have the following equations [14, 17, 18]: 

.� − _+� − f 	l�	� − .g − .� = 0  

−_+� − f 	l�	� = .g + .� − .�  

f 	l�	� = −_C� + .� − .g − .�   

From where: 

	l�	� = − �o C� + ]o =.� − .g − .�A  

By writing for the three phases, we have: 

hij
ik	l�n	� = − �o C�� + ]o =.�� − .g� − .��A

	l�r	� = − �o C�s + ]o =.�� − .gs − .�sA
	l�t	� = − �o C�g + ]o =.�g − .gg − .�gA          (26) 

The system of equation (23) can be rewritten by the 

following expression: 

x.��.�s.�g
y = x_ + B. f 0 00 _ + B. f 00 0 _ + B. fy xC��C�sC�g y + x.g� + .��.gs + .�s.gg + .�g

y     (27) 

(iii) Modeling of the Continuous Branch of the UPFC 

Based on the principle of power balance and neglecting the 

losses in the converters, the direct voltage .g is deduced by 

the following equation [14, 17, 18]: 

1]�8 . 	4t	� = ]g.47t . p"� − "�eq         (28) 

with 

"� = .g� . C�� + .gs . C�s + .ggC�g 

"�s = .e� . Ce� + .es . Ces + .egCeg 

Where P|: is the active power absorbed from the AC system; P|�: is the active power injected by the inverter to the AC 

system. 

The commands used for the serial inverter are the same for 

the shunt inverter. 
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3.3.2. Electricity Grid Modeling 

Figure 9 is the model of the electrical network before the 

disturbance. The alternator is modeled by an ideal generator 

behind its synchronous reactance, the transformers are 

modeled as transmission lines whose resistances are 

negligible, the model of the line did not take into account its 

resistance and the corona effect and the infinite power network 

is modeled as a load. Assuming the network is balanced, then 

the model is single-line. In tables 1 and 2, the data in real and 

per-uni (pu) sizes are respectively recorded. 

 

Figure 9. Model of the electricity network before loss of a term. 

Table 1. Parameters of network in real values. 

alternator transformator Line 220 (kV) network 

Sn (MVA) Un (kV) R (Ω) X (Ω) R (Ω) X (Ω) B (Ω-1) Un (kV) 

450 24 0.21 9.4 6 80 0.6.10-3 220 

Table 2. Parameters of network in pu. 

alternator transformator Line 220 (kV) network 

Sn (pu) Un (pu) R (pu) X (pu) R (pu) X (pu) B (pu) Un (pu) 

4,50 1.05 0.0026 0.1165 0.0484 0.992 0.0744 1.00 

 

Where E is the emf of the alternator; 

xd is the synchronous reactance of the alternator; 

Vs1 is the alternator output voltage; 

XT is the reactance of the step-up transformer; 

B is the transmittance of the equivalent capacitance formed 

between conductors and earth; 

XL is the reactance of the line; 

R denotes the infinite power network. 

The resistances of the alternators, transformers and lines are 

neglected in front of large values of reactances of this 

equipment. 

The active and reactive power transmissible to the infinite 

power network are given by the system: 

� "�]� � 4�� 4�6� BCD�
G�]� � 4��6� � 4��4�6� EFB�                     (29) 

3.4. Simulations and Results 

3.4.1. Network Simulations Under Normal Operating 

Conditions and Results 

Considering that the network is perfectly compensated to 

suppose that the voltages at the nodes S and R are respectively 

225 and 220 KV, the simulations are made on the basis of the 

system 26 giving the variations of the active and reactive 

powers transmissible to the infinite power network in function 

of α. The results obtained are curves presented in Figures 13 (a) 

and (b) below. 

3.4.2. Post-incident Network Simulations and Results 

This time, we still simulate the equations of the system 26 

relative network model in Figure 10 below where the line 

impedance is doubled. The simulations are carried out under 

the same conditions as above. The results obtained are the 

curves presented in Figures 12 (a) and (b) below. 

 

Figure 10. Model of the electricity network after loss of a term. 

3.4.3. Post-incident Network Simulations Incorporating the 

UPFC and Results 

Here the simulations take into account the incorporation of 

the UPFC in the absence of existing compensators in order to 

optimize the transmissible power and regulate the voltage at 

the interconnection node. The results obtained are curves 
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presented in Figures 12 (a) and (b) below. 

 

Figure 11. Model of the electrical network with insertion of the UPFC. 

 

Figure 12. Variations in active (a) reactive (b) power depending on the angle of transport. 

3.5. Discussion 

The curves being obtained; it is necessary to analyze the 

stability of the network. By applying the criterion of equality of 

the areas given by the equation 20 and 21 where areaA1=areaA2, 

we note that we are led to solve an equation of the form ^EFB< -  a< � E � 0 , generally very complex and whose 

resolution requires numerical methods. However check from the 

inequality 22 that areaA1 < areaA2, to confirm that the system is 

stable or unstable after this degree of compensation figure 13. 

Thus we determine areaA1=67.984 106 w rd and areaA2=165.31 

106 w rd, and therefore the system is stable, because areaA1 < 

areaA2 that is to say 67.984 106 w rd <165.31 106 w rd. 

 

Figure 13. Criterion of equality of areas justifying the stability of the system. 

4. Conclusion 

The study carried out aimed at optimizing the power transit 

of a line having lost one of these two terms and regulating the 

voltage at the interconnection node. To do this, we simulated 

the network before, during and after loss of a term. The 

simulation after loss of one term saw the insertion of the UPFC 

which brought a significant improvement in the power flow. 

The results obtained are interesting, because with a term we 

obtained the transit of 95% of the initial power by modifying 

the reactance of the line. Then, we checked that the system is 

stable after a 45% degree of compensation. 
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