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Abstract: The task of determining the optimal sizes of spare parts for an auto-service enterprise based on the maximum 

profit criterion for a discrete distribution of demand is formulated as a problem of quadratic programming with linear 

constraints. To calculate the probabilistic measure of the distribution of the values of the demand vector components, an 

approximation is used of the empirical distribution function of the demand components by hyper-Erlanger distribution 

functions, and the subsequent calculation of the corresponding distribution densities. 
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1. Introduction 

In recent years, the concept of logistics has been developed 

and is being used as an important approach to inventory 

management [1-8]. Logistics is aimed at reducing costs, 

increasing reliability, reducing risks through harmonization 

and mutual systemic adjustment of plans and actions of the 

supply, production and marketing segments of the enterprise. 

Current transformations in the transport sector of the 

republic are characterized by changes both in the size of the 

fleet of serviced rolling stock and in the structure of the 

management of motor transport enterprises (ATP). Unlike the 

conditions of the planned economy, when the demand for 

ATP transport services exceeded the capabilities of the motor 

transport service enterprises and it was possible to realize 

these opportunities regardless of the ATP composition used, 

this situation changed radically with the transition to the 

buyer's market. The task of economical and successful 

implementation of the capabilities of service centers in a 

competitive market in the transport services market is 

becoming one of the main tasks. Necessary conditions for its 

solution are the rapid reaction of enterprises to changing 

needs, reducing costs for the production of transport services 

and improving their quality and reliability. 

The most common model of applied logistics theory is the 

model of the optimal or economical order size (EOQ) for the 

replenishment period [7, 9, 10]. A review of the EOQ models 

and their bibliography is given in [11]. The problem of 

uncertainty and classification of types of uncertainty in 

supply chains are considered in [12]. 

In practice, there are often situations where the data on the 

prehistory of the supply of spare parts is either not 

sufficiently representative or inaccessible. Then, for 

inventory management, the demand is modeled on the basis 

of expert assessments, which contain more subjectivity than 

chance. In such cases, the inventory management problem is 

formulated as an optimization problem under fuzzy 

information [13-17]. In some works (see, for example, [18, 

19]) single-period (single-period) control problems of single- 

and multi-item reserves are solved using the strategy of 

minimal average and conditional Risk or neutral risk. 

In this paper we use the method of neutral risk [19] for the 

one-time task of managing multinomenclature stocks, in which 

demand is described by a discrete probability distribution. For 

constructing a discrete probability distribution, we use the 

approximation of the empirical distribution function of actual 

demand in the previous period of replenishment of spare parts 

of an auto service plant with the help of the hyper-relang 
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function of distribution in the Levy metric. The accuracy of the 

hypererlang approximation of arbitrary distributions in various 

metrics is estimated in [20]. 

It is shown that for an arbitrary empirical distribution 

function and a given degree of accuracy of the 

approximation δ, one can select the step of discretizing �� 
the values of the random 	��  demand of the ��  i 

nomenclature of spare parts, in which the entire observation 

interval ��  is divided into subintervals and the hyper-

Erlanger distribution function (weighted sum of Erlanger 

distributions) corresponding to this partitioning, 

Approximates the empirical distribution function with a 

given accuracy δ in the Levy metric. The geometric 

meaning of this metric is that its value is equal to the side of 

the maximum square inscribed between the graphs of the 

empirical distribution ��	
 function and the approximating 

distribution function ���	
. This approach is universal and 

can be used to approximate the empirical distribution 

functions of arbitrary random variables. 

The probability ��
 	of the appearance of the values of a ��
 

discrete random variable �� = ��  is equal to the values of the 

probability density ���	
 function at a point 	 = ��
, where it 

is assumed that ( ) ( )i X

d
x F x

dx
µ = , where ( )XF x  is the 

distribution function iX . 

It should be borne in mind that the problem of approximate 

calculation of the derivative ( )
,i j

i x t
xµ

=
 value by means of a 

difference operator ( ) ( ) ( )( ), - /R u u x u xα α α= + , where 

( ) ( )X iu x Eh x=  ( ( )
iXEh x  is an approximation ( )

iXF x  

with accuracyδ ) is incorrect. ( ),R u α  will be a regularizing 

operator in the sense of Tikhonov only for ( )/α δ η δ= , 

where ( ) 0η δ →  for. It is enough to choose 

( ) , 0 1εη δ δ ε= < < , then εα δ= . 

The problem of optimal allocation of a multi nomenclature 

order ( )1, , nx x x= …  based on the maximum profit criterion 

formulated in the paper is reduced to solving the problem of 

quadratic programming. In particular, with the proportional 

dependence of the amount of costs on the purchase of the 

ordered product of the type i  on the value /i iA x  ( iA  - the 

need for the ordered product in the period under consideration), 

maximizing the expected average value of profit leads 

simultaneously to minimizing the total cost of fulfilling the order 

for this product, i.e. To the logistic model EOQ. 

2. Formulation of the Optimization 

Problem and Its Solution 

Let us formulate a one-period multinomenclature problem 

of managing a single-period multi-item for an auto service 

enterprise, taking into account two types of costs: 

1) Costs for fulfilling orders: ai> 0, equal to the sum of 

costs for the purchase of the ordered product of type i, dollar; 

2) Storage costs: the average number of units i, which will 

have to be stored in the warehouse, when ordering the size xi 

(pieces) is xi / 2 (pieces). 

The amount of storage costs should be proportional to the 

number of stored product units and storage time 	�� = 	� ��⁄ , 

where Di is the fuzzy demand for the product i. Then the 

expected value of storage costs will be �� ∙ ℎ� ∙ 	�� 2⁄ , where 

hi is the storage cost per unit of product i and 

	�� = � � ���� = � ��  �� ≥ �" #�$% 	                (1) 

Here, Cr is the credibility measure defined in [14]. 

When determining the optimal size of an order xi, using 

the maximum profit criterion, the expected value of profit is 

usually used as the objective function. In the case of the 

single-item inventory management task i, the objective 

function has the form 

	&��	� , ��
 = (� ∙ 	� − *� − +�∙,�-��� 	                  (2) 

Where: pi is the purchase price of product order unit i, 

dollar. 

The expected value of the fuzzy profit &�	� , ��
 is denoted 

by �.&�	� , ��
/. Using the properties of the operation E, we 

obtain	 
	�.&��	� , ��
	/ = (�	� − *� − +�∙,�-��� � � ����	        (3) 

Thus, for a one-period one-nomenclature problem, the 

optimization problem will be written in the form 

0max�.&�	, �
/	 ≥ 0, 	                             (4) 

where 

�.&�	, �
/ = ( ∙ 	 − * − ℎ ∙ 	�2 ∙ �,� = � 51�7. 
The solution of problem (4) is 

		∗ = :+;	                                    (5) 

As an approximate (whole) solution of the problem (4), we 

assume 

	<∗ = =>�?@ A (ℎ ∙ �B, 
Where integ is the integer part of a number. 

For * = CD,:DEF ∙ G 	⁄ , where CD,:DEF  - the cost of one 

order, dollar; A - the demand for the ordered product during 

the given period, pcs., The maximization of the expected 

value �.&�	, �
/ leads simultaneously to minimization of the 

total costs for the ordered product. 

For the multinomenclature problem, we assume that there 

is no connection between any two standard terminals. Under 

this condition, the profit function is written in the form 
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	&�	, �
 = ∑ A(�	� − *� − +�,�-��� BE�I� 	                    (6) 

Where 	 = �	�, … , 	E
, � = ��� , … , �E
  are vectors from 

n components. Under the criterion of neutral risk, the 

multinomenclature problem of inventory management will be 

written down as an optimization problem 

0max�.&�	, �
/	 ≥ 0,                                   (7) 

Where the condition x≥0 means 	� ≥ 0	�= = 1,… , >
. 
Suppose that the components ��  of the vector D are 

mutually independent fuzzy quantities in the sense of the 

definition of [21], then their joint possible distribution �� is 

represented in the form 

�����, ��, … , �E
 = min�M�ME ������
 
let 

&��	� , ��
 = (�	� − *� − ℎ�	��2�� , = = 1,2, … , >. 
Then &��	� , ��
  are also mutually independent fuzzy 

quantities. In view of the linear independence of the operator 

of the expected value [22], we have 

�.&�	, �
/ = NO(� ∙ 	� − *� − ℎ�	��2�� � P 1��QR
E

�I�  

Consequently, problem (7) will be equivalent to the 

following optimization problem 

	Smax∑ A(� ∙ 	� − *� − ;�+�,�-� BE�I� 	 ≥ 0,                     (8) 

where 

�� = � P 1��Q , = = 1,2, … , >. 
Solving equations 

TT	� NO(� ∙ 	� − *� − ��ℎ�	��2 RE
�I� = 0, = = 1,2, … , > 

We get 

		∗ = .	�∗, 	�∗, 	E∗ /, 	�∗ = :�+�;�	                     (9) 

As an approximate solution of the problem we take the 

vector  

	<∗ = .	<�∗, 	<�∗, … , 	<E∗ /                           (10) 

where 

	<�∗ = =>�?@ 5 (�ℎ���7	 

3. The Case of Discrete Distributions of 

the Demand of Multi Nomenclature 

Products 

In [19] the one-period multiproduct inventory control 

problem for discrete and continuous distributions for some 

fuzzy variables 	�� . We will consider only the case of discrete 

variables possibility distributions �� , to  which it is easy to 

make a discrete probability distribution. As will be shown in 

the next section, from which it can directly receive already 

discrete, piecewise constant distribution function, which has 

the same form with arbitrary empirical distribution function 

can be approximated by [20] (Continuous) Hyper distribution 

function (the sum of a finite number of Erlanger distribution 

functions) a probability distribution for a discrete random 

variable sequence under consideration (in this case, the 

demand D), the corresponding discrete sequence STI 

observation times. Suppose that in the model (4) the demand 

D has the following distribution possibilities 

	�~ 5 ��	�� 	…	�
 	…��	�� 	…	�
 	…7                             (11) 

where 	�� ≥ �� ≥ ⋯ ≥ �
 ≥ ⋯  is the ordered series of 

discrete values �
	  of the quantity D taken with the 

probabilistic (or probability) measure �
 > 0, and 

	�*	�Z
Z[$	�
 = 1.                          (12) 

As was shown in [19], under these conditions the expected 

value of E [1/D] will be equal to	 
	� ���� = ∑ \]F]$
I�                                (13) 

where the weights ^
 	are determined by the formula  

^
 = �� _max`̃M
 �`̃ − max`̃M
b� �`̃c + �� _sup`̃h
 �`̃ −sup`̃h
[� �`̃c	                    (14) 

for any i ≥ 1; �% = 0 

The expected values of E (1/Di) for the multi nomenclature 

problem are determined in a similar way: 

	� � ���� = ∑ \�]F�]$
I� 	                             (15) 

Where ��� ≥ ��� ≥ ⋯ ≥ ��
 ≥ ⋯, max�M
Z[$ ��
 = 1; ��
 	- 
the ordered values of the demand Di, taken with the possible 

measure µij;	 
	^�,
 = �� _max`̃M
 ��,`̃ − max`̃M
b� ��,`̃c + �� _sup`̃h
 ��,`̃ −sup`̃h
[� ��,`̃c                           (16) 

4. Hypererlang Approximation of 

Arbitrary Distributions 

Let X be a nonnegative random variable (abbreviated to 

rv) with an arbitrary distribution function (abbreviated df) FX. 
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We are given an arbitrary number δ> 0. We divide the semi 

axis .0,∞
 into half-open intervals kl = _�m − 1
�, m�/, m ≥1, and choose a natural number N such that  

	��_�� − 1
 ∙ �c ≥ 1 − �                         (17) 

We choose the points 	l ∈ kl , m = 1,… , � − 1  and 	o ≥ �� − 1
�. 

Let pl = lim,→ls ���	
 , m = 1,… , � − 1  We define a 

piecewise constant f.r. FX according to the following rule: 

		�� = S 0, 	 ≤ 	�	pl , 		l < 	 ≤ 	l[�1, 	 > 	o	 , m = 1,… , � − 1	     (18) 

We note that by rule (18) empirical distribution functions 

are constructed, in this case 

	pl = lo	                                   (19) 

For comparison d.f. FX (x) and F (x), we use the Levi 

metric [20]: 

	v���, �
 = =>wxy > 0: ���	 − y
 − y ≤ ���	 + y
 +y{	∀	 ∈ ℜ�                           (20) 

The meaning of the Levi metric is very transparent - this is 

the side of the maximal square inscribed between the graphs 

of the d.f ���	
 and ��	
. 

By construction d.f F we have  

v���, �
 ≤ �	                               (21) 

and 

	��	
 = ∑ (l ∙ �@,~�	
olI� 	                    (22) 

Where (� = p�, (l = @l − plb�, 1 < m ≤ � − 1, (o =1 − pob�, �@,~�	
	  is the distribution, degenerate At the 

point 	l, i.e. �@,~�	
�,I,~ = 	l. 

We approximate each of the degenerate distributions �@,~�	
 (x) by the Erlang distribution ��E~�~ . The Erlanger 

distribution is defined as follows [20]. 

Let �� = ���1
 be a sequence of independent identically 

distributed random variables (abbreviated as nos) having an 

exponential distribution with a unit mean: ��� < 	
 = 1 −?b, 	  We fix the number τ> 0 (for example, τ = 1) and 

determine for each n≥1 a random variable 

	�E� ∶= �E ∑ ��E�I� 	                               (23) 

with the Erlanger distribution of order n: 

	���E� < 	
 = ��E��>
 = 1 − ∑ ��,
��!Eb��I% ?b�,        (24) 

where: � = > �⁄ . 

It is well known that �E� E→$���� �  with probability 1, or, 

equivalently, 

��E��	
 E→$���� �@��	
	                            (25) 

Where �@��	
	 is the distribution degenerate at the point τ. 

The limiting relation (25) is a consequence of equality (23) 

and the law of large numbers. 

The distribution function Eh (·) is said to be 

hyperherlangian if it has the representation: 

	�ℎ�	
 = ∑ (lolI� ��E~�~�	
                           (26) 

where: � < ∞,∑ (l = 1olI� , (l > 0, �l > 0, m = 1,… , �. 

As was shown in [20], for an arbitrary distribution FX of 

the form (18) and the hyper-Erlanger distribution (26) 

approximating it with coefficients pk from (22), the accuracy 

of estimating the approximation in the Levi metric is 

described by the inequality  

v���, �ℎ
 ≤ � + max�MlMo (lyl                    (27) 

Where δ is an arbitrary number; the number N satisfies 

condition (17); And the quantities εk are given by the right-

hand sides of the inequalities	 
	v��E�, �
 = �*	 O���� EE , �,��√E R	                    (28) 

с > = >l, m = 1,2, … , �. 

The estimate (27) is universal in the sense that it is valid 

for arbitrary φ. F (x) of the form (18). 

Let the components Di of the vector � = ���, … , �E
	be 

described by empirical probability distribution functions 

	���	
 = � 0, 	 ≤ 	�,�	p�,l� , 		�,l� < 	 ≤ 	�,l�[�1, 	 > 	�,o�,� 	 , m� = 1,… ,�%,� − 1       (29) 

where in	 
	lim,→,�~��� ���	
 = p�,l� = l�[���,~�b�
o�,� 	              (30) 

where: ��,l�  multiplicity 	�,l�  in the time series { 	�,l� } {ki 

=1,.., �%,�{ 
We choose a natural number ��  such that the number �� = A	�,o�,� − 	�,�B ���  satisfies the condition  

�� < minl�I�,…,o�,�b�_	�.l��� − 	�,l�c	               (31) 

 p�,o�,� ≥ 1 − ��	                           (32) 

We partition the half-interval _	�,�, 	�,o�,��  into half-

intervals of length δi: 

_	<�,�, 	<�,� + ��, _	<�,� + �, 	<�,� + 2�c, … , _	<�,� + _m�� − 1c�, 	<�,� + m����,	 
_m�� = 1,2, … , ��c, 	<�,� = 	�,�, 	<�,o� = 	�,o�,� = 	<�,� + �� ∙ �. 

We denote by k�,l = _	<�,lb�, 	<�,lc, 	<�,� = 	�,� + m ∙ �. 

It's obvious that 

 	<�,o� > �� − 1
�                         (33) 

As the distribution function ����	
 we define a piecewise 
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	����	
 = � 0, 	 ≤ 	<�,p<�,l� � , 	<�,l� � < 	 ≤ 	<�,l� �[�1, 	 > 	<�,o� , , m�� = 1,… ,�� 	      (34) 

where 

p<�,l� � = p�,l�  at 		�,l� < 	<�,l� �[� ≤ 	�,l�[�. 

The distribution function ����	
 will be approximated by 

the hyper-Erlanger distribution 

	�ℎ��	
 = ∑ (�,l� ��	
o�l� � 	��E�,~��
��,~���	
	                      (35) 

c � = 1, ��,l = >�,l� � , (�,� = p<�,�, (�,l� � = p<�,l� � − p<�,l� �b�, 1 ≤m�� ≤ �� − 1, 
(�,o� = 1 − po�b�. 

According to (27)  

v_��� , �ℎ�c ≤ �� + max�Ml� �Mo� (�,l� � ∙ y�,l� � 	            (36) 

where 

	y�,l� � = �*	 ���� E�,~��E�,~�� , �,��
�E�,~��

�	                     (37) 

Let δ be a given accuracy of the estimate v_��� , �ℎ�c. We 

choose δi, satisfying, along with conditions (31), (32), the 

condition 

	�� ≤ 	s	� 	                                      (38) 

Then we can choose >�,l� �  such that 

	max�Ml� �Mo� (�,l� � ∙ y�,l� � ≤ s�                       (39) 

In conjunction with (38) providing an estimate  

 v_��� , �ℎ�c ≤ �	                               (40) 

5. Calculation of the Solution of the Task 

of Managing Multi Nomenclature 

Reserves 

According to formula (10), to find the solution of problem 

(8) it is sufficient to calculate the quantities ��1 ��⁄ 
, where 

	�~ 5 ��,�	��,� 	…	��,o���,�	��,� 	…	��,o�7	                       (41) 

Here, ��,� ≥ ��,� ≥ ⋯ ≥ ��,o�  are the ordered values of ��,l� �  
of demand Di, ordered in decreasing order, with probability 

measure ��,l� � . Since the distribution function �ℎ��	
  is 

differentiable with respect to x. Then the probability measure ���	
 of the demand x values Di is expressed by the formula 

	���	
 = ��, 	�ℎ��	
	                            (42) 

We denote by ��,� = 	<�,o� , ��,� = 	<�,o�b�, … , ��,o�b� = 	<�,�. 

The approximate value for ��,l� � = ��_��,l� �c  can be 

determined by the formula  

��,l� � = A�ℎ��_	<�,l� � + �c − �ℎ��_	<�,l� �cB ∙ �	     (43) 

However, since �ℎ��	
 is only an approximate value of the 

function ���	
  with accuracy δ, the classical problem of 

approximate calculation of the derivative   = �¡�,
�,  with 

respect to approximate (in the metric of C continuous 

functions) is incorrect and can be solved with the aid of 

Regulatory operator [23] 

¢�£, �
 = £�	 + �
 − £�	
� 	 
In fact, let £�	
 = �ℎ�� and instead of the exact values of 

the functions u (x) we have approximate values 	£s�	
 =£�	
 + ¤�	
 , where ¤�	
 ≤ �  for X∈ (a, b). In our case, �*, ¥
 = _	<�,�, 	<�,o�c  and the accuracy of (40) implies the 

accuracy δ of estimating the approximation of the 

distribution function ����	
  by the hyper-Erlanger The 

distribution function �ℎ���	
. 

Then	 
¢�£s , �
 = ¡�,[¦
b¡�,
¦ + §�,[¦
b§�,
¦ 	              (44) 

As α → 0, the first fraction in (44) tends to the derivative 

du / dx. If we take α = δ/η (δ), where η → 0 as δ → 0, then 

2δ / (α = 2η (δ) → 0) as δ → 0 and, consequently, for � = ����
 = s¨�s
 we have 

©ª�	 + �
 − ª�	
� © ≤ 2��  

And therefore ¢_£s , ����
c → �¡�,  It suffices to take «��
 = ��b¬ , (0 <ε <1) then α = δ
ε
 and 2� � = 2��b¬ → 0⁄ 	as δ → 0. 

6. Conclusion 

In conditions of competition in the market of motor 

transport services, ensuring maximum profit is one of the 

main tasks of managing multinational stocks of auto service 

enterprises using the logistics concept. Approximation of 

empirical distribution functions of the demand vector 

components allows us to calculate the corresponding 

density distribution of the values of the components of the 

demand vector and reduce the problem of determining the 

optimal stock size to the quadratic problem of conditional 

optimization. 
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