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Abstract: Considering the inaccurate demand forecasting in supply chain, we introduce robust optimization to reduce 

uncertainty. The method is mainly to modify the probability distribution of the demand, in order to obtain a more accurate 

demand. A classical model and a corresponding robust model are established in the context of a fixed number of products 

offered by the supplier. As to calculation, we also propose the fast Fourier transform approach which greatly reduces the amount 

of computation. Finally, the process of robust optimization and improved algorithm are interpreted by numerical examples. The 

results show that the expected revenue of the robust model is lower. Because the method is conservative and robust. 
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1. Introduction 

Demand forecasting arises for lowering the effect of 

bullwhip at first. As a key to supply chain management, it 

can not only reduce the decision-making errors but increase 

revenue. 

Generally, demand forecasting in supply chain is not so 

accurate. Researchers have pointed out its disadvantages. 

Jukka Hallikas et. al regarded the demand forecasting 

uncertainty as a type of risk. In his word, the inaccurate 

forecast will increase the difficulty of material control, and 

even affect the long-term production planning and capacity 

investment decision [1]. Huang Xiaoyuan and Yan Nina 

thought the deviation in demand forecasting as a kind of 

supply chain uncertainty, which stems from customer 

uncertainty [2]. It will cause information asymmetry between 

enterprises in supply chain, thus affect the stability of the 

whole supply chain. 

The significance of accurate demand forecasting has been 

stressed by many scholars. 

In order to get more accurate demand data, scholars have 

focused on improving the methods of demand forecasting. 

Thomas R. Willemain et. al has addressed the irregular 

demand prediction problem in supply chain. The paper shows 

that compared with the exponential smoothing and Croston 

method, bootstrapping method can obtain more accurate 

demand distribution based on the fixed lead time [3]. 

Considering various demand forecasting methods all have 

advantages and disadvantages, Luis Aburto, Richard Weber 

put forward the hybrid system which combines various 

techniques to integrate the advantages of all methods [4]. In 

this way, the accuracy of demand forecasting in supply chain 

has increased greatly. While Fang, F., Wong, T. N. 

constructed a Bayesian model in the paper and the results 

showed the model effectively reduces the cost [5]. They think 

accurate and fast prediction information can help 

manufacturers make optimal decisions. Moreover Kou Yukun 

et. al established the collaboration demand model of supply 

chain to improve the prediction accuracy for the perspective 

of Petri and Agent [6]. 

Meanwhile, some researchers begin to introduce the robust 

optimization method into supply chain. It aims to reduce the 

uncertainty of demand and improve the prediction accuracy 

too. 

Cheng-Liang Chen, Wen-Cheng Lee modeled the 

uncertain market demand situation by using the discrete 

multiple known probability and use fuzzy set to reflect the 

compatibility of price preference between the sellers and 

buyers [7]. It shows that the robustness measures as part into 

the objective function can greatly reduce the fluctuation of 

the value of the objective function. D. Bertsimas et. al mainly 

concerned optimally controlling a supply chain with 

stochastic demand [8]. Considering the discrete demand is 

not evenly distributed over time, the author adopted robust 



62 Li Chenlu:  The Robust Optimization in Centralized Supply Chain  

 

optimization and constructed the equivalent model to fix 

demand sequence. This method is better than dynamic 

programming. Not only the calculation of large scale supply 

chain, it can also solve the dimension problem when using 

dynamic programming for network supply chain. At the same 

time, Perakis G, Sood A explored the multi-period oligopoly 

market and used the robust optimization to solve dynamic 

pricing for a single perishable product with a fixed inventory 

[9]. Realizing the fact that historical data can only help 

obtain the demand interval, Yan Nina et. al used a variety of 

robust optimization methods to study the problem of 

competition between multiple retailers under uncertain 

demand environment from different perspectives [10]. 

Considering the operation management of the closed loop 

supply chain, the corresponding robust model was 

constructed by Xu Jiawang based on the uncertainty of 

customer demand [11]. While, Feng Pan, Rakesh Nagi 

thought the design of supply chain in the emerging market 

cannot accurately predict the customer's demand, so the 

authors used the robust optimization method to solve the 

problem of uncertain demand in the supply chain [12]. 

Taking into account demand and other uncertain factors, Li C, 

Liu S. proposed robust optimization to reduce the bullwhip 

effect in supply chain [13]. While, Aouam T, Brahimi N. used 

robust optimization to formulate a new model to integrate 

production planning and order acceptance under demand 

uncertainty [14]. Ait-Alla A et. al also investigated the robust 

production planning in the fashion industry [15]. With 

uncertain demand, Melamed M et. al apply the adjustable 

robust optimization to solving production planning problem 

in order to get the maximum profit [16]. Carrizosa E et. al 

used robust optimization to cope with autoaggressive demand 

in the newsvendor problem [17]. 

Based on above literature, we introduce robust 

optimization to construct a new model of centralized supply 

chain. Moreover, an efficient algorithm is used to reduce 

computation. In section 4 we give some numerical 

simulations and section 5 is a concluding section. 

2. Basic Assumptions and Notation 

Suppose there are one supplier and multiple retailers in the 

market, and the retailer is independent of each other. We use 

jD  to denote the real demand the retailer j (j=1,2…,m) faces 

with and Q to denote the total quantity the supplier can offer. 

The demand faced by the retailer is a random variable and 

belongs to the Poisson distribution. Moreover, the retailer j 

orders a quantity jQ  from the supplier and sells at the price 

jPr . We also choose v to represent unit salvage value 

contained by the surplus products and c to represent the unit 

product cost. Meanwhile, we assume that jPr  is bigger than 

c, while v has the smallest value compared with c and jPr
 

It means 

jPr c v> >  

Assuming that the cost isn’t concerned, we can figure out 

the revenue each retailer get as following: 

( ) ( ) ( )min ,j

j j j j j

r

j
Pr Q D vQ Q Dπ

+
⋅ Ε + ⋅Ε −=  

The supplier's residual value: 

1

m

j

j

v Q Q
=

 
− 

 
∑  

Then, we can have the revenue function in centralized 

supply chain: 

( ) ( ) ( )

( ) ( ) ( )
1 1

1

min ,

min ,

m m
c

j j j j j j j

j j

m

j j j

j

Q v Q Q Pr Q D v Q D cQ

v c Q Pr v Q D

π
+

= =

=

   = − + ⋅ Ε + ⋅ Ε − −     

 = − + − ⋅ Ε 

∑ ∑

∑

 

3. Models 

If Q is fixed, the model is formulated as follows: 

( ) ( ) ( ) ( )
1

1

max min ,

. .

j

m
c

j j j j
Q

j

m

j

j

j

Q v c Q Pr v Q D

s t Q Q

Q

π
=

=

+

 = − + − ⋅Ε 

≤

∈

∑

∑

ℤ

 (1) 

We use 
*

jQ  as the optimal solution. 

It’s obvious that the key to get the maximal expected 

revenue ( )max
c

jQπ  is to figure out 

( ) ( )
1

max min ,
m

j j j

j

Pr v Q D
=

 
 − ⋅Ε  

 
∑  firstly. It is sorted as a 

standard separable problem and can be calculated by 

dynamic programming. While the computational complexity 

of this method is of the order of O(m
2Q ), it’s necessary to 

reduce the calculation. Consequently, to apply this approach 

we need an efficient algorithm to compute the function 

values { }min ,j jQ D Ε   . The improved algorithm is called 

fast Fourier transform (FFT). See references [18, 19]. 

3.1. An Efficient Algorithm 

As said above, we need an efficient algorithm to compute 

the function values { }min ,j jQ D Ε    

The first step is to introduce the function :
j

F →ℤ ℝ  

( ) { }min ,j j jj Q QF DΕ=  
   

For given jQ +∈ℤ , that 
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( ) { }
1

n

j j

t

F n D t
=

= Ρ ≥∑               (2) 

Derivation process: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( )

1

min ,

1 2 1

1 2 2 1

1 2 2 3

1

j j j j j

j j j j j

j j j j

j j j j

j j

n

j

t

F n n D D D n n D n

D D D D n n D n

D D n D n n D n

D D D D

D n D n

D t
=

= Ε = Ρ ≤ + Ρ >

   = Ρ = + Ρ = + + Ρ = + Ρ = + +   

 = Ρ = + ⋅ Ρ = + + ⋅ Ρ = + Ρ = + + 

   = Ρ = + Ρ = + + Ρ = + Ρ = +   

 + + Ρ = + Ρ = + + 

= Ρ ≥∑

⋯ ⋯

⋯ ⋯

… …

⋯ …

 

By equation (2), we know that: 

( ) ( ) { }1 0j j jF n F n D n− − = Ρ ≥ ≥  

( ) ( ) { }1 2 1j j jF n F n D n− − − = Ρ ≥ −  

Then, 

( ) ( ) ( ) ( )
{ } { }

( )

1 1 2

1

1 0

j j j j

j j

j

F n F n F n F n

D n D n

D n

   − − − − − −   

= Ρ ≥ − Ρ ≥ −

= −Ρ = − ≤

 

Clearly, ( ) ( )1j jF n F n− − is non-increasing in n. So, jF

is a discrete concave function. 

Thus, solving problem (1) equals solving the following 

model: 

( ) ( )
1

1

max

. .

m

j j j

j

m

j

j

j

Pr v F Q

s t Q Q

Q

=

=

+

 
− 

 

≤

∈ Ζ

∑

∑
           (3) 

Obviously, jQ Q≤ , now introduce for 1≤h≤Q, the values 

( ) ( )= 1jh j j jk

k h

F h F h pα
∞

=

− − =∑  

where { }= =jk jp D kΡ  

Therefore, ( )j jh
Pr v α−  gives the marginal value of 

increasing jQ  from h-1 to h. 

The core of this improved algorithm is to introduce a m×Q 

marginal revenue matrix. 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 11 1 12 1 1

2 21 2 22 2 2

1 2

Q

Q

m m m m m mQ

Pr v Pr v Pr v

Pr v Pr v Pr v

Pr v Pr v Pr v

α α α
α α α

α α α

− − − 
 − − − 
 
 

− − −  

⋯

⋯

⋮ ⋮ ⋯ ⋮

⋯

 

Sorting ( )j jhPr v α−  values from the big one to the small 

one and adding up the first Q terms are the only things we 

have to do to get the optimal value of function (3). 

Meanwhile, the optimal solution 
*

jQ  equals the number of 

times index j appears among these Q terms. As discrete 

concave, the marginal value in each row j are in descending 

order, ie: ( ) ( ) ( )1 2j j j j j jQPr v Pr v Pr vα α α− ≥ − ≥ ≥ −⋯ . 

Thus, every time we have to do is to compare those values on 

the left side which haven’t been selected for comparison last 

time. In this way, we just need to compare total m values 

each time. Consequently, the computational complexity of 

the proposed approach reduces to the order of O(mQ). 

3.2. A Robust Optimization Approach 

In the process of modeling, we also need to know the 

probability distribution of demand. Such probabilities are 

always estimated by analyzing the historical data, and hence 

they are prone to inaccuracies. In order to reduce the impact 

of inaccurate demand estimation, we propose the robust 

optimization approach. References [20, 21, 22] 

Assume the random variable jD , representing the actual 

demand faced by the retailer j, is concentrated on { }0, ,… K , 

and this demand has an estimated probability vector 

0
, ,

j j jK
p p p

Τ∧ ∧ ∧ =  
 

… . Each 
jk

p
∧

 is assumed to be positive. 

To compensate for possible estimation errors, we consider 

1≤j≤m the probability vector 
j

p
∧

 belonging to the uncertain 

set j
Ρ  given by: 

1 , 1K

j j j j jj
p p p p e

∧
+ Τ Ρ = ∈ ∈ + = 

 
ℝ △  

Where 

( )
2

1 2

0

0

, ,
K

jkK

j j j jK j

k
jk

b
b b b

p

δ
Τ +

∧
=

  
  = = ∈ ≤    

  

∑△ … ℝ  

with [ ]0,1
j

δ ∈  

Clearly, the demand depends on its distribution probability 

j
p , hence we can denote this random variable by ( )j jD p . 

Now we have the robust counterpart of problem (1): 
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( ) ( ) ( ) ( )( )
1

1

max min min ,

. .

j jj

m
c

j j j j j
pQ

j

m

j

j

j

Q v c Q Pr v Q D p

s t Q Q

Q

π
∈Ρ =

=

+

  = − + − ⋅ Ε   

≤

∈

∑

∑

ℤ

 (4) 

Same as the chapter 3.1, we introduce :jG + →ℤ ℝ  

given by 

( ) ( )( )min min ,
j j

j j j
p

n D pG n
∈Ρ

=  Ε
         (5) 

For every j jp ∈Ρ , the function 

( ){ }min ,
j j

n n D p → Ε
 

 

is discrete concave on 
+
ℤ . Because the point-wise infimum 

of a collection of concave functions j
G is again concave, the 

function is also concave on 
+
ℤ . 

The problem (4) can be rewritten as 

( )
1

1

max ( )

. .

m

j j j

j

m

j

j

j

Pr v G Q

s t Q Q

Q

=

=

+

−

≤

∈

∑

∑

ℤ

           (6) 

For given j j
p ∈Ρ , 

( ){ } ( )
1

0

min ,
j

j

Q K

j j j jk j jk j j

k k Q

Q D p kp Q p c Q p
− Τ

= =

 Ε = + =
  ∑ ∑  

where 

( ) ( ) ( ) ( )( )
( )

0 1
, , ,

0,1, , 1, , , ,

j j j K j

j j j j

c Q c Q c Q c Q

Q Q Q Q

Τ
=

= −

…

… …

 

By equation (5), we have 

( ) ( ){ }
( ) ( ){ }

min

min , 0

j j j j j j

j j j j j jj

G Q c Q p p

c Q p c Q b b b e

Τ

∧Τ Τ Τ

= ∈Ρ

= + ∈ =△

  (7) 

Using standard nonlinear programming techniques [21, 22], 

it’s easy to show 

{ }
( )

2

2
1

1

1

min , 0c y y Ay e y

e A c
c A c

e A e

δ

δ

Τ Τ Τ

Τ −
Τ −

Τ −

≤ =

= − −
        (8) 

where A is symmetric and positive definite. 

It shows that the last term in relation (7) has an analytic 

expression. 

Using ( )0 0jc Q = , we have 

( ) ( ) ( )
( )

2
2

2 1
2

2
1

0

K

k jjkkK

j j j j k jj jk
Kk

jkk

p c Q

G Q c Q p p c Q

p

δ

∧

=∧ ∧Τ

∧
=

=

 
 
 = − −
∑

∑
∑

 

( j
Q Q≤ ) 

Same as the chapter 3.1, we introduce jh
β , for 1≤h≤Q , 

( ) ( )1
jh j j

G h G hβ = − −  

At the same time, we can get a m×Q marginal value 

matrix 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 11 1 12 1 1

2 21 2 22 2 2

1 2

Q

Q

m m m m m mQ

Pr v Pr v Pr v

Pr v Pr v Pr v

Pr v Pr v Pr v

β β β
β β β

β β β

− − − 
 − − − 
 
 

− − −  

⋯

⋯

⋮ ⋮ ⋯ ⋮

⋯

 

Because j
G  is discrete concave, the he marginal value in 

each row j are in descending order, ie: 

( ) ( ) ( )1 2j j j j j jQPr v Pr v Pr vβ β β− ≥ − ≥ ≥ −⋯ . Certainly, 

we can also use FFT to get the optimal objective function 

value. 

4. Numerical Simulation 

4.1. Classical Model 

Firstly, we give a certain value of some variables. 

We set, 

1
30Pr = , 

2
20Pr = ,

3
25Pr = ,

3
35Pr = ,v=3,c=10 

We also suppose that there exist four retailers in the market 

and the quantity the supplier can offer is ten. 

It means m=4, Q=10. 

At the same time, we assume 

1
λ =2.9, 

2
λ =3.2, 

3
λ =3.0, 

4
λ =3.5 

Because the demand variable belongs to Poisson 

distribution, we use Excel to randomly generate a 4×10 matrix 

about jh
α  (j=1,2,3,4；h=1,2,…,10): 

11 12 13 14 15 16 17 18 19 110

21 22 23 24 25 26 27 28 29 210

31 32 33 34 35 36 37 38 39 310

41 42 43 44 45 46 47 48 49 410

α α α α α α α α α α
α α α α α α α α α α
α α α α α α α α α α
α α α α α α α α α α

 
 
 
 
 
 

 

= 
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0.945 0.785 0.554 0.330 0.168 0.074 0.028 0.010 0.003 0.001

0.950 0.801 0.577 0.352 0.184 0.084 0.033 0.012 0.004 0.001

0.959 0.828 0.620 0.397 0.219 0.105 0.044 0.016 0.005 0.001

0.969 0.863 0.678 0.462 0.274 0.141 0.064 0.026 0.009 0.002

 
 
 
 
 
 

 

Then a 4×10 marginal value matrix can be obtained: 

25.508 21.200 14.953 8.914 4.536 1.997 0.769 0.261 0.077 0.017

16.149 13.610 9.801 5.992 3.136 1.422 0.565 0.197 0.060 0.014

21.092 18.223 13.631 8.734 4.816 2.308 0.971 0.359 0.115 0.028

31.001 27.619 21.700 14.795 8.753 4.524 2.057 0.823 0.283 0.073

 
 
 
 
 
 

 

Now we can apply FFT to finger out the first ten 

maximum values. Below are Main steps in FFT: 

(1) Find the first maximum. In the first column, 31.001 > 

25.508 > 21.092 > 16.149, easily we know the value of first 

maximum is 31.001; 

(2) Find the second maximum. Because 27.619 > 25.508 > 

21.092 > 16.149, the value of second maximum is 27.619; 

(3) Find the third maximum. As 25.508 > 21.700 > 21.092 > 

16.149, we can get the value of third maximum is 25.508; 

. 

. 

. 

(8) Find the eighth maximum. For 16.149 > 14.953 > 

14.795 > 13.631, the value of eighth maximum is 16.149; 

(9) Find the ninth maximum. 14.953 > 14.795 > 13.631 > 

13.610, so the value of ninth maximum is 14.953; 

(10) Find the tenth maximum. 14.795 > 13.631 > 13.610 > 

8.914, so the value of ninth maximum is 14.795. 

For now, we have found the first ten maximum values as 

follows: 

( )31.001,27.619,25.508,21.700,21.200,21.092,18.233,16.149,14.953,14.795  

∴

*

1Q =3, 
*

2Q =1, 
*

3Q =2, 
*

4Q =4, 

( )
1 2 3 4

1 2 3 4
, , ,
max , , , 142.250c

Q Q Q Q
Q Q Q Qπ =  

It means, the quantity the first retailer ordered is three; the 

quantity the second retailer ordered is one; the quantity the 

third retailer ordered is two; the quantity the fourth retailer 

ordered is four. And the maximum revenue the whole supply 

chain can get is 142.250. 

4.2. Robust Model 

Set K=10, 
1

σ =0.2, 
2

σ =0.4, 
3

σ =0.6, 
4

σ =0.8 

( )1
ˆ 0.055,0.160,0.231,0.224,0.162,0.094,0.045,0.019,0.007,0.002.0.001p

Τ=  

( )2
ˆ 0.050,0.149,0.224,0.224,0.168,0.101,0.050,0.022,0.008,0.003,0.001p

Τ=  

( )3
ˆ 0.041,0.130,0.209,0.223,0.178,0.114,0.061,0.028,0.011,0.004,0.001p

Τ=  

( )4
ˆ 0.030,0.106,0.185,0.216,0.189,0.132,0.077,0.039,0.017,0.007,0.002p

Τ=  

Then, we can get a 4×10 matrix about jhβ  

(j=1,2,3,4;h=1,2,…,10): 

0.864 0.717 0.511 0.312 0.163 0.073 0.028 0.010 0.003 0.001

0.789 0.662 0.487 0.312 0.171 0.081 0.033 0.012 0.004 0.001

0.720 0.615 0.472 0.323 0.193 0.098 0.043 0.016 0.005 0.001

0.657 0.574 0.459 0.338 0.222 0.126 0.061 0.025 0.009 0.002

 
 
 
 
 
 

 

Thus the marginal value matrix can be obtained: 

23.324 19.349 13.804 8.421 4.388 1.964 0.764 0.260 0.077 0.017

13.414 11.246 8.274 5.301 2.915 1.370 0.556 0.196 0.060 0.014

15.849 13.539 10.380 7.112 4.237 2.156 0.941 0.355 0.114 0.028

21.023 18.370 14.685 10.820 7.106 4.017 1.938 0.801 0.280 0.073

 
 
 
 
 
 

 

Same as the chapter 4.1, the first ten maximum values can 

be found by using FFT: 

( )23.324,21.023,19.349,18.370,15.849,14.685,13.804,13.539,13.414,11.246  

∴

*

1
Q =3, 

*

2
Q =2, 

*

3
Q =2, 

*

4
Q =3, 

( )
1 2 3 4

1 2 3 4
, , ,
max , , ,

c

Q Q Q Q
Q Q Q Qπ =94.603 

It means, the quantity the first retailer ordered is three; the 

quantity the second retailer ordered is two; the quantity the 

third retailer ordered is two; the quantity the fourth retailer 

ordered is three. And the maximum revenue the whole supply 

chain can get is 94.603. 

When the quantity of the products the supplier offered is ten, 

the revenue of the whole supply chain can get is 142.250 in the 

classical model and 94.603 in the robust model. It seems that 

the expected revenue under the robust model is smaller than 

the classical model. We may attribute this result to the 

conservatism and robustness of the robust optimization. It 

means that we can get the optimal solution of the robust model 

no matter what the external conditions are like. 

5. Conclusion 

This paper mainly focuses on the problem of inaccuracy 

demand forecasting in supply chain. We construct a robust 

model with one supplier and multiple retailers. Robust 

optimization is used to reduce the uncertainty of demand 

forecasting. Furthermore, numerical simulations show the 

method is applicable and can be implemented. Owing to its 

conservatism and robustness, we may get a smaller expected 

revenue in the numerical simulation. While, in realization, 

the scenarios the retailers faced with are not exactly the same 

as the scenario in the classical model. It means that the 

optimal solution of the robust model can also be achieved 

regardless of the outer conditions. The significance of robust 

optimization is to take into account the worst environment in 

order to obtain the optimal solution that can adapt to various 

scenarios, and also reflects the decision maker are risk 

averse. 

As to the improved algorithm, we can see its convenience 

and efficiency. For solving the discrete problem, it reflects its 

unique advantages in terms of reducing computational 

complexity. Compare with the dynamic programming, it can 

get the result faster and have lower calculation. 
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