

Software Engineering
2021; 9(2): 36-44

http://www.sciencepublishinggroup.com/j/se

doi: 10.11648/j.se.20210902.11

ISSN: 2376-8029 (Print); ISSN: 2376-8037 (Online)

Quantifying Software Quality in Agile Development
Environment

Ikerionwu Charles
*
, Nwandu Ikenna Caesar

Department of Software Engineering, Federal University of Technology, Owerri, Nigeria

Email address:

*Corresponding author

To cite this article:
Ikerionwu Charles, Nwandu Ikenna Caesar. Quantifying Software Quality in Agile Development Environment. Software Engineering.

Vol. 9, No. 2, 2021, pp. 36-44. doi: 10.11648/j.se.20210902.11

Received: June 30, 2021; Accepted: July 20, 2021; Published: August 24, 2021

Abstract: Due to required efforts and the challenges involved in understanding the quantification of software quality,

researchers have chosen varying quality attributes to describe the quantification of software quality. The degree of software

quality is achieved from the standards and quality attributes at each development process: the adherence of software

engineering principles towards realizing a product of good quality. In agile environment, the software engineering process

ensures that qualities of interest are built-in and to produce software product with an acceptable level of quality. Thus, this

study is aimed at quantifying six related software quality attributes. The specific objectives include identifying the software

quality attributes, the design of the algorithm for measurement metrics, and to perform relational analytics of each attribute

with respect to the software quality. The methodology followed an exploratory evaluation of measurement and metrics and

their role in quantifying software quality in agile development environment. The study adopted existing metrics to quantify

software quality attributes. Twelve opensource software projects were tested for 6 specific quality attributes and each result is

quantified and presented. Results show that software number 2 (SW2) has a maintainability value of 6 minutes, 50%

availability, and 0.62 reliability values. It implies that a high value of maintainability does not translate to high reliability.

These values establish the relationship between attributes and enhances developers and users’ understanding of the software

quality and its attributes.

Keywords: Software Quality, Measurement, Metrics, Attributes, Quantification, Agile

1. Introduction

The agile framework emphasised on continuous delivery

of quality applications through object-oriented modelling and

universal modelling language but silent on the process of

quantifying the quality of the ensuing software. The quality

of software depends on the cumulative development

iterations within a process, from which it evolved [1].

Software development process indicates that the software

quality could not be engineered within a single iteration in a

process. It implies that building-in quality is not a stopgap

approach. Many researchers, over the years, commonly

suggest that, to build-in acceptable level of quality in

software, each development process must adhere to its

standards and quality attributes [2, 3]. This implies that

established software quality control inputs should be

performed in the engineering process to ensure that the final

software product has an acceptable level of quality.

Throughout the development process, an objective

assessment to determine whether quality requirements are

being met should be performed. In so doing, a quantitative

assessment of quality could provide the basis for decisions

regarding the software’s fitness for use. Table 1 presents

quality control activities administered during each phase of

the development processes.

While emphasising on the quality of the product, [4] posits

that, “software program that repeatedly and frequently fails

to perform expectedly, it matters little whether other quality

measures at different levels met the respective standards”. In

an Agile environment, it is on this premise that software

engineers and their customers need to device a consistent

pattern or mechanism to communicate the purpose of the

37 Ikerionwu Charles and Nwandu Ikenna Caesar: Quantifying Software Quality in Agile Development Environment

ensuing system, constrains that must be addressed, the risks

to be managed, the design and implementation strategy [5].

These, in effect could improve the overall software quality.

Determining software quality includes adhering to quality

standards at requirements specifications, software project

management, software design, quality assurance, and testing

[6]. At each level, quality is calculated through a quantitative

measure of the degree to which it possesses a given quality

attribute (IEEE software quality). Thus, the reliability of a

software product is summed up from the overall quality. In

addition, to measure the quality of the software product, [7]

suggest four-step procedures: define the quality to be

considered, state the thresholds for the quality metrics, list

information for the measurement, and finally, measure and

evaluate the quality metrics based on the thresholds. These

steps further confirm that the requirements are complete and

consistent, design is standardized, and consistent, and key

appropriate developmental tools are used.

Table 1. Quality control activities in agile development process.

S/no. Development Process Quality control

1 Requirement specification Clear, unambiguous, consistent, and easy to understand.

2 Architecture design

Clear definition of components.

Clear procedural structure of the system.

Clear relationship between components.

3 Programming (coding)

Minimal lines of code (LOC)

Less complex system

High level of Structure with software specification

4 Testing

Design a test plan

Development testing

Unit, components, and system testing.

Review test plan

5 Validation Validate with user and system requirements, respectively.

6 Project management

COCOMO

Risk Management

Meets customer expectation

Coherent and well-functioning development team.

As the need for software products to solve our increasing

problem increases, the development process becomes

complex, and software engineers strive to provide clients

with software products with an acceptable level of quality

[8]. To achieve clients’ demand in the prevailing

complexities, software engineers are always looking for ways

to improving the engineering process and the quality

attributes. These improvements are better understood when

they are measured in numbers and in effect, [9] affirmed the

assertion that software quality measurement is an essential

component of software engineering.

However, in practice, quantification of software quality

has fallen short of detailed explanation especially in

organisations where it has not been a norm from the

inception [5]. To reduce this ambiguity and improve on the

quality, [5] is of the view that stakeholders should clearly

define system requirements and present understandable

attributes. These attributes must be quantifiable so that

progress towards the goal of the system can be evaluated

competitively. With quality in focus, communication among

stakeholders at different levels such as – specification,

design, project management, and process must be continuous.

In conclusion, [5] suggests that effective communication

amongst stakeholders at all levels could lead to successful

projects.

Asthana A. and Olivieri J. focused on quantifying the

reliability (a single attribute of software quality) of software

application at the time of product shipment by adopting a

model that combined the product and development process

parameters to determine the level of the reliability [10]. In

addition to the system approach to identify software product

goodness, the study included the display of measurable

targets for each identified metric index in a dashboard during

the development process. In a related research, [11] implored

static metric approach to record the reusability (another

software quality component) of software application. The

study used an open dataset from the Github and assessed the

number of reuses for each component based on five different

properties: complexity, cohesion, coupling, inheritance,

documentation, and the size of the system. The findings

suggest that the developed static model could effectively

predict the reusability as appraised by the software

developers. In all these research efforts, the focus has been

the emphases on one attribute of the software quality, but this

study has made an aggregate of quantifying software quality

attributes and establish each attributes effect on the overall

software quality.

Therefore, this study is aimed at quantifying the related

attributes that contribute to the software quality. Further, it

identifies specific objectives that would lead to realising the

aim of the study: identify software quality attributes, design

an algorithm for measurement metrics, and perform relational

analytics of each attribute with respect of the software

quality. The rest of the study is structured as follows: section

2 presents the correlation between measurement and metrics;

section 3 presents the related works to this study; section 4 is

the methodology; and section 5 presents the results of the

study and the conclusion drawn from them.

 Software Engineering 2021; 9(2): 36-44 38

2. Correlation Between Measurement

and Metrics

Agile software development method has demonstrated

software quality determining features and emerged as a

preferable method over some of the established orthodox

development methods [12]. Key characteristics is the

emphasis on the products over individuals, and a clear

approach to quality quantification – where measurement and

metrics play very important roles. [9] posit that

“measurement is the process by which numbers or symbols

are assigned to attributes of entities in the real world in such

a way to describe them according to clearly stated standards”.

Specifically, measurement captures the information about

specific attributes in numbers. Both practitioners and

academicians have shown that quantification of software

quality attributes are calculated through metric and

measurement. Software metrics are functions (formulas) used

to compute the values, while measurements are the numbers

calculated using the function.

Table 2 shows a list of six different software quality

attributes and their standard measurements. Measurement is

specific and targeted towards specific software attributes.

The process of measurement puts the product’s performance

under check towards achieving the goals and objectives of

the product. [13] defines attribute as, "a measurable physical

or abstract property of an entity". Further, an attribute

underlines the characteristics of interest inherent in a

software entity and when measured, specific attributes help

to distinguish one entity from another. The standard of

measure that ascertains how much a software system

possesses the distinguishing characteristics is termed metrics.

A metric is a measurement function aimed at quantifying a

software property/characteristic. This is a clear indication

that software metrics is all about measurement which in turn

involves numbers. We, therefore, posit that the relationship

between metric and measurement lies or rather converge in

the quantification process of software quality. This is in line

with the [13], which states that, “each quality factor is a

direct metric that serves as a quantitative representation of a

quality factor.” Similarly, [14] agreed that “the quantification

of software characteristics is affected using software

metrics”. This close tie between measurement and metric

allows for the classification of quality measurements into

three classes:

Product metrics: These are predictor metrics used to

quantify internal attributes of a software product [3]. For

example, the size of the system – measured in lines of code

(LOC), complexity of the software product (depth and

quantity of routine in a program), the number of modules

associated in the system, design features and cumulative

quality. Product metrics is further categorised into two

specific classes: dynamic and static metrics. Dynamic metrics

are measurements made in programs in execution. They are

the class of software metrics that presents the dynamic

behaviour of a program in execution [15]. For example, the

time taken to compute a given task, the number of bugs

reported in a predetermined period etc. According to [16],

static metrics are measurements inferred from the software to

express its characteristics, which include size of the software

(expressed in lines of code [LOC]), cyclomatic complexity,

fog-index etc.

Process metrics: It measures the progress of the software

development process as well as the various characteristics of

the inserted techniques such as the efficiency of fault

detection. They are used to measure the characteristics of

methods, techniques, and tools that are used for developing

software. This implies that process metrics provides an

organisation and the development team a strategic review of

the entire development process to ascertain the effectiveness

of the adopted process.

Project metrics: It quantifies the management of the

software development process purposely to guide the

manager and the development team in assessment of the

process resources and its impact. Through project metrics,

expected period of delivery, costs estimation, project

schedule, man-hour and all deliverables are calculated.

However, [4] suggests that metrics collected from earlier

projects should be used as a benchmark to calculate effort

and time duration of the current project.

3. Related Works

Quality measurement and evaluation are key aspects in

software products delivered to users, and in effect,

researchers have adopted diverse methods of quantifying

software quality. As a result, ISO/IEC JTC1/SC7

developed series of ISO/IEC 25000 standards which are

designed to standardize the quality measurement and

evaluation of software products. Consequently, [17]

critically analysed and adopted the methodological system

within the ISO/IEC 25000 series to quantify software

products based on the defined benchmark and preference

as key requirements in the missing weighting method in

the methodological system. Some previous research

efforts are known to focus on a single software quality

attribute to quantify the software product. For example,

maintainability- a feature of code metrics and reusability

is evaluated to ascertain the level compliance to

established standards. [18] considered a set of software

metrics and reference benchmarks to evaluate

maintainability, as a quality attribute using a declarative

Query/View/Transformation (QVT) Relations language.

Results suggest that, from the onset, the implementation

of the model at the architectural level would improve the

software maintainability.

Software measurement activity usually considers certain

restricting factors, such as the characteristics of a product

user (e.g., experience, age, gender, etc.), the type of tasks

being performed by the user, the environmental study

(ranging from controlled laboratory conditions to largely

unstructured field studies), as well as the nature of the

evaluation object, which can be a paper prototype, a

software mock-up, a partially functional prototype or an

39 Ikerionwu Charles and Nwandu Ikenna Caesar: Quantifying Software Quality in Agile Development Environment

accomplished system [19]. [20] studied several evaluation

schemes for workflow products but majored on web-based

products with multiple users’ access and concluded that five

factors are requisites for a successful evaluation. These

include a) accuracy, which presents the author’s profile; b)

authority - provides specific authors’ credentials and link to

the published documents; c) objectivity – discusses the

authors’ opinion; d) currency, discusses the process of

software update and e) coverage that indicates the cost of

the software. Determination of software capability or

usability informs achieving users’ requirements and goals;

and through evaluation method, the software quality could

be quantified. Earlier efforts have shown the adoption of

different methods to determine usability as an attribute of

software quality and through evaluation, quality is

quantified [21]. Further evaluation to determine software

capability has been narrowed down by ISO/IEC25000:2011

as the “extent to which a product can be used by specific

users to achieve specified goals with effectiveness,

efficiency and satisfaction in a specified context of use”.

[21] concluded that usability, as presented in extant

literature shows that usability in inbuild at the design -phase

of software development life cycle and accounts for 71% of

the reviewed work. Both individual users and industries

have shown preference to applications that are easily

maintainable and reliable, however, they have faced

challenges with the choice of available metric frameworks.

The existing gap in maintainability evaluation metrics spans

across false – positive and high level of complexity in the

computing and quantifying the maintainability attribute.

Thus, [22] developed a comprehensive cloud-based

automated infrastructure framework to address the

identified gaps. Due to its efficacy, the framework named

SQUAAD has been used in empirical studies and

government related parastatals.

Misra, S., Akman designed a framework meant to analyse

whether software metric qualifies as a measure of quality

from different perspectives [23]. The study adopted the

framework by using cognitive functional size measure (CFS)

for the purpose of evaluation and validation of software

complexity measurement. The findings suggest that the

framework is a better way to effectively present the software

parameters required to evaluate and validate the complexity

measurement. To demonstrate the interaction amongst

components that define the software quality, [24] developed

quantitative evaluations by considering interactions among

these components in a multi-criteria decision-making

(MCDM) problem. The evaluation process adopted the

aggregator method of arithmetic mean (AM) and weighted

arithmetic mean (WAM). Findings emanating from the study

were ranked in six main quality attributes as identified by the

ISO 25000 standard.

Table 2. Software quality attributes and standard measurements.

Attributes Standard measures Citation

Maintainability

Depth of inheritance tree.

Ease of modification and mean-time to debugging.

Component independence.

Measure of how hard or easy it is to maintain a software

Somerville (2016)

Fenton and Bieman (2014)

Lu et al. (2016)

Usability

Length of users’ manual.

Number of error messages.

Capability to be understood, learned, and used (ISO/IEC 9126-1, 2000)

Abran et al. (2003)

Khan et al. (2018)

Reliability
Cyclomatic complexity

Programs’ lines of code

Ikerionwu (2010)

Yamada (2014)

Fenton and Bieman (2014)

Reusability

Amount and frequency of reuse.

Portability, adaptability- level with ease of platform independency

Flexibility, modularity, and understandability

Cohesion and documentation

Hristov et al. (2012)

Ampatzoglou (2018)

Gui and Scott (2009)

Efficiency

Device efficiency

Accessibility

Correctness

Sitaraman and Weide (2014)

Watro (2014)

Testability

The extent a unit or module support its testing

Modularity

Ease of detecting cause of failures

Garousi et al. (2018)

Huda et al. (2015)

Khan et al. (2016)

4. Methodology

We considered each of the identified quality attributes and

independently used available functions (metrics) to derive its

measurement. There are 12 software applications, referred to

as “software projects” and denoted as SW, which are

subjected to quality quantification. These software projects

are identified as: SW1……SW12. Therefore, in this section,

quality attributes are identified, quality metrics are explained,

measurements are derived, and each attribute is calculated

and quantified. These values are contained in table 5.

It is essential to represent the attributes of software

products in numeric or symbolic terms for the purpose of

quality quantification. This is achievable by employing

relevant software metrics in the process of measuring the

quality attributes of these software products. This section

discusses the quality attributes and corresponding metrics

applied to our project models (as summarized in table 3) and

their outcomes (as shown in table 4 and figure 1).

 Software Engineering 2021; 9(2): 36-44 40

Table 3. Software quality attribute metrics.

Quality Attribute Metric

Maintainability MTTR=
�����	�����	
�

��

��	��	�������

Availability MTTF
Availability = *100%

MTTF + MTTR

Reliability R=
�

����

Portability Portability = (Number of successful ports) / (Total number of ports) * 100

Testability Tm=k *VC and Tc=min (Tm)
Reusability Rcc= w1.mai + w2.ada + w3.doc + w4.com + w5.ava

Each of these metrics is applied to calculate the numeric

values of the six quality attributes of the twelve software

projects listed in table 5. These attributes are

maintainability, availability, reliability, portability,

testability, and reusability.

4.1. Maintainability

Maintainability is an attribute of software quality and has

been described as the level of ease with which a software can

be maintained or modified [25]. Such maintenance includes

debugging, modification, and extension of functionality to

adapt to new environment. The possibility of maintenance

and modification depends on the extent to which a software

is readable, understandable and its extensibility (RUE).

In the expression i, we establish the relationships in terms

of proportionality between these components - RUE:

if

{

Maintainability=a

Constant = k

Readability=b

Understandability=c

Extensibility=x

then,

a ∝ k(bcx) (1)

Equation 1 denotes that a high degree of maintainability

implies a high degree of RUE attributes. The maintainability

of software product is measured as the mean time to repair

(MTTR).

MTTR=
�����	�����	
�

��

��	��	�������
 (2)

We defined a maintainability period of 60 days where

different application software is used and performed varying

measurements using different operating systems that include

software (MacOS, Windows, and Linux) and hardware ports.

The calculated MTTR is presented in table 5.

4.2. Availability

Availability of software implies its readiness to be put in

use. Availability quantifies the likelihood of the software to

be in use over a specific period. A software’s availability is

proportional to its reliability. That is why it is usually

considered as a measure of software reliability. It is measured

as a relation of the software’s mean time to failure (MTTF)

and its mean time to repair (MTTR):

MTTF
Availability = *100%

MTTF + MTTR
 (3)

where MTTF =

1

1
1

e

i i

e

n

n
i

t t+ −
−

=
∑ (4)

ti - ti+1 = Execution time,

ne is the number of failed executions due to error.

4.3. Reliability

The reliability of software is concerned with the

probability of the software system to perform a function

correctly for a specified number of inputs within a specified

time interval. Reliability measures the probable non-failure

of a software system to execute its intended functions over a

specified period. The reliability of a software is much

inclined to the maturity, fault tolerance and recoverability of

the software. It is usually measured as the inverse of the

software’s mean time to failure (MTTF). The calculated

measurement is recorded in table 5 under reliability column.

R=
�

����
 (5)

4.4. Portability

The portability of software focuses on the ability of the

software to operate successfully in all platforms - i.e.,

working in different environments. This is in line with

ISO/IEEE 24765, which presents portability as the ease with

which a system or component can be transferred from one

hardware or software environment to another. Both the

hardware and software requirements are considered non-

functional requirements. The measure of portability

encompasses installability, adaptability, replaceability, and

compatibility, but in this study, the researchers limited their

scope within the overall measure of portability at the

implementation level. We used an open-source application

software to model its portability. The algorithm towards the

measure of portability involves the following steps:

i. Record total number of ports (e.g., browser and

version, operating system and version, programming

language, processor make and speed, software modules

(units) etc.) available within the environment.

ii. Identify the total number of successful ports within the

environment to measure the portability.

41 Ikerionwu Charles and Nwandu Ikenna Caesar: Quantifying Software Quality in Agile Development Environment

iii. Apply the metric to measure the portability.

iv. Repeat steps i to iii for a different application software.

v. Repeat steps i to iii for a different application software

in a different environment (operating system).

vi. End.

In table 4, twelve software projects were adopted to test

and quantify their respective portability values. Using the

successful and total ports in table 4, the values of portability

are derived and presented in table 5.

Portability = (Number of successful ports) / (Total number of

ports) * 100

Respectively, the ports include:

Table 4. Portability ports for the 12 projects.

Successful Ports 22 15 10 12 30 8 10 16 18 7 8 13

Total ports 25 20 11 20 30 14 12 17 18 12 9 15

The successful ports record the total number of ports

available from the operating system and hardware system

that are compatible with the application software being tasted

for portability. The second row is the total number of ports

available within the software and hardware environments

which are available for use. When the SW is plugged-in,

some of these ports were incompatible with the environment

and the compatible ones are recorded as successful ports.

Thus, these numbers are used in calculating the numeric

value of portability as one of the quality attributes.

For instance, to calculate the portability value of SW1, we

adopt the portability metric:

portability =
��

��
∗ 100 (6)

= 88

Table 5. Results of Metrics Application on Model Projects.

Projects Maintainability (minutes) Availability (%) Reliability Testability Portability Reusability

SW1 1 75 1 Observability Simplicity Modularity Stability (4) 88 2.725

SW2 6 50 0.62 Modularity Stability (2) 75 3.55

SW3 1 70 1 Observability Modularity (2) 90.9 2.91

SW4 3 50 0.63 Observability Stability (2) 60 2.85

SW5 1 73 1 Observability Simplicity Modularity (3) 100 2.319

SW6 4 50 0.66 Observability Modularity (2) 57.1 3.25

SW7 3 70 0.95 Observability Simplicity Modularity (3) 83.3 3.11

SW8 6 75 1 Observability Simplicity Modularity (3) 94.1 3.525

SW9 1 75 1 Observability Simplicity Modularity (3) 100 2.925

SW10 3 50 0.56 Modularity Stability (2) 58.3 2.95

SW11 2 77 0.98 Observability Simplicity Modularity (3) 88.8 2.754

SW12 3 70 0.96 Observability Simplicity Modularity Stability (4) 86.7 2.81

In table 5, there are twelve software projects (SW1 ….

SW12) that are tested for software quality under the following

attributes: maintainability, availability, reliability, testability,

portability, and reusability. The calculated values using

respective software quality metrics are presented in table 5.

4.5. Testability

The identification and quantification of testability of the

software project is based on five key testability metrics -

observability, simplicity, modularity, and stability. Each of

these is identified as one metric and appropriately indicated

in table 5. For clarity, four (4) is the highest assigned number

and shows that the software possesses all the four metrics -

testability metrics:

4 indicates the software possesses four of the testability

metrics.

3 indicates three metrics.

2 shows the software contains two metrics and,

1 indicates only one metric.

i. Observability: What is observable is testable. This

focuses on the observable states and features affecting

the output of the software. [26] argues that “software

behaviour states is the ability of the test system to

observe the outputs of the states and to determine

which input triggers a particular output”.

ii. Simplicity: The simplicity metric measures the ease of

performing a test on any software. It implies that little

efforts are required in testing the software product.

These eases are dependent on functional, structural and

code simplicity.

iii. Modularity: Modularity is a key metric found in object-

oriented design and it has made software developed

with object-oriented programming language easier to

maintain. Each module could be decoupled, edited

based on client requirements, maintained, or reused in

another development [16].

iv. Stability: A stable software has fewer number of

changes, which makes it easier to test. Stability is

attained when the software does not require frequent

alteration, but when it is inevitable, such changes

should be measured and communicated clearly.

Empirically, testability is usually obtained using the

following relations:

Testability of method (Tm) = k *VC, (7)

where VC = Visibility

 Software Engineering 2021; 9(2): 36-44 42

Component =
� !!"#$%	&'()'(

� !!"#$%	*+)'(, (8)

Testability of the class (Tc) = min (Tm)

4.6. Reusability

Software reusability describes the ease with which

software components can be used in different modules to

develop new applications. In other words, if some

components in a particular software are used to develop a

different system with different functionality, it is said to be

reusable. Reusability usually results in realizing high quality

products. It is measured as:

Rcc= w1.mai + w2.ada + w3.doc + w4.com + w5.ava (9)

Where:

w1 – w5 are weights and the rest are composite metrics for the

attributes from the reusability measurement model. The

values of the weights determine the importance of each

characteristic of the component for its reusability and are

determined empirically or through expert opinion. According

to [27], the sum of the components of interest is equal to 1.

mai= maintainability (adjustability to higher versions of

software)

ada= adaptability (programming language, adapters,

appropriate methods, and interfaces)

doc= documentation (amount, quality, completeness,

existence of legal terms and conditions)

com= complexity (size, coupling, cohesion, amount and

complexity of methods and parameters)

ava= availability (instant, upon search, upon request,

unavailable)

5. Results and Discussion

The values in table 5 are plotted in a bar chart to vividly

express the relationships between different quality attributes.

It is observed that through quantification, software quality

when broken down to varying quality attributes indicate the

lack of software product with 100% quality. The attributes

vary, but the software when used provides an acceptable level

of quality to meet the user requirements. For example, SW2

has the following values of quality attributes:

maintainability= 2 minutes; availability = 50%; reliability =

0.62; testability = 2; portability=75; reusability=3.55.

The high reliability value of 3.55 in SW2 is translated

from the modularity feature in testability attribute. This is in

line with [25] assertion that modularity is a quality attribute

that is essential for software reuse. Similarly, SW2 has a

reliability value of 0.62 but an optimum availability value of

50%.

Figure 1. Metric values of quality attributes.

The numbers plotted in figure 1 were derived from tables 4

and 5 to quantify each identified quality attribute. Overall,

there is high level of portability without a direct effect on the

overall quality of the software system. Noticeable effect is

the direct relationship between reliability and portability,

which are directly proportional to each other. A high value of

maintainability does not translate to high reliability.

Similarly, maintainability is inversely proportional to

availability, i.e., when software takes longer time to repair,

the period of availability is significantly reduced. It is

observed that the quantification of these quality attributes

provides easy understanding of software quality for the

software users, software project managers and developers.

6. Conclusion

Software quality is subjective, i.e., what level of user’s

requirements did it satisfy, and would be better understood

when the concept of quality is quantified. By expressing

software quality in numbers derived from metrics and

measurements, both developers and users could easily

comprehend the level of quality possessed by a software

product. In this study, using open-source software (SW1,

SW2, SW3, SW4, SW5, …….., SW12), 6 quality attributes

were identified, examined and measured by adopting specific

function (metric) to express the quality in numeric value.

43 Ikerionwu Charles and Nwandu Ikenna Caesar: Quantifying Software Quality in Agile Development Environment

These software measurement activities were identified to

have explicit impact on performing software quality

benchmarking, establishing software quality assurance as

well as setting software quality objectives. Concisely, a user

could easily indicate the level of software quality when each

quality attribute is expressed in numbers. Through calculated

quality numeric values, the study established specific

relationship between each quality attribute and how it affects

the overall quality of the software system. Earlier research

efforts have focused on quantification of a single quality

attribute [28-31], but this study demonstrated the

quantification of key software quality attributes that

summarises the quality of the software. This paper, therefore,

laid emphasis on the characteristics of software products that

can unleash significant information about the quality of the

products. Furthermore, an overview of software attributes

measurement together with relevant quality evaluation

metrics were made. It presented the significant correlation of

the process of measurement and metric usage in quantifying

software quality. Further research could focus on how quality

is built-in at every level of the software engineering process

using agile methodology.

References

[1] Ikerionwu, C., Foley, R., & Gray, E. (2014). Improving
software quality in the service process industry using agility
with software reusable components as software product line:
An empirical study of Indian service providers. International
Journal of Advances in Engineering & Technology, 7 (3), 701.

[2] Boehm, B., Lane, J. A., Koolmanojwong, S., & Turner, R.
(2014). The incremental commitment spiral model: Principles
and practices for successful systems and software. Addison-
Wesley Professional.

[3] Sommerville, I. (2015). Software engineering. 10th. In Book
Software Engineering. 10th, Series Software Engineering.
Addison-Wesley.

[4] Pressman, R. S. (2015). Software Engineering: A
Practitioner’s Approach, 2000.

[5] Gilb, T. (2005). Competitive engineering: a handbook for
systems engineering, requirements engineering, and software
engineering using Planguage. Elsevier.

[6] Gorla, N., Somers, T. M., & Wong, B. (2010). Organizational
impact of system quality, information quality, and service
quality. The Journal of Strategic Information Systems, 19 (3),
207-228.

[7] Nakai, H., Tsuda, N., Honda, K., Washizaki, H. and
Fukazawa, Y. (2016). A SQuaRE-based Software Quality
Evaluation Framework and its Case Study. IEEE International
Conference on Software Quality, Reliability & Security. 1-4.

[8] Ikerionwu, C., Gray, E., & Foley, R. (2013, September).
Embedded software reusable components in agile framework:
The puzzle link between an outsourcing client and a service
provider. In Quality comes of age, The BCS Quality Special
Group’s Annual 21st Software Quality Management (SQM)
Conference, ISBN–987-0-9563140-8-6 (pp. 63-78).

[9] Fenton, N. & Bieman, J. (2014). Software metrics: a rigorous
and practical approach. pp. 22-34 CRC press.

[10] Asthana, A. & Olivieri, J. (2009). "Quantifying software
reliability and readiness," 2009 IEEE International Workshop
Technical Committee on Communications Quality and
Reliability, Naples, FL, 2009, pp. 1-6, doi:
10.1109/CQR.2009.5137352.

[11] Papamichail, M. D., Diamantopoulos, T., & Symeonidis, A. L.
(2019). Measuring the reusability of software components
using static analysis metrics and reuse rate information.
Journal of Systems and Software, 158, 110423.

[12] Kupiainen, E., Mäntylä, M. V., & Itkonen, J. (2015). Using
metrics in Agile and Lean Software Development–A
systematic literature review of industrial studies. Information
and Software Technology, 62, 143-163.

[13] IEEE, "IEEE Std. 1061-1998, Standard for a Software Quality
Metrics Methodology, revision." Piscataway, NJ: IEEE
Standards Dept., 1998.

[14] Tahir, A. (2015). A Study on Software Testability and the
Quality of Testing In Object-Oriented Systems. University of
Otago.

[15] Gunnalan, R., Shereshevsky, M and Ammar, A. (2005).
Pseudo dynamic metrics [software metrics], The 3rd
ACS/IEEE International Conference on Computer Systems
and Applications, Cairo, pp. 117.

[16] Ikerionwu, C. (2010). Cyclomatic Complexity as a Software
Metric. International Journal of Academic Research, 2 (3).

[17] Liu, X., Zhang, Y., Yu, X., & Liu, Z. (2018, June). A software
quality quantifying method based on preference and
benchmark data. In 2018 19th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD) (pp.
375-379). IEEE.

[18] Kapová, L., Goldschmidt, T., Becker, S., & Henss, J. (2010,
June). Evaluating maintainability with code metrics for
model-to-model transformations. In International Conference
on the Quality of Software Architectures (pp. 151-166).
Springer, Berlin, Heidelberg.

[19] Gediga, G., Hamborg, K. and Düntsch, I. (2015). Evaluation
of Software Systems, Institut für Evaluation und
Marktanalysen Brinkstr. 19, 49143 Jeggen, Germany, pp 1-5.

[20] Stoilova, K. and Stoilov, T. (2005). Software Evaluation
Approach. Institute of Computer and Communication Systems
– Bulgarian Academy of Sciences, pp 1-6.

[21] Sagar, K., & Saha, A. (2017). A systematic review of software
usability studies. International Journal of Information
Technology, 1-24.

[22] Behnamghader P., & Boehm B. (2019) Towards Better
Understanding of Software Maintainability Evolution. In:
Adams S., Beling P., Lambert J., Scherer W., Fleming C.
(eds) Systems Engineering in Context. Springer, Cham.
https://doi.org/10.1007/978-3-030-00114-8_47

[23] Misra, S., Akman, I. and Colomo-Palacios, R. (2013). A
Framework for Evaluation and Validation of Software
Complexity Measures, Department of Computer Engineering,
Atilim University, Ankara, Turkey, 1-27.

 Software Engineering 2021; 9(2): 36-44 44

[24] Alashqar, A. M., Elfetouh, A. A. and El-Bakry, H. M. (2015).
ISO 9126 Based Software Quality Evaluation Using Choquet
Integral. International Journal of Software Engineering &
Applications (IJSEA), 6 (1), 111-121.

[25] Boehm, B. (2017, January). Evaluating Human-Assessed
Software Maintainability Metrics. In Software Engineering
and Methodology for Emerging Domains: 15th National
Software Application Conference, NASAC 2016, Kunming,
Yunnan, November 3–5, 2016, Proceedings (Vol. 675, p. 120).
Springer.

[26] Liu, P. (2017). Testability Metrics for Software Behavioral
Models. International Journal of Performability Engineering,
13 (8).

[27] Hristov, D., Hummel, O., Huq, M., & Janjic, W. (2012).
Structuring software reusability metrics for component-based
software development. In Proceedings of Int. Conference on
Software Engineering Advances (ICSEA) (Vol. 226).

[28] Ardito, L., Coppola, R., Barbato, L., & Verga, D. (2020). A
Tool-Based Perspective on Software Code Maintainability
Metrics: A Systematic Literature Review. Scientific
Programming, 2020.

[29] Kang, H. G., Lee, S. H., Lee, S. J., Chu, T. L., Varuttamaseni,
A., Yue, M., ... & Li, M. (2018). Development of a Bayesian
belief network model for software reliability quantification of
digital protection systems in nuclear power plants. Annals of
Nuclear Energy, 120, 62-73.

[30] Rizvi, S. W. A., Singh, V. K., & Khan, R. A. (2016). Fuzzy
logic based software reliability quantification framework:
early stage perspective (FL SRQF). Procedia Computer
Science, 89, 359-368.

[31] Chen, C., Alfayez, R., Srisopha, K., Shi, L., & Boehm, B.
(2016, November). Evaluating human-assessed software
maintainability metrics. In National Software Application
Conference (pp. 120-132). Springer, Singapore.

