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Abstract: The great computational burden caused by complicated and unknown analysis restricts the use of simulation-based 

optimization. In order to mitigate this challenge, surrogate-based global optimization methods have gained popularity for their 

capability in handling computationally expensive functions. This paper surveys the fundamental issues that arise in 

Surrogate-based Global Optimization (SBGO) from a practitioner’s perspective, including highlighting concepts, methods, 

techniques as well as engineering applications. To provide a comprehensive discussion on the issues involved, recent advances in 

design of experiments, surrogate modeling techniques, infill criteria and design space reduction are investigated. This review 

screens out nearly 130 references containing a lot of historical reviews on related research fields from about 500 publications in 

various subjects. Future challenges and research is also analyzed and discussed. 
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1. Introduction 

With the globalization of trade, all industrial companies are 

faced with the worldwide competition and strive to produce 

cheaper and better products faster. These processes and 

products can be optimized with various objectives like quality, 

cost and time, etc. In many fields such as aircraft design, the 

complex systems encompass the extensive activities whose 

goal is to determine the optimum characteristics of a product 

before it is manufactured. Thus, it accelerates the 

advancement of global optimization approaches. Generally, 

global optimization methods can be classified into two main 

categories: deterministic and stochastic [1]. Deterministic 

global optimization methods will gradually converge to the 

global optimum through generating a deterministic sequence 

of points. It can only solve the optimization problems which 

have certain mathematical characteristics like gradient 

information though the global optima may be found rapidly. In 

practice, the special mathematical characteristics perhaps not 

exist in most simulation assisted global optimization problems. 

Moreover, the stochastic or called derivative-free global 

optimization methods solve the aforementioned 

computation-intensive optimization problems through the 

random generation of feasible points. Rios and Sahinidis
 
[2] 

present a review of many widely used derivative-free global 

optimization methods. Thereinto, the popularity of traditional 

derivative-free global optimization methods including Genetic 

Algorithm (GA), Simulated Annealing (SA) and Particle 

Swarm Optimization (PSO) lies in the ease of implementation 

and flexible way [3, 4]. 

Many of today’s optimization designs involve multiple 

disciplines, multiple objectives and the computationally 

expensive analysis and simulations. Despite the fact that the 

capacity of computers keeps increasing in power and speed, 

the complexity of computer simulation and analysis software 

like Finite Element Analysis (FEA), Computational Fluid 

Dynamics (CFD), etc. seems to keep pace with the computing 

advances [5]. In fact, the conventional derivative-free global 

optimization methods that require thousands of expensive 

black-box function evaluations to identify the global optimum 

are not suitable to deal with the computationally expensive 

black-box problems. The huge cost and time of engineering 
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optimization is in direct proportion to the number of function 

evaluations. An intuitive way to relieve this difficulty within 

limited computational budgets is to use surrogate models to 

replace the expensive black-box analysis, termed as 

surrogate-based global optimization. SBGO methods have 

been extensively employed for handling the computationally 

expensive unknown problems such as aerospace, vehicle, and 

power system designs. Younis et al. [6] use a novel space 

exploration and unimodal region elimination global 

optimization algorithm to solve a highly nonlinear and 

complex real-life engineering design optimization 

problem-the optimal design of automotive 

magnetorheological brake. Sun et al. [7] adopt Kriging (KRG) 

model to replace expensive CFD code for calculating the 

hydrodynamic performance of the underwater glider. Lee et al. 

[8] develop a surrogate-based design optimiztion framework 

to maximize the thrust coefficient of multiple wing sails. 

Mainini and Willcox [9] propose an offline/online strategy for 

the data-to-decision problem of onboard structural assessment. 

Peherstorfer et al. [10] present a multi-fidelity method to 

importance sampling that leverages multiple surrogate models 

for speeding up the construction of a biasing distribution and 

that uses the high-fidelity model to derive an unbiased 

estimate of the failure probability. 

SBGO is an excellent technique and possesses several 

advantages compared to the traditional optimization method [11, 

12]. The distinct advantages of SBGO are given as follows: 

It requires fewer resource and time due to the 

approximation process; 

It can better utilize the information collected from the 

available samples; 

It contributes to provide insights into the expensive 

black-box problems by studying the sensitivity of design 

variables; 

It is easier to filter the noise intrinsic to numerical and 

experimental data; 

It supports parallel computation. 

 

Figure 1. General framework of SBGO. 

The basic framework for most SBGO is illustrated in Figure 

1. It can be found that four key components including Design 

of Experiments (DOE), surrogate modeling techniques, infill 

criteria and design space reduction are the key issues which 

arise in surrogate-based global optimization. This 

optimization process starts with generating an initial sample 

set through using a certain design of experiments method. The 

obtained sample data are employed to construct the first 

surrogate model. It’s no doubt that the accuracy of surrogate 

models is directly affected by the performance of sample 

points. In recent decades, various DOE has been developed for 

experiments design. The classical DOE contains factorial 

designs, Central Composite Designs (CCD) and Orthogonal 

Designs (OD) [13-15]. Moreover, space-filling DOE 

including Uniform Designs (UD), Latin Hypercube Designs 

(LHD), Optimal Latin Hypercube Designs (OLHD) are 

widely used in surrogate-based global optimization [16-19]. 

Different criteria towards space-filling including Minimax and 

Maximin designs, Kullback-Leibler designs, Audze-Eglais 

designs, maximum entropy designs [20]. The optimal 

space-filling DOE which integrates regular DOE with above 

design criteria is seeking to obtain the better space-filling and 

projective property. Among the optimal DOE, optimal LHD is 

most frequently studied. Jin et al. [21] present an optimal LHD 

using an Enhanced Stochastic Evolutionary (ESE) algorithm. 

It is efficient and flexible in terms of the computation time, the 

number of exchanges needed for generating new designs and 

the various design criteria. Viana et al. [22] use the 

translational propagation algorithm to obtain near optimal 

LHD without going through the expensive optimization 

process, whereas the performance of the sample points is not 

suitable for high dimensions. The aim in this step is to 

generate better initial sample points to construct more accurate 

initial surrogate model. A review on design of experiments is 

presented in Section 2. 

The performance of SBGO is essentially influenced by the 

accuracy of the surrogate model used. Improper surrogate 

models may lead to a local optimum or even coarse solution. 

In consequence, much research has been conducted to explore 

the inherent property of various surrogate models. Commonly 

used surrogate models contain Polynomial Response Surfaces 

(PRS), Radial Basis Functions (RBF) and Kriging, etc. PRS 

builds a polynomial model using least square fitting to make 

predictions that is suitable for low-order nonlinear problems 

[23]. RBF is more appropriate to handle the high-order 

nonlinear problems as a linear combination of a certain basis 

functions [19]. KRG is found to be efficient in managing the 

nonlinear problems [17]. Many researchers have contributed 

to the sustainable developments of SBGO approaches. Jin [24] 

provides a brief overview of recent advances in 

surrogate-assisted applications and suggests a few challenging 

issues that remain to be resolved in the future. Dong et al. [25] 

present a multi-surrogate based differential evolution with 

multi-start exploration method for computationally expensive 

optimization. Han et al. [26] propose an efficient global 

optimization based on surrogate models to address the 

aerodynamic shape optimization of a swept 
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natural-laminar-flow wing in the transonic regime. Wang et al. 

[27] introduce a mode-pursing sampling method that can 

systematically generates more sample points in the 

neighborhood of the function mode. The sampling and 

detection process will iterate until the global optima are found. 

Holmström [28] presents a novel adaptive radial basis 

function method to overcome the difficulty that RBF 

interpolation is sensitive to the static choice of target values 

and initial sample points. Zhao et al. [29] propose a new 

method named dynamic KRG to solve the computationally 

intensive engineering application problems. 

As is known to all, a variety of surrogate modeling 

techniques are developed along with the extensively 

employed for expensive black-box design optimization. 

Different surrogate models adopted have their own 

advantages and disadvantages which are suitable for 

different applications. There is no conclusion on which 

model is predicatively superior to the others so far. In 

practice, most researchers usually choose the specific 

surrogate models in view of the past experience from dealing 

with the similar real-world applications. However, it will 

produce the uncertainties in predictions and extra expensive 

computation owing to the improper choice of surrogate 

modeling techniques. As a weighted combination of multiple 

surrogate models, ensemble of surrogates is developed to 

relieve this conflict. This strategy is very attractive in 

engineering design optimization since it can gain as much 

information on the black-box problems as possible. It acts 

like an insurance policy against poorly approximate models 

which can eliminate the negative impact and enhance the 

overall prediction performance. Zerpa et al. [30] propose the 

use of a weighted average surrogate model for the 

alkali-surfactant-polymer flooding process optimization. 

They recommend that ensemble of surrogates performs 

better modeling capabilities than single surrogate models. 

Goel et al. [31] explore various ensemble strategies where 

the weights are determined using the global cross-validation 

error measure. Acar and Rais-Rohani [32] determine the 

weight factors by minimizing the Root Mean Square Error 

(RMSE) and Generalized Mean Square Cross-validation 

Error (GMSE), separately. The selection of weights is treated 

as an optimization problem for minimizing the specific error 

metric. The trouble in this step as well as the interest is the 

question what surrogate models should be used. An 

introduction on this problem is discussed in Section 3. 

For improving the prediction accuracy of surrogate model, 

new sample points are required. The strategies for deciding the 

next promising samples is termed infill criteria also called 

adaptive sampling design method. The infill criteria can well 

guide the selection of new sample points depending on the 

information from the optimization process which will be 

sufficiently utilized. Infill criteria can be roughly classified as 

exploitation, exploration, combined exploitation and 

exploration. One side, the exploitation methods intuitively 

focus on the regions that locate in a neighborhood of the best 

point that has been found so far, which may not even be a 

stationary point of the true function. It will lead to a local 

approximation and may fall into the local optimum. On the 

other side, the exploration methods generally explore the 

sparse regions or regions with high uncertainty. However, only 

using the exploration strategy may result in a waste of 

computational resource to blindly improve the global 

approximation accuracy. The high accuracy is mainly required 

in the potentially promising regions. Therefore, it’s suggested 

to combine exploitation and exploration to balance the 

competing targets between the less cost and the more accurate 

optimal solution [33]. Various infill criteria have been 

developed for choosing the new sample points in recent years. 

The expected improvement [34, 35] and its modified versions 

including weighted expected improvement [36] augmented 

expected improvement [37] and probability expected 

improvement [38] are widely used as infill criteria. This step 

to select further designs that offer improvement is iterative till 

a certain convergence criterion or termination criterion is 

reached. The detail of infill criteria playing an important role 

in SBGO is given in Section 4. 

Regardless of the abovementioned optimization tools used 

to handle a specific problem, it’s found that the optimization 

efficiency and prediction accuracy are related to the scale of 

the design space. The difficulty that the computational 

demand increases exponentially while the number of design 

variables increases is known as the curse of dimensionality. 

Reducing the design space is an active and better way to 

overcome this difficulty. Wang and Simpson [39] use the 

Fuzzy C-Means (FCM) clustering approach to systematically 

capture the promising design space and efficiently identify the 

global minimum in the reduced design space. Meanwhile, 

FCM is also employed to determine an attractive reduced 

design space [40, 41]. Shyy et al. [11] discuss the fundamental 

issues that arise in surrogate-based modeling and dimension 

reduction methods for multi-scale mechanics problems. 

Galbally et al. [42] present an application of nonlinear model 

reduction to an inverse problem solution in a Bayesian 

inference setting. The inherent multiple-query context of the 

Bayesian approach makes model reduction an attractive 

option for large-scale problems. Shan and Wang [43] provide 

a review on modeling and optimization methods for solving 

the high-dimensional problems. A discussion on design space 

reduction methods in SBGO is offered in Section 5. 

This review is expected to provide an overall picture of 

recent advances and future challenges in surrogate-based 

global optimization for expensive black-box problems. Four 

research issues containing design of experiments, surrogate 

modeling techniques, infill criteria and design space reduction 

are discussed in this paper,. The remainder of the paper is 

organized as follows. The advancement of DOE is introduced 

in Section 2 and afterwards an overview of surrogate 

modeling techniques commonly used in the literatures is 

presented in Section 3. The infill criteria and design space 

reduction strategies treated as two key tools for the success of 

SBGO are respectively discussed in Section 4 and Section 5. 

Section 6 provides few promising yet challenging research 

topics. Eventually, conclusions are drawn in Section 7. 
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2. Design of Experiments 

The first step for a successful application of SBGO is the 

planning of the initial sample points for evaluation. The 

information at these points is usually limited for black-box 

problems. Good choices of experimental designs contribute to 

improve the accuracy of approximate models as well as to 

avoid exceeding the computational budget [22, 44]. In the 

early days of experiment designs, DOE methods are mainly 

applied to physical experiments. With the advancement of the 

computer, many DOE approaches are developed for computer 

experiments. The design of physical experiments and 

computer experiments methods are introduced in this section. 

The design of physical experiments methods are firstly 

discussed as below. 

2.1. Design of Physical Experiments 

Design of physical experiments methods are focusing on 

the planning experiments such that the damage of the random 

error in physical experiments can be minimized. Popularly 

used physical experimental designs including factorial designs, 

central composite designs, orthogonal designs are described. 

2.1.1. Factorial Designs 

Factorial designs method classified into full factorial 

designs and fractional factorial designs is a simple and 

straightforward way to generate sample points in the uniform 

manner [45]. Thereinto, full factorial designs divide each 

dimension of the entire design space (k factors) into equal 

intervals (m levels) and the number of points is m
k
. For 

example, the commonly used full factorial designs are 2
k
 or 3

k
 

with k factors at 2 and 3 levels that are used to evaluate main 

effects and interactions or quadratic effects and interactions 

separately [46]. Figure 2 shows a 3
3
 full factorial design. 

The size of full factorial designs increases exponentially 

with the number of input variables. Therefore, it’s notoriously 

inefficient as not a few factors are involved. This drawback 

prohibits the use of full factorial designs for expensive 

high-dimensional problems. In practice, only a fraction of 

points specified by full factorial designs are used that are 

defined as fractional factorial designs. A 3
3
 fractional factorial 

design is illustrated in Figure 3. Mukerjee and Wu [47] present 

a detailed discussion of factorial designs. 

 

Figure 2. 33 full factorial design.  

 

Figure 3. 33 fractional factorial design. 

2.1.2. Central Composite Designs 

CCD is firstly developed by Box and Wilson [48], which is 

the most popular family of second-order response surface 

designs. CCD is a two level factorial design (2
k
) that is 

augmented by c0 center points and 2k axial points positioned at 

a distance of α from the center. For a three factors design, the 

total amount of points is 14 + c0 which c0 is a replication 

number of center points. It’s noticeable that the parameters c0 

and α need to be predefined for CCD. A CCD for three 

variables is shown in Figure 4. 

 

Figure 4. Central composite design. 

The central composite designs can extract almost as much 

information as a multilevel full factorial designs which require 

fewer experiments and also have been certified to be sufficient 

to describe the majority of steady-state process responses [49]. 

This method allows researchers to visualize the interaction 

among independent factors under different experimental 

conditions. The central composite designs have been partly 

used despite the fact that the amount of points still increases 

exponentially with the number of design variables as well as 

the factorial designs [50, 51]. 

2.1.3. Orthogonal Designs 

Orthogonal designs contain a number of orthogonal runs 

which can be generated by orthogonal array. Promotion of the 

application of orthogonal designs is greatly owing to the work 

of Taguchi [52, 53] in quality engineering. The general form 

of orthogonal designs is ( )u
b

a
L a , where L is the symbol of 

OD, a is the amount of levels, b is the amount of factors, u 
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indicates the integer series, a
u
 represents the total amount of 

experiment runs. The relation between these parameters can 

be formulated as b = (a
u
–1) / (a–1). For instance, an orthogonal 

design with 9 trails, 3 levels and 4 factors expressed as L9 (3
4
) 

is exhibited in Table 1. Orthogonal designs treat all regions 

equally and can reduce the number of design points. Moreover, 

it may limit factors moving to narrower ranges. However, it is 

unable to know a priori which factors are crucial. Orthogonal 

designs also may result in replication of points and lack of 

flexibility. Detail introduction on orthogonal designs can refer 

to these publications [54-56].
 
Hou et al. [57] employ factorial 

designs to screen active parameters for optimizing a new 

thin-walled cellular configuration. Wang et al. [58] propose an 

adaptive response surface method that creates a quadratic 

polynomial approximation model to deal with the expensive 

back-box problems in a reduced space obtained by using 

central composite designs. Gong et al. [59] incorporate the 

orthogonal designs into differential evolution for accelerating 

its convergence rate. Recent studies on the design of physical 

experiments are developed [60-62]. 

Table 1. Orthogonal design of L9 (3
4). 

Trial 
Factor 

1 2 3 4 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 2 1 2 3 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 3 

9 3 3 2 1 

2.2. Design of Computer Experiments 

The random error will occur during physical experiments. 

As a result, the designs of physical experiments prefer to 

distribute the points around the boundaries of design space for 

reducing the random error through reduplicative tests at the 

same settings. However, the computer experiments mainly 

involve systematic error rather than the random error and 

mostly spread the points to fill the whole space which are also 

called space-filling designs. It’s different from the physical 

experiments. Simpson et al. [63] confirm that the conventional 

physical experimental designs are inefficient or even improper 

for computer experiments. In order to extract more 

information of the expensive black-box functions with least 

number of samples, a large amount of computer experimental 

designs are developed to meet the space-filling property. 

Several designs of computer experiments strategies including 

uniform designs, Latin hypercube designs and optimal Latin 

hypercube designs are introduced as below. 

2.2.1. Uniform Designs 

Uniform designs have been widely used since Fang [64] 

introduced them to experimental design terminology. It treats 

all regions equally and offer uniformly scatter points in the 

design space. UD is a type of optimal design incorporated with 

a supplemental uniformity property to minimize the 

discrepancy. If the experimental domain is continuous and 

finite, UD is similar to LHD. The distinction between these 

two experimental designs is that points are produced from 

random cells with LHD, whereas points are produced from the 

center of cells with uniform designs [65]. The form of uniform 

designs is formulated as Uk (m
n
) like orthogonal designs, 

where U is the symbol of uniform designs, m is the amount of 

levels, n is the amount of factors and k indicates the amount of 

experiment trails. For example, a uniform design involving 9 

trails, 9 levels and 4 factors is denoted as U9 (9
4
) which is 

given in Table 2. 

Uniform designs are firstly employed in the field of 

numerical integration [66]. Further applications in statistics 

are developed by Fang et al. [67] and Fang et al. [68]. Uniform 

designs have been employed for Multidisciplinary Design 

Optimization (MDO), Multi-Objective Optimization (MOO), 

probabilistic optimization in recent decades [69-71]. 

Table 2. Uniform design of U9 (9
4). 

Trial 
Factor 

1 2 3 4 

1 1 3 7 9 

2 2 6 4 8 

3 3 9 1 7 

4 4 2 8 6 

5 5 5 5 5 

6 6 8 2 4 

7 7 1 9 3 

8 8 4 6 2 

9 9 7 3 1 

2.2.2. Latin Hypercube Designs 

Latin hypercube designs are the most popular space-filling 

and non-collapsing designs [72]. A LHD with N points in d 

dimensions is built by dividing each input variable into N 

equal intervals. In order to ensure there are no two points with 

the same coordinate in any dimension, only one point is 

allowed to locate at each interval. Assume that one point is 

indicated as an element in { }1,  2,  ...,
d

n . For each variable, 

{ }1,  2,  ...,
d

j n∈ , the set { }1 2, ,  ...,j j njx x x  is a permutation 

of { }1,  2,  ...,n . It is noted that the coordinate of points should 

be unequal in rows and columns. Figure 5(a) shows a regular 

LHD with 10 points in 2 dimensions. 

Latin hypercube designs meet both the space-filling 

condition and the non-collapsing requirement. It plays an 

important role in SBGO. Ye and Pan [19] use LHD to produce 

initial sample points for constructing surrogate models. Viana 

et al. [73] present a multiple surrogate efficient global 

optimization algorithm with the help of LHD. The tutorials 

and reviews on LHD are provided in the literatures [74-76]. 

2.2.3. Optimal Latin Hypercube Designs 

A LHD has good projective property on any dimension. 

However, it can’t guarantee the good space-filling property. 

Meanwhile, it may even result in poor space-filling as the 

permutation of LHD is random selected. The extreme case 
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shown in Figure 5(b) performs the poor space-filling where all 

points are distributed along the main diagonal. An 

experimental design with poor space-filling will lead to 

redundant sample points as well as increasing the 

computational expense. To extract as more information from 

the unknown expensive function with minimum number of 

experimental trails as possible, the promising optimal Latin 

hypercube designs have been developed depending on a 

certain optimal criterion like Maximin criterion, i.e. the 

evaluation points are chosen in such a way that the minimal 

separation distance among any pair of points is maximized. 

Other optimal criteria such as Minimax criterion, Entropy 

criterion, Centered L2 discrepancy criterion are also popularly 

used [20]. Obviously, a maximin LHD illustrated in Figure 5(c) 

is significantly superior than that in Figure 5(a) and Figure 

5(b). 

OLHD has been widely studied and employed in SBGO. 

Zhu et al. [77] propose a novel maximin Latin hypercube 

design using successive local enumeration method. 

Afterwards, Zhu et al.
 
[40] develop an efficient heuristic 

surrogate-based global optimization method combining 

successive local enumeration method and adaptive RBF. 

Gilkeson et al. [78] present an optimization study of the design 

of small livestock trailers depending on an optimal LHD. [79] 

Dong et al. [17] use ESE algorithm to generate optimal 

experimental points over the entire design space in MSSR. 

 

Figure 5. Latin hypercube designs with 10 points in 2 dimensions. 

3. Surrogate Modeling Techniques 

After determining a suitable design of experiments method 

and executing the necessary numerical simulations, the next 

step is to construct a surrogate model to replace the 

computationally intensive simulations and analyses model. It 

can provide a better insight into the expensive black-box 

optimization problems through visualizing the interactions 

among objective functions, constraints and design variables as 

a fast analysis tool. For all surrogate modeling techniques, the 

relationship between the real response y and the prediction 

response yɶ  is 

( ) ( ) ( )x x xy y ε= +ɶ              (1) 

where x indicates the design variable, ε  is the approximate 

error. 

Various surrogate modeling techniques have been 

developed for handling the expensive black-box optimization 

problems. However, these approaches are appropriate to deal 

with the different unknown problems due to the different 

characteristic such as accuracy, efficiency, simplicity, 

robustness and transparency [23]. An overview of several 

popularly used surrogate modeling techniques including 

single surrogate models and ensemble of surrogates is offered. 

3.1. Single Surrogate Models 

Many alternative single surrogate models exist, here three 

well-known methods including PRS, RBF and KRG are 

introduced in this section. 

3.1.1. Polynomial Response Surfaces 

PRS also called Response Surface Methods (RSM) have 

been widely used in engineering over several decades. It’s first 

introduced and further applied by Box and Draper [80]. The 

general form of PRS model is a polynomial of degree d: 

( ) 2
0 , ,...,

i

x d
i i ij i j ii i ijk i j k i i i i

i j i i i j i k j i

y x x x x x x x xβ β β β β β
> > >

= + + + + +∑ ∑∑ ∑ ∑∑∑ ∑ɶ
              (2) 

where 0 j , ,...,, , , , ,...,i i ii ijk i i iβ β β β β β
 are the unknown 

coefficients, d indicates the order of model. The performance 

of PRS is largely relying on the value of order d. The high 

order PRS may probably yield more accurate approximation 

by allowing more degrees of freedom, but also suffer from the 

danger of over fitting any noise [11, 81]. In practice, the low 

order PRS including the first and second order polynomials 

formulated in Eq. (3) and (4) are commonly used as the 

approximate models 

( ) 0

1

x

n

i i

i

y xβ β
=

= +∑ɶ              (3) 

( )
1

2
0

1 1 1 1

x

n n n n

i i ii i ij i j

i i i j i

y x x x xβ β β β
−

= = = = +

= + + +∑ ∑ ∑∑ɶ     (4) 
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where n indicates the number of design variables, the 

unknown coefficients in Eq. (2), (3) and (4) can be determined 

by least squares estimation. 

Polynomial response surfaces can be simply built, and its 

smoothing capability allows fast convergence of noisy 

functions during the search. But, it’s unsuitable for solving the 

highly nonlinear, high-dimensional or multi-modal problems. 

Wang [82] presents a global optimization approach combing 

PRS and inherited LHD to solve the computation-intensive 

design problems. Vafaeesefat [83] adopt an adaptive PRS to 

optimize composite pressure vessels with metallic liners. Ye et 

al. [84] propose a novel surrogate-based optimization method 

combing PRS and Maxwell finite element for the inductive 

angle sensor design. Recent advances and applications on PRS 

are developed in the research [85, 86]. 

3.1.2. Radial Basis Functions 

RBF is originally developed by Hardy [87] for the 

interpolation of the scattered multivariate data. It has been 

widely tested and improved since then, meanwhile many 

significant properties have been obtained. Mullur and Messac 

[88] propose a more flexible and efficient approximate model: 

extended radial basis functions combing radial and nonradial 

basis functions. Gutmann [89] introduces a radial basis 

functions method to find the global minimum of a continuous 

nonconvex function. Regis and Shoemaker [90] propose a 

stochastic radial basis function method for the global 

optimization of expensive functions. Yao et al. [91] present a 

novel surrogate-based global optimization approach which 

integrates a linear interpolation based RBF and a new hybrid 

infill strategy. 

RBF is a linear combinations of a radially symmetric 

function depending on the Euclidean distance between the 

sample point and predicted point. Given N points and their real 

response, the RBF model is formulated as: 

( ) ( )
1

x

N

i i

i

y λ φ
=

=∑ɶ x - x              (5) 

where xi is the vector of design variables at the ith point, λi is the 

coefficients of linear combinations, ix - x  indicates the 

Euclidean distances, φ  is a basis function. The most commonly 

used basis functions include Gaussian, Multiquadric and Cubic, 

etc. More discussions on RBF can be found in the research by 

Kitayama et al. [92] and Yao et al. [91]. 

3.1.3. Kriging 

The use of kriging in the context of the modeling and 

optimization starts with the excellent work by Sacks et al. [93]. 

It estimates the response values as a combination of a 

polynomial model plus departures of the form 

( ) ( ) ( )
1

x x x

m

i i

i

y f Zβ
=

= +∑ɶ            (6) 

where βi is the unknown coefficients, fi (x) represents the 

known polynomial function that is simply considered to be a 

constant in many cases. Z (x) is supposed to be a realization of 

a random process with mean zero and a nonzero covariance 

which can be expressed by 

( ) ( ) 2x , xi j
z ijCov Z Z Rσ  =

 
           (7) 

where 
2
zσ  is the process variance and Rij is the correlation 

between the ith and jth data points and the relevant correlation 

function is specified by the user. The introduction of common 

correlation functions can be found in the paper [94]. The 

popular Gaussian correlation is formulated as 

( ) ( )
2

1

x , x exp

n
ji j i

ij k k k

k

R R x xθ
=

 
 = = − − 
  
∑       (8) 

where θk indicate the unknown correlation parameters that can 

be achieved by maximizing the likelihood of the observed data. 

More details on KRG can be found in these researches 

[95-97]. KRG is flexible in capturing nonlinear behaviors due 

to the correlation functions which can be statistically tuned by 

the sample data. Moreover, it’s able to provide the estimation 

of the prediction error. Younis and Dong [98] develop a new 

SBGO approach called space exploration and unimodal region 

elimination to speed up the search by using KRG. Moreover, 

the newly proposed optimization algorithm MSSR utilizes the 

KRG model to increase search efficiency [17]. 

3.2. Ensemble of Surrogates 

Ensemble of surrogates that combines multiple surrogates 

via a specific weighting scheme is developed for reducing the 

prediction uncertainties. The ensemble model is expressed as 

( ) ( ) ( )
1

x x x

m

e i i

i

y yω
=

=∑ɶ ɶ              (9) 

where m is the number of individual surrogates, ( )xeyɶ  

indicates the predicted response by the ensemble of surrogates, 

( )xiyɶ  and ( )xiω  denote the predicted response and the 

corresponding weight factor of the ith surrogate, separately. 

Generally, the weights are smaller as the corresponding 

surrogates are less accurate and vice versa. For improving the 

overall accuracy, a variety of wise methods allocating 

different weights to different single surrogates have attracted 

plenty of attention. In this section, several noteworthy 

ensemble of surrogates about weights selection procedures 

proposed by various researchers are introduced in the order of 

their publications. 

3.2.1. Heuristic Computation of the Weights 

Goel et al. [31] consider that there are two issues related to 

the determination of weights: a) weights should reflect the 

confidence in the surrogates, b) weights should filter out 

adverse effects of the surrogates that represent the sample data 

well, but perform poorly in unexplored regions. To satisfy 
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these two issues, Goel et al. [31] propose a heuristic approach 

to calculate the weights using Prediction Sum of Squares 

(PRESS), which is formulated as follows: 

( )* * *

1 1

1
, , , 1 0

m m

i i j i i i

j i

E E E E
m

β
ω ω ω ω α α β

= =

= = + = < <∑ ∑                  (10) 

where Ei indicates the PRESS of the ith surrogate computed 

from 

( ) ( )( )
2

( )

1

1
= x x

N
k

i k i k

k

E y y
N

−

=

−∑ ɶ          (11) 

where N is the amount of training points, xk is the kth sample 

point, y (xk) indicates the actual response value at xk and 

( )( ) xk
i ky −
ɶ  represents the predicted response of the ith 

surrogate model built using N-1 training points without the kth 

point at xk (i.e., leave one out cross validation strategy). This 

parameters α and β are defined to separately control the 

importance of averaging and individual surrogate. Large 

values of α and small negative values of β represent the high 

confidence in the averaging scheme, while small values of α 

and large negative values of β reflect high weights to the best 

surrogate model. 

Goel et al. [31] suggest that α = 0.05 and β = -1 are better for 

most cases in their research. Nevertheless, the fixed values of 

these two parameters can not be available for all problems. On 

the contrary, the freedom of determining the parameters α and 

β provides the weighting selection method more flexibility. 

Acar and Rais-Rohani [32] recommend that two parameters α 

and β can be optimized for minimizing a certain global error 

metric of the ensemble. Motivated by this idea, the selection of 

weights is also treated as an optimization problem to minimize 

PRESS with a strict constraint by Ye and Pan [19]. 

3.2.2. Weights Selection Based on Local Error Metric 

Sanchez et al. [99] consider that using a local error metric 

may obtain more accurate predictions by allowing flexible 

weights over the whole design space than the use of a global 

error measure. A new ensemble of kernel-based surrogates 

under the alternative loss functions with weights based on the 

empirically estimated prediction variances is presented. The 

prediction variance is used as the local error metric. 

Meanwhile, the value of weight factor for individual surrogate 

model is set to be inversely proportional to an estimation of 

the prediction variance as 

( ) ( )
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             (12) 

where x indicates the prediction point, m is the amount of 

surrogate models, ( )2 xiσ  represents the prediction variance 

of the ith surrogate model which are calculated from the v 

nearest neighbors of the prediction point x. This empirical 

formula is given as 

( ) ( ) ( )( )22

1

1
x =

1

v

i h i h

h

y s y s
v -

σ
=

−∑ ɶ        (13) 

where s1, s2,..., sv mean the v nearest neighbors of the point x 

whose relevant real response and predicted response values of 

the ith surrogate model are y (s1), y (s2),..., y (sv) and ( )1 ,iy sɶ  

( ) ( )2 , ,i i vy s y sɶ ɶ⋯ , respectively. Here, v = 3 is advised by 

Sanchez et al. [99]. 

3.2.3. Weights Selection Based on Minimizing MSE 

Motivated by the work of Bishop [100], Acar and 

Rais-Rohani [32], Viana et al. [101] develop a new weights 

selection method by using minimizing Mean Square Error 

(MSE) as 

( )21
MSE x x ω Cω

T
en en

V
e d

V
= =∫         (14) 

where ( ) ( ) ( )x x xene y y= −
en
ɶ  means the prediction error of 

ensemble of surrogates. The integral taken over the domain of 

interest allows the computation of the elements in C 

( ) ( )1
x x xij i j

V
c e e d

V
= ∫            (15) 

where ei (x) and ej (x) represent the prediction errors of the ith 

and jth surrogate models, separately. 

The matrix C in Eq. (14) plays the same role as the 

covariance matrix in Bishop’s formulation. Here, it’s 

approximated by the use of the vectors of cross validation 

errors eɶ . Thus, the formulation of Eq. (15) will be modified 

as 

1
e e

T
ij i jc

N
= ɶ ɶ                (16) 

Given matrix C, the optimal values of weights can be 

achieved by minimizing MSE as 

ω
min MSE ω Cω

. . 1 ω 1

T
en

Ts t

=

=
             (17) 

The weight factors can be obtained by utilizing Lagrange 

multipliers as 

1

1

C 1
ω

1 C 1T

−

−=                  (18) 

where 1 is the identity matrix. It’s noticed that the values of 

weights may be smaller than zero as well as larger than one 
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whose meaning is unable to explain in real-world applications. 

Viana et al. [101] consider that this disadvantage will amplify 

the errors generating from the approximation of elements in 

matrix C and advise to solve Eq. (18) using only the diagonal 

elements in matrix C which are more accurate than the 

off-diagonal terms. 

4. Infill Criteria 

In general, SBGO can be categorized as one-stage and 

two-stage methods [81]. In the one-stage method, sample points 

are generated all at once, and then the interpolation of the 

response surface as well as the determination of the global 

optimum are completed in the same calculations. As no a priori 

knowledge about the black-box problem is available, it mainly 

leads to a waste of computational resources. Furthermore, it’s 

hard for researchers to determine the appropriate sample size 

beforehand. Different from the one-stage method, the two-stage 

method is more significant, tractable and attractive. The 

surrogate models are first built with the initial training points 

generated by DOE. Afterwards, new points are obtained over 

the design space using the infill criteria also named as adaptive 

designs or sequential designs [35]. The procedure is repeated 

until a convergence criterion or a termination criterion like the 

maximum number of function evaluations allowed is reached. 

The new points which are used to sequentially update the 

surrogate models and increase the probability of identifying the 

global minimum are evaluated from the expensive models, not 

that from the cheap surrogate models. One hand, this two-stage 

method can extract useful information from the approximate 

models and speed up the optimization process. On the other 

hand, it allows designers to stop the optimization process as 

soon as the satisfactory optimal solution is achieved [102]. The 

adaptive designs have gained popularity in recent years 

compared to the one-stage method. In this section, infill criteria 

are discussed. 

Infill criteria guide how new points are generated to support 

the surrogate modeling, design optimization and applications. 

The candidate points are obtained by sufficiently utilizing the 

information from the current optimization process. These 

supplementary points can offer much more information on the 

expensive black-box problem, and the more points we own, 

the more we know about the black-box problem. Infill criteria 

are generally employed for both surrogate modeling and 

surrogate-based global optimization. For surrogate modeling, 

it concentrates on continuously improving the accuracy of 

surrogate models. Moreover, it focuses on searching the global 

optimum for surrogate-based global optimization. 

Infill criteria can be also classified as exploitation and 

exploration as same as SBGO. The exploitation strategy 

directly takes the surrogate model replace the actual model as 

the objective function and considers the current optimal points 

as the new supplementary points. This pure exploitation 

strategy will rapidly converge to an optimal solution of the 

surrogate surface whereas it can’t be guaranteed to find the 

actual global optimum. In fact, only the sequential augment of 

optimal points may lead to the local optimum due to the lack 

of exploration [103]. On the contrary, the pure exploration 

strategy explores the unvisited or sparse regions for enhancing 

the global approximation and avoiding falling into the local 

optimum. However, it will be a waste of computational time to 

blindly enhance the global accuracy while the global optimum 

itself is just required. Only high accuracy in the potentially 

promising regions is required for SBGO. 

There are two requirements for surrogate-based global 

optimization that have to be satisfied: exploitation of the 

promising candidates and exploration of the sparse regions. 

The target is to identify the near global optimum and avoid 

missing the true global optimum within an affordable 

computational cost. In practice, infill criteria have a 

significant influence on efficiently and accurately locating the 

global optimum. Therefore, the infill criteria which combine 

exploitation and exploration strategy to balance their 

competing goals have been widely studied and advanced [91, 

92, 104]. Next, some representative infill criteria intended to 

promote exploration and exploitation are reviewed 

Jones et al. [34] develop a famous infill criterion named 

Expected Improvement (EI) which has been manipulated by 

many researchers for Gaussian process based global 

optimization. Additional points which have either high 

uncertainty or low objective function values are selected by EI. 

It can balance the requirements to exploit the approximate 

model with the need to improve the global approximation. 

This EI criterion is given as below 
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where ymin indicates the best point found so far, ( )xyɶ  means 

the predicated response at point x, Φ  and φ  represent the 

cumulative distribution and probability density function, 

separately. s2
 (x) indicates the estimated MSE of the surrogate 

model, which is formulated as 
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where 
σ

 is the covariance, 
ψ

 indicates the vector of 

correlation between the prediction data and observed data, Ψ  

represents the correlation matrix for all observed data 

provided by KRG correlation function. 

In EI criterion, the term 
( )min xy y- ɶ

 indicates the amount 

of possible improvement which is responsible for local 

accuracy of the surrogate model. Moreover, the term s
2

 (x) is 

related to the unvisited regions which is helpful for global 

exploration. In many situations, EI is confirmed to be a great 
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infill criterion for seeking the global optimum from a number 

of publications. Many modified EI including generalized 

expected improvement [105], weighted expected 

improvement [36] and quantile-based expected improvement 

[106] have shown well generality and performance for various 

engineering applications. Further studies have adapted EI to 

generate multiple update points, not a single point. 

Ginsbourger et al. [107] propose a multi-points expected 

improvement to take advantage of parallel computation 

facilities. Viana et al. select multi points at each iteration with 

the aid of expected improvement. Generating multiple points 

per optimization cycle and allowing distribution of the 

expensive function evaluations on several processors provides 

a large potential to accelerate the search process. 

Kitayama et al. [92] consider that it is important to 

simultaneously add the new sample points around: a) the 

optimum of the response surface and, b) the sparse region in 

the design space. Thus, they propose a new infill criterion that 

adding the optimal point of response surface in each cycle as 

the new sample point to meet the first objective and taking the 

global optimum of the density function as another additional 

point to satisfy the second objective. The aim of the density 

function is to discover a sparse region. It is expected that the 

addition of new sample points in the sparse region will lead to 

global approximation. The density function is applied to 

improve the accuracy of surrogates by Kitayama et al. [103] 

and Ye et al. [108]. Gu et al. [104] develop a new and adaptive 

sampling mechanism which selects new sample data 

adaptively based on the values evaluated by three well-known 

surrogate modeling techniques concurrently to improve the 

overall accuracy of the hybrid model and the efficiency of the 

global search. This infill criterion is widely adopted for SBGO 

[19, 109]. In addition, other heuristic infill criteria have also 

been investigated. Wang et al. [39] introduce a novel infill 

criterion that sample points with low values and high values, 

but have a non-zero probability are both preferred. Villanueva 

et al. [110] choose new points in the mall subspace which are 

partitioned by clustering method. Meanwhile, some optimal 

points are also selected to improve the local approximation. 

Dong et al. [17] take local optima of response surfaces for 

exploitation and use the estimated MSE to explore the 

unknown areas using KRG and design space reduction method. 

Müller and Shoemaker [111] introduce a random sampling 

strategy and a strategy where the minimum point of the 

response surface is used as new sample point for 

computationally expensive black-box global optimization 

problems. Amine et al. [112] propose a new infill criterion that 

incorporates minimizing the surrogate model while also 

maximizing the expected improvement criterion for 

high-dimensional constrained problems. 

5. Design Space Reduction 

A prominent challenge arises in surrogate-based global 

optimization while the expensive black- box system involves a 

large amount of design variables and a large size of design 

space. Despite the improved optimization algorithms and the 

advanced computation power, the continuously increased 

calculation burden still becomes a great challenge to the 

solution of the large-scale problem. The number of expensive 

function evaluations required to explore the design space is 

normally exponential to the number of input variables and the 

size of input spaces. For instance, considering an engineering 

design optimization problem involving 10 input variables 

whose bounds are both [0, 1]. If an interval value 0.5 is used 

for each variable, a design of experiments with 3
10

 samples 

that means plenty of expensive simulations are needed. 

Therefore, as an efficient branch to alleviate this challenge, the 

design space reduction method has been widely studied 

recently. Generally, two kinds of design space reduction 

schemes exist in the correlative literatures. The first strategy 

seeks to decrease the dimensionality of the design space 

through removing the unimportant variables. Another strategy 

is employed to reduce the size of the design space through 

identifying the small promising sub-region. Next, these two 

design space reduction methods are introduced in detail. 

5.1. Dimensionality Reduction Methods 

It’s known to all that the curse of dimensionality is a 

phenomenon as the design variables are so large that it may 

challenges numerical analysis technologies and optimum 

seeking technologies. Thus, regular methods are doomed to 

failure for solving the high-dimensional problems. An active 

method to deal with the high-dimensional spaces is to select 

smaller number of variables in place of the real variables 

known as dimensionality reduction. Dimensionality reduction 

methods have been increasingly employed in the fields of 

complex high-dimensional design problems as it can 

maximally keep the important features and eliminate the less 

significant or insignificant. 

As a dimensionality reduction method, global sensitivity 

analysis has been popularly applied for engineering design 

optimization. It can well compare the relative magnitude of 

the impact on each design variable on the output because the 

significant input variables possess the larger design sensitivity. 

Design variables with smaller sensitivity are identified and 

removed to decrease the number of design variables. To 

understand the concept, assume a square integrable objective 

function approximated by a surrogate model whose values are 

scaled between zero and one. It can be decomposed into 

summands of increasing dimensionality as [11] 

( ) ( ) ( ) ( )0 1,2, , 1 2x , , , ,i i ij i j n n

i i j

f f f x f x x f x x x

<

= + + + +∑ ∑ ⋯
⋯ ⋯

                      (21) 

where n is the amount of design parameters, f0 indicates the 

zeroth order component function which indicates the mean 

effect to f (x). Likewise, fi (xi), fij (xi, xj) and f1, 2,..., n (x1, x2,..., xn) 

represent the first order, second order and nth order effects to f 

(x), respectively. Besides, the total variance D and the partial 

variances can be estimated as 
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The partial variances provide a measure of the contribution 

of each individual parameter. Moreover, the total variance is a 

sum of partial variances of the independent parameters and 

combinations of parameters. 

The individual sensitivity index which indicates the impact 

of an input variable to a function variability is expressed as 

1 1, , , ,=
s si i i iS D D

⋯ ⋯                (23) 

Indexs 
1, , si iS
⋯  contain first order and higher order indices 

that offer the effect of individual variable and other possible 

mixed influence of various variables [113]. The relative 

importance of a certain input variable can also be quantified 

by the total sensitivity index except individual sensitivity 

index whereas the total sensitivity index for the ith input 

variable is defined as the sum of all partial sensitivity indices 

involving parameter i, divided by the total variance as 
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The detail introduction can be found in the literature [113]. 

The individual sensitivity index refers to the fraction of the 

total variance, while the total sensitivity index indicates the 

contribution of all partial variance. 

The relative importance of each design variable can be 

observed by comparing either their individual sensitivity 

index or total sensitivity index. In addition, the difference 

between the individual sensitivity and total sensitivity for each 

variable also provides an indication of the degree of 

interaction among variables. The design variables with less 

importance and interaction can be removed to reduce the 

computational cost. Fu et al. [114] investigate the use of global 

sensitivity analysis as a screening tool for reducing the 

computational burden for rehabilitation of water distribution 

systems. Marrel et al. [115] use the global sensitivity analysis 

to quantify the effect of uncertain design parameters on the 

variability in stochastic computer models with joint 

metamodels. Recent advances on various global sensitivity 

analysis approaches are provided by Iooss and Lemaître [116]. 

It’s noted that the history of using dimensionality reduction 

in design optimization can trace back to several decades ago. 

Dimensionality reduction methods like global sensitivity 

analysis, Principal Component Analysis (PCA), Analysis of 

Variances (ANOVA) and mapping etc., have long been used in 

various science and engineering disciplines as a preprocessing 

step for handling high-dimensional data. PCA can transform 

data to a new coordinate system by data projection so that the 

design variables with greatest variances in the projection come 

to the principal coordinates. Raghavan et al. [117] use PCA 

and diffuse approximation method in place of the 

geometry-based variables with the smallest set of variables 

originally required for structural shape optimization. ANOVA 

is a collection of statistical models applied to analyze the 

differences among groups and their associated procedures. 

Zhang et al. [118] develop an efficient ANOVA-based 

stochastic circuit systems simulator to avoid the curse of 

dimensionality. For reducing the amount of dimensions, 

mapping transforms a group of correlated parameters into a 

smaller group of new uncorrelated parameters for retaining 

most of the primary information. Qiu et al. [119] propose a 

multi-stage design space reduction method using the fuzzy 

clustering strategy and mapping technology to improve the 

modeling accuracy and optimization efficiency. Furthermore, 

Shan and Wang [43] introduce some strategies for tackling the 

difficulties caused by high dimensionality. 

5.2. Size Reduction Methods 

Despite the dimensionality reduction methods have been 

tried to enhance capability of SBGO for 

computation-intensive high-dimensional optimization 

problems, it’s still rather hard to precisely identify the 

insignificant variables, especially for MOO and MDO 

problems. Alternatively, more and more researchers turn to 

reduce the size of design space while the dimensionality is 

difficult to reduce. At the first stage of defining a real-word 

application, researchers are used to offer very conservative 

upper and lower bounds for design variables due to the lack of 

sufficient knowledge on the function behavior and interactions 

between the objective and constraint functions. The combined 

range of each variable dictates the size of design space and a 

broad range of input variables results in a large size of design 

space, limiting the application of SBGO, greatly. 

Size reduction means shrinking a design space so that the 

focus of modeling can be in a small attractive region. A 

common size reduction method begins with generating a 

smaller amount of points and its response surface values. Then 

the size of design space is adaptively changed depending on 

the feedback information from these known expensive points. 

Thus, the efficiency of finding and quality of the global 

optimum will be increased by exploring an interested 

subspace. In the context of this kind of design space reduction, 

several methods have been reported. Among them, FCM has 

been diffusely used in many publications. Given the number 

of cluster c, the overall dissimilarity between each cluster 

center and each data point can be given as 
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where U is the fuzzy c-partition matrix of N data points xk (k = 

1, 2…, N, x ∈ �), v = (v1, v2,…, vc), vi is the ith cluster center, 1 

≤ i ≤ c, t is a constant greater than 1 (typically t = 2), uik is the 

degree of the membership of the kth data in the ith cluster. 

FCM is broadly applied to achieve the promising reduced 
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space due to its robustness, convenience and simplicity. 

Wang et al. [120] present a surrogate-based optimization 

method using multi-level fuzzy clustering space reduction 

strategy with KRG interpolation for expensive black-box 

optimization problems. Ye and Pan [41] propose an 

ensemble of surrogate-based optimization method 

integrating with FCM to deal with the computation-intensive, 

black-box optimization problems. Shi et al. [121] introduce a 

new approximate optimization method that uses RBF to 

approximate the expensive simulations in an interesting 

subspace obtained by FCM method for improving the 

efficiency and convergence. 

Many size reduction methods like rough set and trust region 

are also frequently used in design optimization, except fuzzy 

clustering methods. Rough set theory seeking to synthesize 

approximation of concepts from the acquired data is 

developed by Pawlak [122] in the early 1980s. Shan and Wang 

[123] first introduce the rough set into the mechanical design 

area to systematically identify attractive reduced regions. Chu 

et al. [124] develop an expert system using rough set theory 

and self-organizing maps to guide researchers to partition and 

reduce the design space. Trust region is a term used in 

mathematical optimization to denote the subset of the region 

of the objective function. Farias et al. [125] introduce a trust 

region based framework employed to adaptively update the 

design space to solve optimization problems of fluid-structure 

interaction. Ollar et al. [126] present a novel method to solve 

multidisciplinary design optimization problems using 

approximations built in subspaces obtained by trust region. 

Eason [127] propose a novel trust region filter algorithm for 

black box optimization, which is both robust to lack of 

derivatives in some constraints while also taking advantage of 

equation oriented constraints. Conn et al. [128] address 

trust-region methods for unconstrained derivative-free 

optimization. These methods maintain linear or quadratic 

models which are based only on the objective function values 

computed at sample points. Wild and Shoemaker [129] 

introduce and analyze the first-order derivative-free 

trust-region algorithms based on RBF, which are globally 

convergent. Gratton and Vicente [130] present a surrogate 

management framework using rigorous trust-region steps. 

6. Future Challenges and Research 

Though extensive and intensive research on surrogate 

modeling and surrogate-based global optimization has been 

implemented and achieved considerable advances over the 

past decade, some major challenges remain to be addressed. 

Challenges of expensive black-box optimization problems 

come from several main aspects: (1) large-scale problems, 

which imply a huge number of design variables or a large size 

of design spaces, (2) unknown function characteristics, that 

mean no prior information about the characteristics of the 

black-box functions, (3) intelligent sampling designs, that 

signify a minimum number of sample points intelligently 

generated to describe the black-box function, and (4) various 

optimization needs, which contain dynamic optimization, 

combinatorial optimization, probabilistic optimization, 

multi-objective optimization and so on. Following future 

challenges and research directions are discussed to trigger 

more promising efforts. 

6.1. Large-Scale Problems 

It’s basically recognized that the total high computation 

expense for large-scale problems makes the SBGO methods 

less attractive or even impractical. Much work should be 

carried out while large-scale problems have just gotten more 

complex. However, there seems to be a lack of research on 

large-scale problems and a lot of difficulties or challenges 

haven’t been worked out. For instance, which kind of 

surrogate models or sampling designs best fit the large-scale 

problems. Moreover, what strategies can efficiently facilitate 

the optimization process and further increase efficiency. Is the 

design space reduction approaches always work? It is 

expected that SBGO methods can be expediently adapted to 

more complicated large-scale optimization problems and 

obtain more benefits in improving computational accuracy 

and optimization efficiency. 

Although a mass of design space reduction methods 

contribute to identify smaller promising regions, a variety of 

excellent approaches or techniques are required to face with 

this large-scale challenge. For example, surrogate modeling 

techniques used at present like PRS, RBF and KRG are all 

unsatisfactory for large-scale problems and various model 

types are needed, especially for large-scale problems. 

Furthermore, parallel computing techniques can also be used 

to decompose the main computation task into independent 

tasks at each iteration for speeding up the algorithms. 

6.2. Unknown Functions Characteristics 

In order to precisely approximate the expensive black-box 

problems, a deep understanding of the unknown functions is 

felt necessary. Nevertheless, the characteristics are unknown 

for most of engineering design optimization problems. For 

instance, what are the characteristics of a large-scale problem? 

Recent researches turn to focus on developing more flexible 

and generic SBGO methods. Many types of surrogate 

modeling techniques including multi-level, variable fidelity 

and ensemble of surrogates etc., have been employed to 

increase the overall performance. It offers a more efficient 

way for researchers with no need for deep knowledge on 

surrogate modeling techniques and sampling designs as well 

as the prior information on characteristics of the unknown 

functions. 

Even if researchers have a priori knowledge on the 

expensive black-box problems, how to better categorize, 

represent and take advantage of this knowledge. Gradient 

information as well as the curvatures information is suggested 

to utilize for potentially reducing resource cost and leading to 

better accuracy. In addition, suitable convergence criteria are 

also necessary to further advance the quality of global optima 

and reduce the computational time due to the unknown 

characteristics. 
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6.3. Intelligent Sampling Designs 

Current sampling schemes for SBGO methods concentrate 

on the initial sampling designs and adaptive sampling 

designs for purpose of achieving certain sample points. On 

the one hand, initial sampling designs mainly seek for the 

points with both good projective properties and space filling 

properties. However, it’s difficult to meet these two 

requirements for high-dimensional problems. For example, 

LHD suffers from the curse of dimensionality as any other 

space-filling DOE that the sample normally creates a 

vacuum in the center of design space while uniformity in 

each dimension is preserved. Besides, the best initial 

sampling size remains to be a mystery that has a large effect 

on the efficiency and accuracy of surrogate modeling process. 

The distribution of the initial sample points becomes less 

important without knowing the best sampling size. On the 

other hand, the adaptive sampling designs have gradually 

displaced the initial sampling designs in terms of reflecting 

the black-box function characteristics. Though there are lots 

of approaches on adaptive sampling designs as reported 

before, more intelligent sampling designs are required to 

further improve the SBGO methods. 

6.4. Various Optimization Needs 

Various optimization needs including multi-objective 

optimization for meeting multiple design objectives, 

probabilistic optimization when uncertainties of design 

variables are considered, dynamic optimization which is 

time-varying, and multidisciplinary design optimization 

where coupling between different disciplines is present have 

their own challenges, combinatorial optimization where the 

discrete variables are considered, stochastic optimization 

where the input information into the optimization method may 

be contaminated with noise. Therefore, the subtle differences 

between each type of optimization needs should deserve 

enough attention. There is much work to do in spite of various 

SBGO methods have been intensively applied to deal with 

various optimization needs involve expensive computation. In 

the case of dynamic optimization, the surrogate models must 

be updated online. It may be beneficial to introduce 

incremental online learning techniques for dynamic 

optimization. Therefore, new innovative SBGO methods 

should be created to satisfy various optimization needs in the 

future. 

7. Conclusions 

This paper provides an overview of recent advances in 

surrogate-based global optimization methods for expensive 

black-box problems. Research and advancement in SBGO are 

divided into five topics depending on the role of surrogate 

modeling techniques in supporting design optimization, 

including design of experiments, surrogate modeling 

techniques, infill criteria and design space reduction. Future 

challenges and research are also discussed. The primary issues 

reviewed are summarized as follows: 

Design of experiments including three typical designs of 

physical experiments methods and three well-known design of 

computer experiments methods are introduced. 

Surrogate modeling techniques containing three 

representative single surrogate models containing PRS, RBF, 

KRG, and three popular ensembles of surrogates are 

presented. 

Infill criteria which guide to generate new sample points for 

continuously improving the accuracy of surrogate models are 

discussed. 

Design space reduction that can be generally categorized 

into two types: dimensionality reduction methods and size 

reduction methods are reviewed. 

Future challenges and research on four main aspects 

including large-scale problems, unknown function 

characteristics, intelligent sampling designs and various 

optimization needs are discussed 

SBGO is an active area of research and has made substantial 

progress in handling engineering design optimization 

problems. It’s hoped that this work can help new engineers 

and researchers who are just beginning in this field. 

Meanwhile, it’s also expected that this work will help 

experienced engineers and researchers as a reference or 

inspiration for future work. 
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