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Abstract: The definition and application of software and hardware patterns have been a major and very positive development 

in the field of computer engineering, in tandem with the deployment of agile and process architecture methodologies. In this 

article, we show how five time-triggered, real time system patterns developed by Michael J. Pont can be effectively employed to 

architect a low power, low cost flight controller. We adopt and apply Pont’s powerful pattern language for our research. The 

target platform is an ultra-light aircraft with tight constraints on mass and volume of any control hardware. Ultra-light in this 

context means that the aircraft has only one seat; weighs less than 254 pounds (115 kg) empty weight; has a maximum fuel 

capacity of 5 U.S. gallons (19 L); and has a top speed of 55 knots (102 km/h; 63 mph) calibrated airspeed at full power in level 

flight. We utilize the reliable Infineon C515C microcontroller, a member of the classic 8051 family of controllers for the 

hardware platform. This research makes a contribution to the engineering cybernetic issues of human-machine interface and 

control of an ultra-light aircraft. 
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1. Introduction 

Frank Buschmann et al. point out that “when experts work 

on a particular problem, it is unusual for them to tackle it by 

inventing a new solution that is completely distinct from 

existing ones. They often recall a similar problem they have 

already solved, and reuse the essence of the solution to solve 

the new problem [1].” The Austrian-American architect, 

Christopher Wolfgang Alexander, is widely regarded as the 

father of the patterns movement. His theories about the nature 

of design have impacted fields beyond architecture, including 

urban design and computer engineering [2]. In the area of 

computing, patterns “capture existing, well-proven experience 

in software [and hardware] development and help to promote 

good design practice [3].” 

Design Patterns: Elements of Reusable Object-Oriented 

Software was and continues to be a major contribution to the 

field. The so-called “Gang of Four” authors captured a wealth 

of software engineering experience about the design of 

object-oriented software. They elegantly describe 

twenty-three patterns that allow software engineers to create 

extensible, sophisticated, and reusable designs [4]. As Ayat 

Mesut points out, design patterns increase the maintainability, 

reusability, and understandability of a system. They may also 

promote the “Open-Closed Principle,” i.e., software should be 

open for extension and closed for inappropriate modification 

[5]. 

In the specialized field of real-time embedded systems, 

Bruce Powel Douglass’ book, Real-Time Design Patterns: 

Robust Scalable Architecture for Real-Time Systems, is highly 

influential. He assists computer engineers with the task of 

identifying large-scale strategic decisions that affect most 

software elements, coordinating and organizing system 

components and subsystems, managing memory and 

resources, defining how objects can be distributed across 

multiple systems, and mapping subsystem and component 

architectures to underlying hardware. Michael J. Pont has also 
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made a very substantial contribution with his highly regarded 

book, Patterns for Time-Triggered Embedded Systems [6]. In 

this paper, we utilize a number of Pont’s patterns.  

A time-triggered computer system executes sets of tasks 

according to a pre-determined schedule. Such embedded 

systems typically involve the use of a single interrupt linked to 

the periodic overflow of a timer. The interrupt regulates a task 

scheduler—a simple real-time operating system. The 

scheduler initiates the tasks at predetermined time intervals. In 

contrast to event-triggered real-time systems, time-triggered 

systems offer a deterministic guarantee that all tasks will run 

and at their scheduled times. This level of reliability is, for 

example, often necessary in safety-critical systems such as 

biomedical devices and aerospace platforms. 

We utilize the following Pont patterns in our research; 

chapter references are to [6]. 

a) Co-operative Scheduler (Chapters 13, 14). 

b) One-Shot ADC (Chapter 32). 

c) Hardware PWM (Chapter 33). 

d) Naked LED (Chapter 7). 

e) MOSFET Driver (Chapter 7). 

Below, we first provide a system overview, then, using the 

Pont patterns, describe each of the components. We then 

describe our simulation environment, consider future work 

and limitations, and provide conclusions. 

2. System Overview 

In the USA, the definition of ultralight vehicles specifies an 

aircraft much smaller and lighter than the definition in many 

other countries. According to the Federal Aviation 

Administration (FAA), an ultralight: 

a) Has only one seat; 

b) If powered, it weighs less than 254 pounds (115 kg) 

empty weight, excluding floats and safety devices; 

c) Has a maximum fuel capacity of 5 U.S. gallons (19 L); 

and; 

d) Has a top speed of 55 knots (102 km/h; 63 mph) 

calibrated airspeed at full power in level flight [7]. 

The lightweight, low-power, low-cost computer control 

system we propose is developed with the C programming 

language for the reliable Infineon C515C microcontroller. The 

C515C is a member of the classic 8051 family of controllers. 

While it is backward compatible with any 8051 compliant 

code, it has many special features that are exploited in this 

project. The most important hardware features include: 

a) 4 channel pulse width modulation unit; 

b) 57 I/O lines; 

c) 3 timers/counters; 

d) 15 interrupts with 4 priority levels; 

e) 64 K ROM, 256 Bytes RAM, 2048 Bytes XRAM; and a 

f) CAN interface [8]. 

The MIT mathematician and engineer, Norbert Wiener, 

presciently identified a transdisciplinary approach in the 

mid-twentieth century for exploring regulatory systems—their 

structures, constraints, and possibilities. His cybernetic theory 

wisely emphasizes the importance of understanding and 

defining the functions and processes of systems involved in 

human-machine interactions where issues of communication, 

feedback, and control are non-trivial [9]. In this research, we 

strive to adhere to his principles and apply his insights. 

 

Figure 1. Level 0 Data Flow Diagram. 

The entire flight control system is controlled by a 

cooperative scheduler, providing a solution that is both 

predictable and flexible. The scheduler is responsible for 

executing four main tasks: rudder control, throttle control, 

radiation detection, and attack. These tasks are explained in 

the following sections, together with the patterns that facilitate 

their implementation. The application domain is general 

enough to be useful for law enforcement, border security, and 

national defense applications. It might also, with changes to 

the non-navigational modules, have other applications in, for 

example, search-and-rescue, or monitoring of extreme 

weather events. 

3. Scheduler Pattern 

There are many advantages to a cooperative, time-triggered 

scheduler over an interrupt driven, preemptive one. One arises 

from its reliability and software safety. The cooperative 

scheduler guarantees that all tasks will execute on time and for 

their complete duration. In the case of larger, more complex 

aerospace systems in which control surfaces may need to be 

updated many times per second to maintain stable flight, this 

predictability is necessary. The cooperative scheduler is also 

very efficient. Although it can be seen as another layer in the 

architecture, it is physically embedded within the rest of the 

code, and introduces very little overhead into the 

application—only seven bytes per task, or 28 bytes total. 

There are two important constraints to consider when 

determining the tick interval for a scheduler, task frequency 

and duration. In order to ensure that the dispatch function is 

able to call the required task, no task duration can exceed the 

tick interval. To minimize power consumption and 

computational overhead, the tick interval should be the 

greatest common factor up to and including the smallest of the 

task intervals [10]. However, as the table below indicates, task 

conflicts quickly arise. 
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Table 1. A sample set of task timings. 

Task Frequency (ms) Duration (ms) 

Rudder Control 25 10.0 

Throttle Control 50 5.0 

Radiation Detection 500 0.5 

Attack 750 1.0 

Every time that Throttle Control is scheduled to execute, so 

is Rudder Control. However, this problem is easily overcome 

by introducing staggered initial delays. For example, 

initializing Rudder Control with no delay and Throttle Control 

with a 1 ms delay solves that particular conflict. The delay 

process is continued for the other tasks. Therefore, the tick 

internal is now the GCF of the delays and frequencies, 1 ms. 

The cooperative scheduler pattern utilizes function pointers. 

Like most technologies, when used properly, they simplify the 

design. However, when not implemented properly, they can 

make debugging impossible. The fundamental concept behind 

function pointers is that functions can be called by jumping to 

the memory address that begins their implementation, and that 

the implementing function can be changed without changing 

code in the callee, only in function pointer initialization. 

The rest of the scheduler is a collection of functions 

supported by a common data structure. Below is the C 

framework for the Infineon class of controllers: 

Sch51.h. 

 

Figure 2. Representative Code for Sch51.C. 

Sch51.C instantiates the task array: sTask SCH_tasks_G 

[SCH_MAX_TASKS]; using the sTask type, with the constant indicating the 

maximum number of tasks. 

Pont’s design pattern calls for five functions to implement 

the required functionality in the scheduler. The first function 

called is the initialization routine, SCH_Init_T2(). The 

Infineon board provides 3 timers (0, 1, 2) but only timer 2 has 

auto-reload capability, so it will be used to drive the interrupt 

ticks. SCH_Init_T2() configures the data structures and 

initializes the system timer. The crystal oscillator is capable of 

running at 12 Mhz, although the application tasks only require 

an interrupt every 1 ms. It is appropriate to mention an 

important system safety feature implicit in this architecture; 

namely, there is only one interrupt source, the tick. External 

ports are read through polling. Additional interrupts would 

only serve to complicate schedulability and break the 

deterministic timing scheme. (If, however, the final schedule 

includes unused time intervals, i.e., slack, a polling 

mechanism could be added to poll at those times to, for 

example, turn off radiation detection and attack in response to 

hardware malfunction.) 

The timer overflow mentioned previously triggers the 

interrupt service routine, SCH_Update(). A conditional 

statement checks to see if a task is appointed to run and 

increments a RunMe flag if so. SCH_Update() does not 

actually run the task for reasons of reliability. In the scenario 

where a long task overruns the tick interval, ticks will be 

missed, and future tasks may not run at all. By creating a 

separating function to handle execution, no ticks will be 

missed, and the worst case scenario will only involve tasks run 

at the incorrect time, as opposed to not at all. The 

aforementioned execution function is referred to as the 

dispatcher, SCH_Dispatch_Tasks().  

Another important function is the add task subroutine, 

SCH_Add_Task (Task_Name, Initial_Delay, Period). This 

function adds tasks to the array, specifying their initial delay 

and period. For example, SCH_Add_Task (Update_Throttle, 

1, 5) adds the throttle control task to the scheduler. The time 

parameters are specified in tick units, not seconds. A zero in 

the second parameter indicates immediate execution such as 

for Update_Rudder and zero in the third parameter runs a task 

only once. SCH_Start (void) is a trivial function which sets a 

flag to begin the scheduling process [11]. 

 

Figure 3. Scheduler Overview. 

The scheduler controls the tasks shown above. 

4. Rudder Control 

The rudder control feature in the aircraft is effectuated by 

the use of a potentiometer [12] (One-Shot ADC pattern) and 
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pulse width modulation (Hardware PWM pattern) interfaced 

with a DC motor. Motor control is a discipline in itself, so only 

a simple control scheme is employed here to permit focus 

primarily on software architecture concerns. Fortunately, the 

C515C has a four channel PWM module included on the 

board. 

The pilot provides rudder input changes through a standard 

potentiometer. A potentiometer is a three terminal variable 

resistor with a knob controlling the middle pin. The knob on 

an old analog TV set is an example of such a device. 

 

Figure 4. Potentiometer. 

By arranging the potentiometer in the circuit specified 

above by the One-Shot ADC pattern, one can send the analog 

pilot input to the onboard ADC chip. The C515C uses a 10-bit, 

8 channel ADC to pipe the information to port 6. 

There are 9 possible rudder positions, so the digital value is 

converted to an integer ranging from 1 to 9. A value of 1 

represents the leftmost position (hard left), 5 the center 

(straight ahead), and 9 the rightmost position (hard right). At 

this point, the Hardware PWM pattern provides the rest of the 

solution. The PWM scheme is implemented by setting pin 1.1 

high for X time and low for Y time. The average voltage, Vavg, 

at the pin is what the motor detects as its input voltage. Vavg is 

defined by the duty cycle with period x+y as: 

100×
y+x

x
=cycle_Duty             (1) 

 

Figure 5. Pulse Width for Rudder Control. 

The rudder position which is now discretized as a value 

between 1 and 9 is translated into the appropriate x and y 

values. These values are determined experimentally by 

connecting a function generator to the motor and adjusting the 

period of the sinusoidal wave until the desired motor speed is 

achieved. Because the rudder position change is a small, quick 

movement, the PWM value should only be applied briefly, and 

then reset to 0. The PWM_Update (const tByte 

New_PWM_value) is called to set and reset the value [13]. 

5. Throttle Control 

Throttle control uses the same two patterns discussed above, 

but applies them in a slightly different manner. While the 

aircraft is operating, the throttle will always have a positive 

value, unlike the rudder signal, which is usually set to zero. A 

similar potentiometer configuration is used for the throttle 

input, and the values are converted to an integer ranging from 

0 to 25, with 0 being OFF and 25 being full throttle. In a model 

airplane implementation, a 20A DC motor is appropriate. 

Again, the duty cycle is determined empirically with a 

function generator. 

Calibrating the PWM module and initializing it properly is 

a non-trivial task. The PWM timer is based off of Timer 2 and 

incremented at 0.166 times (that is, approximately one-sixth) 

the crystal oscillator frequency. The timer must be 



 Software Engineering 2019; 7(3): 46-52 50 

 

incremented every 300ns to achieve the maximum frequency 

of 10Mhz. However, this application only requires frequencies 

in the mid-kilohertz range. 

6. Radiation Detection 

The goal of this task is to determine if the aircraft is being 

painted by electromagnetic radiation by an enemy radar, 

aircraft, or incoming missile. In this system, a photodiode is 

used to detect the radiation. Depending on the semiconductor 

materials used, photodiodes can detect radiation in the x-ray, 

ultra-violet (UV), visible, and infrared (IR) spectra [14]. 

The photodiode is connected to an input on the controller 

board. When it is exposed to radiation, a current is induced 

and a logical 1 is applied to the pin. The pin is checked 

whenever the radiation detection task is dispatched. A 

conditional statement will activate an onboard light emitting 

diode (LED) to advise the pilot that he has been painted by 

radiation if the photodiode is applying a voltage.  

The Naked LED pattern is used to properly configure the 

hardware for the LED warning system. This pattern indicates 

that a resistor in series with the LED is necessary to dissipate 

the applied voltage. The diode can likely only accept 2 V but 

the board applies 5 V. The wire connecting the pin and the 

LED would need to drop the remaining 3 V, thereby frying the 

port and potentially the entire board! The required resistance 

is obtained through applying Ohm’s Law: 

���� = (���	 − 	����)	/	
���        (2) 

A standard LED drops 2 V with 10 mA.  

Therefore R = 300 Ω [15].  

Importantly, the use of patterns and the design of both 

software and electronic components with replaceable or 

configurable elements allows reuse not only of the software, 

but potentially of much of the hardware as configuration 

parameters change. 

7. Attack 

The attack task is the pilot response to his aircraft being 

painted by radiation such as enemy radar. This could be 

anything from firing countermeasures, to activating jamming 

hardware, to launching an offensive weapon at the source. 

(The use of function pointers allows a switch between modes 

simply by changing the system configuration. However, a 

change when all modules are deployed is not contemplated in 

this design.) No matter which action the pilot takes, the 

response will require a large current source with high 

switching frequencies to drive the appropriate electronic 

device. The MOSFET Driver pattern provides a 

straightforward solution to this problem. 

MOSFET stands for metal oxide semiconductor field effect 

transistor. A standard n-channel device can switch currents 

over 100A. However, these modules require a 12V power 

supply to function, and the microcontroller runs on a 5V 

power supply. Pont’s pattern suggests the following circuit to 

reconcile these differences: 

 

Figure 6. MOSFET Driver Pattern Hardware Diagram. 

A level-shifter integrated circuit is inserted between the 

board and the rest of the system as an additional level of 

protection. The shifter is simply a series network of six 

inverting buffers. In high current environments, such safety 

mechanisms are necessary [16]. 

The pilot initiates this task by depressing a “push button” on 

the Infineon board. These four buttons are directly connected 

to input pins on the microcontroller. If an external button or 

dip switch were used instead, the switch interface pattern 

would be necessary to debounce the switch. The attack task 

periodically checks if the button is depressed, and activates the 

high current switch if appropriate. In order to prevent an 
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accidental attack, this task will not execute unless the radiation 

detection task has already set a flag indicating a battle 

condition. 

8. Simulation Environment 

The Microvision 2 tool set provides a very good simulation 

environment for embedded microcontrollers. When a project 

is first instantiated in the tool, the engineer selects from a long 

list of possible controllers that the application has information 

about. This information is necessary to emulate all of the 

proprietary, board specific hardware such as memory 

interfaces, registers, port counts, and other specialized 

components. 

The debugger tool provides a very useful feature for 

interfacing the controller with the outside world. A C based 

macro language exists which permits the engineer to specify 

the behavior of a signal on an input port. This feature was used 

to simulate the analog inputs to the aircraft controller. A code 

example is provided below: 

 

Figure 7. Representative example of simulator code. 

Without a graphical user interface or command line to 

receive instant feedback, it is difficult to follow the execution 

of an embedded program. However, the memory view window, 

register view window, and break-point features greatly assist 

the engineering team in finding bugs and fixing them. 

9. Future Work and Limitations 

An interesting expansion of the system could involve two 

independent microcontrollers connected by the Control Area 

Network (CAN) interface. The idea would be for one 

computer to accept pilot input and the other to directly control 

the mechanical effectors. CAN is a message-based 

communication system where each message can be up to eight 

bytes in length, achieving transmission rates up to 1 Mbit/s. A 

CAN configuration would designate one microcontroller as a 

master, and the other a worker. The scheduler running on the 

master would coordinate clock pulses and other low-level 

system activities for the network.  

A second possibility would be to use a second 

microcontroller as a backup in case of damage or hardware 

failure. Inputs including acknowledgments would be echoed 

to the second controller, which would take over on receipt of a 

signal from the pilot (or the master controller) or after not 

receiving a signal over two or more ticks. We would also like 

to consider alternatives for the radiation detection and attack 

modules to allow this system to be used for other missions 

such as search-and-rescue or weather event monitoring, and to 

determine what changes or additional patterns would be 

needed for such applications.  

An issue in the interceptor application lies in determining 

whether or not to attack. Clearly, sociopolitical concerns and 

context require human judgment. Communication access for 

the pilot may be terrain- or weather-dependent. Further, if 

threat identification is more complex than simple radiation 

detection and identification of friendly units, the application 

can be used only if the technical judgment can be made within 

a cycle. There are two reasons to think that the latter may not 

be a permanent, or practical restriction: first, processor speed 

and classification algorithms are both getting faster; second, 

the possibility exists for parallel processing of situation 

identification and classification over a small number of cycles. 

Also, the need to communicate resulting actions is not part of 

the application as described; rather, a separate system 

component will need to be added. 

This second issue also applies to wider applications. For 

those that are non-critical, probabilistic solutions will be 

acceptable; it makes sense to respond to a search-and-rescue 

situation if there is a 90% chance that help is needed. But the 

main issue with extending the approach lies in specifying, 

designing, and implementing the equivalents to the radiation 

detection and attack phases with time-constrained hardware or 

firmware implementations—although occasional timeouts can 

be tolerated on such applications. 

Finally, this technique has limited reach. First, it is 

applicable only to real-time/embedded systems applications 

with short cycles, preferably homogeneous or with minimal 

heterogeneity or conditional execution (except for go/no-go or 

execute/bypass decisions), and short, identifiable phases and 

deterministic components. Whether looping can be supported 

for incremental refinement of decisions needs to be 

investigated. 

Second, it is limited to applications in which the steps and 

their timings are well-understood, where incremental 

refinement can be achieved by tuning firmware—rather than, 

say, data-driven optimization, use of remote connections, or 

appeal to human judgment. Lastly, the application as 
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presented is localized, and it is unclear how it could be applied 

to either worker or master units in a distributed or coordinated 

system. 

10. Conclusion 

In this paper, we have shown how the use of real-time 

embedded system patterns can be combined with standard 

real-time and agile techniques to design a low-cost, low-power, 

reliable and configurable flight controller and much of its 

electronics, to support missions using ultra-light aircraft. 

While the application domain was aerospace, many of the 

architectural design principles can be extended into other 

domains, e.g., biomedical. It is our hope that this research 

further illustrates the importance of software and hardware 

patterns in computer engineering. There are nonetheless 

several limitations to this work: to the application as described, 

to its extension to other applications, and to its utility for 

software development. 
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