

Software Engineering
2019; 7(3): 46-52

http://www.sciencepublishinggroup.com/j/se

doi: 10.11648/j.se.20190703.11

ISSN: 2376-8029 (Print); ISSN: 2376-8037 (Online)

Towards a Pattern-Based System Architecture for a Low
Power, Low Cost Ultra-Light Aircraft Flight Controller

Joseph R. Laracy
1, 2, 3, *

, Thomas Marlowe
1

1Department of Mathematics and Computer Science, Seton Hall University, New Jersey, USA
2Department of Systematic Theology, Seton Hall University, New Jersey, USA
3Department of Catholic Studies, Seton Hall University, New Jersey, USA

Email address:

*Corresponding author

To cite this article:
Joseph R. Laracy, Thomas Marlowe. Towards a Pattern-Based System Architecture for a Low Power, Low Cost Ultra-Light Aircraft Flight

Controller. Software Engineering. Vol. 7, No. 3, 2019, pp. 46-52. doi: 10.11648/j.se.20190703.11

Received: June 24, 2019; Accepted: July 23, 2019; Published: August 15, 2019

Abstract: The definition and application of software and hardware patterns have been a major and very positive development

in the field of computer engineering, in tandem with the deployment of agile and process architecture methodologies. In this

article, we show how five time-triggered, real time system patterns developed by Michael J. Pont can be effectively employed to

architect a low power, low cost flight controller. We adopt and apply Pont’s powerful pattern language for our research. The

target platform is an ultra-light aircraft with tight constraints on mass and volume of any control hardware. Ultra-light in this

context means that the aircraft has only one seat; weighs less than 254 pounds (115 kg) empty weight; has a maximum fuel

capacity of 5 U.S. gallons (19 L); and has a top speed of 55 knots (102 km/h; 63 mph) calibrated airspeed at full power in level

flight. We utilize the reliable Infineon C515C microcontroller, a member of the classic 8051 family of controllers for the

hardware platform. This research makes a contribution to the engineering cybernetic issues of human-machine interface and

control of an ultra-light aircraft.

Keywords: Architectural Patterns, Embedded Systems, Flight Controls, Real Time Systems, Cybernetics

1. Introduction

Frank Buschmann et al. point out that “when experts work

on a particular problem, it is unusual for them to tackle it by

inventing a new solution that is completely distinct from

existing ones. They often recall a similar problem they have

already solved, and reuse the essence of the solution to solve

the new problem [1].” The Austrian-American architect,

Christopher Wolfgang Alexander, is widely regarded as the

father of the patterns movement. His theories about the nature

of design have impacted fields beyond architecture, including

urban design and computer engineering [2]. In the area of

computing, patterns “capture existing, well-proven experience

in software [and hardware] development and help to promote

good design practice [3].”

Design Patterns: Elements of Reusable Object-Oriented

Software was and continues to be a major contribution to the

field. The so-called “Gang of Four” authors captured a wealth

of software engineering experience about the design of

object-oriented software. They elegantly describe

twenty-three patterns that allow software engineers to create

extensible, sophisticated, and reusable designs [4]. As Ayat

Mesut points out, design patterns increase the maintainability,

reusability, and understandability of a system. They may also

promote the “Open-Closed Principle,” i.e., software should be

open for extension and closed for inappropriate modification

[5].

In the specialized field of real-time embedded systems,

Bruce Powel Douglass’ book, Real-Time Design Patterns:

Robust Scalable Architecture for Real-Time Systems, is highly

influential. He assists computer engineers with the task of

identifying large-scale strategic decisions that affect most

software elements, coordinating and organizing system

components and subsystems, managing memory and

resources, defining how objects can be distributed across

multiple systems, and mapping subsystem and component

architectures to underlying hardware. Michael J. Pont has also

47 Joseph R. Laracy and Thomas Marlowe: Towards a Pattern-Based System Architecture for a Low Power,

Low Cost Ultra-Light Aircraft Flight Controller

made a very substantial contribution with his highly regarded

book, Patterns for Time-Triggered Embedded Systems [6]. In

this paper, we utilize a number of Pont’s patterns.

A time-triggered computer system executes sets of tasks

according to a pre-determined schedule. Such embedded

systems typically involve the use of a single interrupt linked to

the periodic overflow of a timer. The interrupt regulates a task

scheduler—a simple real-time operating system. The

scheduler initiates the tasks at predetermined time intervals. In

contrast to event-triggered real-time systems, time-triggered

systems offer a deterministic guarantee that all tasks will run

and at their scheduled times. This level of reliability is, for

example, often necessary in safety-critical systems such as

biomedical devices and aerospace platforms.

We utilize the following Pont patterns in our research;

chapter references are to [6].

a) Co-operative Scheduler (Chapters 13, 14).

b) One-Shot ADC (Chapter 32).

c) Hardware PWM (Chapter 33).

d) Naked LED (Chapter 7).

e) MOSFET Driver (Chapter 7).

Below, we first provide a system overview, then, using the

Pont patterns, describe each of the components. We then

describe our simulation environment, consider future work

and limitations, and provide conclusions.

2. System Overview

In the USA, the definition of ultralight vehicles specifies an

aircraft much smaller and lighter than the definition in many

other countries. According to the Federal Aviation

Administration (FAA), an ultralight:

a) Has only one seat;

b) If powered, it weighs less than 254 pounds (115 kg)

empty weight, excluding floats and safety devices;

c) Has a maximum fuel capacity of 5 U.S. gallons (19 L);

and;

d) Has a top speed of 55 knots (102 km/h; 63 mph)

calibrated airspeed at full power in level flight [7].

The lightweight, low-power, low-cost computer control

system we propose is developed with the C programming

language for the reliable Infineon C515C microcontroller. The

C515C is a member of the classic 8051 family of controllers.

While it is backward compatible with any 8051 compliant

code, it has many special features that are exploited in this

project. The most important hardware features include:

a) 4 channel pulse width modulation unit;

b) 57 I/O lines;

c) 3 timers/counters;

d) 15 interrupts with 4 priority levels;

e) 64 K ROM, 256 Bytes RAM, 2048 Bytes XRAM; and a

f) CAN interface [8].

The MIT mathematician and engineer, Norbert Wiener,

presciently identified a transdisciplinary approach in the

mid-twentieth century for exploring regulatory systems—their

structures, constraints, and possibilities. His cybernetic theory

wisely emphasizes the importance of understanding and

defining the functions and processes of systems involved in

human-machine interactions where issues of communication,

feedback, and control are non-trivial [9]. In this research, we

strive to adhere to his principles and apply his insights.

Figure 1. Level 0 Data Flow Diagram.

The entire flight control system is controlled by a

cooperative scheduler, providing a solution that is both

predictable and flexible. The scheduler is responsible for

executing four main tasks: rudder control, throttle control,

radiation detection, and attack. These tasks are explained in

the following sections, together with the patterns that facilitate

their implementation. The application domain is general

enough to be useful for law enforcement, border security, and

national defense applications. It might also, with changes to

the non-navigational modules, have other applications in, for

example, search-and-rescue, or monitoring of extreme

weather events.

3. Scheduler Pattern

There are many advantages to a cooperative, time-triggered

scheduler over an interrupt driven, preemptive one. One arises

from its reliability and software safety. The cooperative

scheduler guarantees that all tasks will execute on time and for

their complete duration. In the case of larger, more complex

aerospace systems in which control surfaces may need to be

updated many times per second to maintain stable flight, this

predictability is necessary. The cooperative scheduler is also

very efficient. Although it can be seen as another layer in the

architecture, it is physically embedded within the rest of the

code, and introduces very little overhead into the

application—only seven bytes per task, or 28 bytes total.

There are two important constraints to consider when

determining the tick interval for a scheduler, task frequency

and duration. In order to ensure that the dispatch function is

able to call the required task, no task duration can exceed the

tick interval. To minimize power consumption and

computational overhead, the tick interval should be the

greatest common factor up to and including the smallest of the

task intervals [10]. However, as the table below indicates, task

conflicts quickly arise.

 Software Engineering 2019; 7(3): 46-52 48

Table 1. A sample set of task timings.

Task Frequency (ms) Duration (ms)

Rudder Control 25 10.0

Throttle Control 50 5.0

Radiation Detection 500 0.5

Attack 750 1.0

Every time that Throttle Control is scheduled to execute, so

is Rudder Control. However, this problem is easily overcome

by introducing staggered initial delays. For example,

initializing Rudder Control with no delay and Throttle Control

with a 1 ms delay solves that particular conflict. The delay

process is continued for the other tasks. Therefore, the tick

internal is now the GCF of the delays and frequencies, 1 ms.

The cooperative scheduler pattern utilizes function pointers.

Like most technologies, when used properly, they simplify the

design. However, when not implemented properly, they can

make debugging impossible. The fundamental concept behind

function pointers is that functions can be called by jumping to

the memory address that begins their implementation, and that

the implementing function can be changed without changing

code in the callee, only in function pointer initialization.

The rest of the scheduler is a collection of functions

supported by a common data structure. Below is the C

framework for the Infineon class of controllers:

Sch51.h.

Figure 2. Representative Code for Sch51.C.

Sch51.C instantiates the task array: sTask SCH_tasks_G

[SCH_MAX_TASKS]; using the sTask type, with the constant indicating the

maximum number of tasks.

Pont’s design pattern calls for five functions to implement

the required functionality in the scheduler. The first function

called is the initialization routine, SCH_Init_T2(). The

Infineon board provides 3 timers (0, 1, 2) but only timer 2 has

auto-reload capability, so it will be used to drive the interrupt

ticks. SCH_Init_T2() configures the data structures and

initializes the system timer. The crystal oscillator is capable of

running at 12 Mhz, although the application tasks only require

an interrupt every 1 ms. It is appropriate to mention an

important system safety feature implicit in this architecture;

namely, there is only one interrupt source, the tick. External

ports are read through polling. Additional interrupts would

only serve to complicate schedulability and break the

deterministic timing scheme. (If, however, the final schedule

includes unused time intervals, i.e., slack, a polling

mechanism could be added to poll at those times to, for

example, turn off radiation detection and attack in response to

hardware malfunction.)

The timer overflow mentioned previously triggers the

interrupt service routine, SCH_Update(). A conditional

statement checks to see if a task is appointed to run and

increments a RunMe flag if so. SCH_Update() does not

actually run the task for reasons of reliability. In the scenario

where a long task overruns the tick interval, ticks will be

missed, and future tasks may not run at all. By creating a

separating function to handle execution, no ticks will be

missed, and the worst case scenario will only involve tasks run

at the incorrect time, as opposed to not at all. The

aforementioned execution function is referred to as the

dispatcher, SCH_Dispatch_Tasks().

Another important function is the add task subroutine,

SCH_Add_Task (Task_Name, Initial_Delay, Period). This

function adds tasks to the array, specifying their initial delay

and period. For example, SCH_Add_Task (Update_Throttle,

1, 5) adds the throttle control task to the scheduler. The time

parameters are specified in tick units, not seconds. A zero in

the second parameter indicates immediate execution such as

for Update_Rudder and zero in the third parameter runs a task

only once. SCH_Start (void) is a trivial function which sets a

flag to begin the scheduling process [11].

Figure 3. Scheduler Overview.

The scheduler controls the tasks shown above.

4. Rudder Control

The rudder control feature in the aircraft is effectuated by

the use of a potentiometer [12] (One-Shot ADC pattern) and

49 Joseph R. Laracy and Thomas Marlowe: Towards a Pattern-Based System Architecture for a Low Power,

Low Cost Ultra-Light Aircraft Flight Controller

pulse width modulation (Hardware PWM pattern) interfaced

with a DC motor. Motor control is a discipline in itself, so only

a simple control scheme is employed here to permit focus

primarily on software architecture concerns. Fortunately, the

C515C has a four channel PWM module included on the

board.

The pilot provides rudder input changes through a standard

potentiometer. A potentiometer is a three terminal variable

resistor with a knob controlling the middle pin. The knob on

an old analog TV set is an example of such a device.

Figure 4. Potentiometer.

By arranging the potentiometer in the circuit specified

above by the One-Shot ADC pattern, one can send the analog

pilot input to the onboard ADC chip. The C515C uses a 10-bit,

8 channel ADC to pipe the information to port 6.

There are 9 possible rudder positions, so the digital value is

converted to an integer ranging from 1 to 9. A value of 1

represents the leftmost position (hard left), 5 the center

(straight ahead), and 9 the rightmost position (hard right). At

this point, the Hardware PWM pattern provides the rest of the

solution. The PWM scheme is implemented by setting pin 1.1

high for X time and low for Y time. The average voltage, Vavg,

at the pin is what the motor detects as its input voltage. Vavg is

defined by the duty cycle with period x+y as:

100×
y+x

x
=cycle_Duty (1)

Figure 5. Pulse Width for Rudder Control.

The rudder position which is now discretized as a value

between 1 and 9 is translated into the appropriate x and y

values. These values are determined experimentally by

connecting a function generator to the motor and adjusting the

period of the sinusoidal wave until the desired motor speed is

achieved. Because the rudder position change is a small, quick

movement, the PWM value should only be applied briefly, and

then reset to 0. The PWM_Update (const tByte

New_PWM_value) is called to set and reset the value [13].

5. Throttle Control

Throttle control uses the same two patterns discussed above,

but applies them in a slightly different manner. While the

aircraft is operating, the throttle will always have a positive

value, unlike the rudder signal, which is usually set to zero. A

similar potentiometer configuration is used for the throttle

input, and the values are converted to an integer ranging from

0 to 25, with 0 being OFF and 25 being full throttle. In a model

airplane implementation, a 20A DC motor is appropriate.

Again, the duty cycle is determined empirically with a

function generator.

Calibrating the PWM module and initializing it properly is

a non-trivial task. The PWM timer is based off of Timer 2 and

incremented at 0.166 times (that is, approximately one-sixth)

the crystal oscillator frequency. The timer must be

 Software Engineering 2019; 7(3): 46-52 50

incremented every 300ns to achieve the maximum frequency

of 10Mhz. However, this application only requires frequencies

in the mid-kilohertz range.

6. Radiation Detection

The goal of this task is to determine if the aircraft is being

painted by electromagnetic radiation by an enemy radar,

aircraft, or incoming missile. In this system, a photodiode is

used to detect the radiation. Depending on the semiconductor

materials used, photodiodes can detect radiation in the x-ray,

ultra-violet (UV), visible, and infrared (IR) spectra [14].

The photodiode is connected to an input on the controller

board. When it is exposed to radiation, a current is induced

and a logical 1 is applied to the pin. The pin is checked

whenever the radiation detection task is dispatched. A

conditional statement will activate an onboard light emitting

diode (LED) to advise the pilot that he has been painted by

radiation if the photodiode is applying a voltage.

The Naked LED pattern is used to properly configure the

hardware for the LED warning system. This pattern indicates

that a resistor in series with the LED is necessary to dissipate

the applied voltage. The diode can likely only accept 2 V but

the board applies 5 V. The wire connecting the pin and the

LED would need to drop the remaining 3 V, thereby frying the

port and potentially the entire board! The required resistance

is obtained through applying Ohm’s Law:

���� = (���	 − 	����)	/	
��� (2)

A standard LED drops 2 V with 10 mA.

Therefore R = 300 Ω [15].

Importantly, the use of patterns and the design of both

software and electronic components with replaceable or

configurable elements allows reuse not only of the software,

but potentially of much of the hardware as configuration

parameters change.

7. Attack

The attack task is the pilot response to his aircraft being

painted by radiation such as enemy radar. This could be

anything from firing countermeasures, to activating jamming

hardware, to launching an offensive weapon at the source.

(The use of function pointers allows a switch between modes

simply by changing the system configuration. However, a

change when all modules are deployed is not contemplated in

this design.) No matter which action the pilot takes, the

response will require a large current source with high

switching frequencies to drive the appropriate electronic

device. The MOSFET Driver pattern provides a

straightforward solution to this problem.

MOSFET stands for metal oxide semiconductor field effect

transistor. A standard n-channel device can switch currents

over 100A. However, these modules require a 12V power

supply to function, and the microcontroller runs on a 5V

power supply. Pont’s pattern suggests the following circuit to

reconcile these differences:

Figure 6. MOSFET Driver Pattern Hardware Diagram.

A level-shifter integrated circuit is inserted between the

board and the rest of the system as an additional level of

protection. The shifter is simply a series network of six

inverting buffers. In high current environments, such safety

mechanisms are necessary [16].

The pilot initiates this task by depressing a “push button” on

the Infineon board. These four buttons are directly connected

to input pins on the microcontroller. If an external button or

dip switch were used instead, the switch interface pattern

would be necessary to debounce the switch. The attack task

periodically checks if the button is depressed, and activates the

high current switch if appropriate. In order to prevent an

51 Joseph R. Laracy and Thomas Marlowe: Towards a Pattern-Based System Architecture for a Low Power,

Low Cost Ultra-Light Aircraft Flight Controller

accidental attack, this task will not execute unless the radiation

detection task has already set a flag indicating a battle

condition.

8. Simulation Environment

The Microvision 2 tool set provides a very good simulation

environment for embedded microcontrollers. When a project

is first instantiated in the tool, the engineer selects from a long

list of possible controllers that the application has information

about. This information is necessary to emulate all of the

proprietary, board specific hardware such as memory

interfaces, registers, port counts, and other specialized

components.

The debugger tool provides a very useful feature for

interfacing the controller with the outside world. A C based

macro language exists which permits the engineer to specify

the behavior of a signal on an input port. This feature was used

to simulate the analog inputs to the aircraft controller. A code

example is provided below:

Figure 7. Representative example of simulator code.

Without a graphical user interface or command line to

receive instant feedback, it is difficult to follow the execution

of an embedded program. However, the memory view window,

register view window, and break-point features greatly assist

the engineering team in finding bugs and fixing them.

9. Future Work and Limitations

An interesting expansion of the system could involve two

independent microcontrollers connected by the Control Area

Network (CAN) interface. The idea would be for one

computer to accept pilot input and the other to directly control

the mechanical effectors. CAN is a message-based

communication system where each message can be up to eight

bytes in length, achieving transmission rates up to 1 Mbit/s. A

CAN configuration would designate one microcontroller as a

master, and the other a worker. The scheduler running on the

master would coordinate clock pulses and other low-level

system activities for the network.

A second possibility would be to use a second

microcontroller as a backup in case of damage or hardware

failure. Inputs including acknowledgments would be echoed

to the second controller, which would take over on receipt of a

signal from the pilot (or the master controller) or after not

receiving a signal over two or more ticks. We would also like

to consider alternatives for the radiation detection and attack

modules to allow this system to be used for other missions

such as search-and-rescue or weather event monitoring, and to

determine what changes or additional patterns would be

needed for such applications.

An issue in the interceptor application lies in determining

whether or not to attack. Clearly, sociopolitical concerns and

context require human judgment. Communication access for

the pilot may be terrain- or weather-dependent. Further, if

threat identification is more complex than simple radiation

detection and identification of friendly units, the application

can be used only if the technical judgment can be made within

a cycle. There are two reasons to think that the latter may not

be a permanent, or practical restriction: first, processor speed

and classification algorithms are both getting faster; second,

the possibility exists for parallel processing of situation

identification and classification over a small number of cycles.

Also, the need to communicate resulting actions is not part of

the application as described; rather, a separate system

component will need to be added.

This second issue also applies to wider applications. For

those that are non-critical, probabilistic solutions will be

acceptable; it makes sense to respond to a search-and-rescue

situation if there is a 90% chance that help is needed. But the

main issue with extending the approach lies in specifying,

designing, and implementing the equivalents to the radiation

detection and attack phases with time-constrained hardware or

firmware implementations—although occasional timeouts can

be tolerated on such applications.

Finally, this technique has limited reach. First, it is

applicable only to real-time/embedded systems applications

with short cycles, preferably homogeneous or with minimal

heterogeneity or conditional execution (except for go/no-go or

execute/bypass decisions), and short, identifiable phases and

deterministic components. Whether looping can be supported

for incremental refinement of decisions needs to be

investigated.

Second, it is limited to applications in which the steps and

their timings are well-understood, where incremental

refinement can be achieved by tuning firmware—rather than,

say, data-driven optimization, use of remote connections, or

appeal to human judgment. Lastly, the application as

 Software Engineering 2019; 7(3): 46-52 52

presented is localized, and it is unclear how it could be applied

to either worker or master units in a distributed or coordinated

system.

10. Conclusion

In this paper, we have shown how the use of real-time

embedded system patterns can be combined with standard

real-time and agile techniques to design a low-cost, low-power,

reliable and configurable flight controller and much of its

electronics, to support missions using ultra-light aircraft.

While the application domain was aerospace, many of the

architectural design principles can be extended into other

domains, e.g., biomedical. It is our hope that this research

further illustrates the importance of software and hardware

patterns in computer engineering. There are nonetheless

several limitations to this work: to the application as described,

to its extension to other applications, and to its utility for

software development.

References

[1] F. Buschmann et al., Pattern-Oriented Software Architecture: A
System of Patterns, vol. 1 (New York: Wiley, 1996), 2.

[2] See C. Alexander, Notes on the Synthesis of Form (Cambridge,
MA: Harvard University Press, 1964); C. Alexander et al., A
Pattern Language: Towns, Buildings, Construction (New York:
Oxford University Press, 1977).

[3] Buschmann et al., Pattern-Oriented Software Architecture
Volume 1, 1:1.

[4] E. Gamma et al., Design Patterns: Elements of Reusable
Object-Oriented Software (Reading, MA: Addison-Wesley
Professional, 1994).

[5] Ayat Mesut, “Effect of Some Software Design Patterns on Real
Time Software Performance” (Master of Science, Middle East
Technical University, 2010), 1.

[6] M. Pont, Patterns for Time-Triggered Embedded Systems:
Building Reliable Applications with the 8051 Family of
Microcontrollers (New York: Addison-Wesley, 2001).

[7] E-CFR: TITLE 14—Aeronautics and Space, Electronic Code of
Federal Regulations, vol. TITLE 14—Aeronautics and Space,

accessed May 2, 2019,
https://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title14/
14cfr103_main_02.tpl.

[8] Pont, Patterns for Time-Triggered Embedded Systems, 30.

[9] Norbert Wiener, Cybernetics, or Control and Communication
in the Animal and the Machine, 2nd ed. (Cambridge: The MIT
Press, 1965).

[10] Pont, Patterns for Time-Triggered Embedded Systems, 255–
296.

[11] Pont, Patterns for Time-Triggered Embedded Systems, 254–
296.

[12] Pont, Patterns for Time-Triggered Embedded Systems, 757–
756.

[13] Pont, Patterns for Time-Triggered Embedded Systems, 807–
839.

[14] According to the IEEE specifications, “photodiodes are a
two-electrode, radiation-sensitive junction formed in a
semiconductor material in which the reverse current varies with
illumination. Photodiodes are used for the detection of optical
power and for the conversion of optical power to electrical
power. Photodiodes can be PN, PIN, or avalanche. PN
photodiodes feature a two-electrode, radiation-sensitive PN
junction formed in a semiconductor material in which the
reverse current varies with illumination. PIN photodiodes are
diodes with a large intrinsic region sandwiched between
P-doped and N-doped semiconducting regions. Photons
absorbed in this region create electron-hole pairs that are then
separated by an electric field, thus generating an electric
current in a load circuit. Avalanche photodiodes are devices
that utilize avalanche multiplication of photocurrent by means
of hole-electrons created by absorbed photons. When the
device's reverse-bias voltage nears breakdown level, the
hole-electron pairs collide with ions to create additional
hole-electron pairs, thus achieving a signal gain.” “Photodiodes
Information,” IEEE GlobalSpec Engineering 360, accessed
April 29, 2019,
https://www.globalspec.com/learnmore/optics_optical_compo
nents/optoelectronics/photodiodes.

[15] Pont, Patterns for Time-Triggered Embedded Systems, 110–
114.

[16] Pont, Patterns for Time-Triggered Embedded Systems, 139–
143.

