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Abstract: This research investigated the reliability of a newly designed steel roof truss system of an industrial building to be 

constructed in one of the major cities in Nigeria. The probabilistic analysis technique was done with the aid of CalREL, a 

general-purpose structural reliability analysis software program. The longest span truss element (consisting of 73 members), is 

the most critical in the system, was selected and first analysed using SAP2000 Advanced 12.0.0 finite element analysis (FEA) 

software program in order to obtain the forces in the steel truss members; this forms part of the inputs required in CalREL. 

Four load variations (referred to as load ratios in the study) were tested on the selected truss. The strengths of the truss 

members and other properties were determined as specified in BS 5950-1: 2000. Limit state equations were derived for the 

calculation of the probability of failure of the individual members of the truss system. A reliability index as a measure of 

structural performance and related to the probability of failure was developed for all the elements of the truss. The results 

showed that compression members displayed a noticeable violation of the ultimate limit state requirement, while tension 

members showed a negligible violation. Sensitivity factors that reflect the relative importance of the individual variables in the 

design of roof trusses were also presented. The estimated reliability indices also revealed structural members that require 

immediate redesign; though they appear satisfactory in the level of deterministic design. A probabilistic approach for the 

reappraisal of new and existing civil structures is well supported by the findings of this investigation. 
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1. Introduction 

Trusses, in general, are triangular frameworks in which the 

members are subjected to essentially axial forces due to 

externally applied loads. The axial forces can either be 

tension or compression. They may be plane trusses, wherein 

the external load and the members lie in the same plane or 

space trusses, in which members are oriented in three 

dimensions in space and loads may also act in any direction. 

Steel members subjected to axial forces are generally more 

efficient than members in flexure since the cross section is 

nearly uniformly stressed [1]. Steel trusses are extensively 

used to span long lengths in the place of solid web girders. 

They are used in roofs of single storey industrial buildings 

(the focus of this research), long span floors, and roofs of 

multi-storey buildings, to resist gravity loads. They are also 

used in multi-storey buildings and walls and horizontal 

planes of industrial buildings to resist lateral loads and give 

lateral stability. Trusses are also used in long span bridges to 

carry gravity and lateral loads. Trusses act like deep beams - 

a beam becomes stronger and stiffer as its depth increases. 

However, when a deep beam carries a light load over a long 

span, a lot of material may be wasted supporting 

predominantly the self-weight of the beam [2].  

Loads are generally assumed to be applied at the 

intersection point of the members, so that they are principally 

subjected to direct stresses. To simplify the analysis, the 

weights of the truss members are assumed to be apportioned 

to the top and bottom chord panel points and the truss 

members are assumed to be pinned at their ends. Normally, 

chords are continuous and the connections are either welded 

or contain multiple bolts; such joints tend to restrict relative 

rotations of the members at the nodes and end moments 

develop [3]. However, in light building trusses, secondary 
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stresses are negligible and are often ignored.  

Engineering systems, components, and devices are not 

perfect. A perfect design is one that remains operational and 

attains system’s objective without failure during a preselected 

life. This is the deterministic view of an engineering system. 

This view is idealistic, and may not always be satisfactory [4-

6]. All potential failures in a design are generally not known 

or well understood. Accordingly, the prediction of failures is 

inherently a probabilistic problem [7-8]. This is embedded in 

the field of Engineering known as Reliability. Reliability is 

the ability of an item to perform its intended function under 

stated operation conditions for a given period of time [3, 5]. 

Reliability, in a more precise definition, is the probabilistic 

assessment of the likelihood of the adequate performance of 

a system for a specified period of time under proposed 

operating conditions. The acceptance level of reliability must 

be viewed within the context of possible costs, risks, and 

associated social benefits [9].  

The structural integrity of trusses is usually evaluated by 

using deterministic analysis techniques and applying 

appropriate load and safety factors. In spite of applied factors 

of safety, cases of collapse of roof trusses are reported [10]. 

In this regard, the factors of safety can actually be referred to 

as “factors of ignorance” [11]. 

2. Methods of Structural Reliability 

Analysis 

Structural reliability analyses involve the development of 

accurate and efficient methods for computing multi – 

dimensional probability integrals. Two classes of methods are 

widely used to compute structural reliability or its 

complement, the probability of failure [12-17]. The first class 

consists of first and second-order reliability methods (FORM 

and SORM), [18], which search for most probable point of 

failure (MPP) or the reliability index ‘β’, for well-behaved 

limit state functions. The second class consists of simulation 

methods, such as the widely used Monte-Carlo simulation for 

ill-behaved or difficult to capture responses, including 

importance sampling methods (one of the various reduction 

techniques, VRT), which are of higher degree of accuracy 

and more computational effort than FORM and SORM. 

FORM and SORM methods are applied to the classical 

reliability integral as in equation 1,  

� = � ������
.
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where F is the failure domain generally defined by the 

function g (X) < 0. 

The First-order reliability method (FORM) was adopted 

and presented. The general problem to which FORM 

provides an approximate solution [19-21]. The state of a 

system is a function of many variables some of which are 

uncertain. These uncertain variables are random with joint 

distribution function:  

���
� = ��⋂ {�� ≤ 
�}
�
��� )                        (2) 

Equations 2 defines the stochastic model. for FORM, it is 

required that Fx (x), is at least locally continuously 

differentiable; i.e., that probability densities exist. The 

random variables X = (X1,…, Xn)
T
 are called basic variables. 

The locally sufficiently smooth (at least once differentiable) 

state function is denoted by g (X). It is defined such that g 

(X) > 0 corresponds to favourable (safe, intact, acceptable) 

state. g (X) = 0 denotes the so-called limit state or the failure 

boundary. Therefore, g (X) < 0 (sometimes also g (X) ≤  0) 

defines the failure (unacceptable, adverse) domain, F. The 

probability of failure, Pf, and the reliability or safety index, β, 

can be related using information obtained from FORM as 

given by equation (3). 
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3. Methodology 

The design data of a proposed industrial building was used 

for the research. A 15.6 m monopitch Howe roof truss with 

some modifications, consisting of 73 members of welded 

double angle steel sections, being the longest span, was 

selected for this probabilistic study as shown in figures (1) to 

(3). SAP2000 Advanced 12.0.0 was first used to obtain the 

forces in the truss members due to the applied design load. 

Four load variations (referred to as load ratios λ = 0.25, 0.55, 

1.0, and 1.5) were tested using the ratio (dead to imposed load) 

of the most critical load combination considered. The strengths 

of the truss members and other properties were determined as 

specified in BS 5950-1: 2000. The probabilistic testing was 

done with the aid of CalREL program. Limit state equations 

were derived for this testing as given in equations (4) and (5): 

for all compression members, 

�� = �[$ = �%& −

'

(�)*+*,)-+-�.
� ≤ 0]                (4) 

and for tension members: 

�� = �[$ = �/0 −

1

(�)*+*,)-+-�.
� ≤ 0]              (5) 

where 

Pf is the probability of failure; 

P is the probability 

G is the truss under investigation 

σc is the compressive strength of truss member i; 

ρy is the design strength of truss member i;  

Fc is the compressive force in member i; 

Ft is the tensile force in member i;  

L1, L2 are the leg lengths of the member cross section 

T1, T2 are the thicknesses of the member cross section; and 

i is the truss member i 

Writing the gross area 23 of member cross section as, 23 = 
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2 (L1 T1 + L2 T2), equations (4) and (5) become equations (6) 

and (7): 

�� = �[$ = �%& −

'
45
� ≤ 0]                         (6) 

�� = �[$ = �/0 −

1
45
� ≤ 0]                         (7) 

On the basis of practical statistical information on all 

relevant variables, normal and lognormal probability 

distributions were adopted. 

 

Figure 1. Steel Roof Truss Layout (All dimensions in mm). 

 

Figure 2. Selected Truss Showing Member Sections and Dimensions (mm). 
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Figure 3. Selected Truss Showing Numbering of Members (65 chord and web members; and 8 eaves members). 

4. Results and Discussions 

Truss member forces obtained from SAP2000 analyses and plotted using AutoCAD 2014 are presented in figures 4 to 7. 

 

Figure 4. Truss Member Forces (kN) for Load Ratio 0.25. Negative Values Show Compression. 

 

Figure 5. Truss Member Forces (kN) for Load Ratios 0.55 Negative Values Show Compression. 
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Figure 6. Truss Member Forces (kN) for Load Ratios 1.0. Negative Values Show Compression. 

 

Figure 7. Truss Member Forces (kN) for Load Ratio 1.5. Negative Values Show Compression. 

4.1. Probabilistic Results 

Results from the first-order reliability analysis (FORM) 

done using CalREL are presented in tables (1) to (8). 

Sensitivity factors α, ϒ, δ, and η, with respect to the variables 

for each truss member are given. Also the reliability index, 

‘β’; number of iterations, i; and the probability of failure, Pf, 

are presented. It should be noted that in the presentation, 

α is the sensitivity of β with respect to x (the coordinates 

of design point in original space); 

ϒ is the scaled and normalized sensitivity of β with respect 

to x; 

δ is the scaled sensitivity of β with respect to the mean, µ, 

of each basic random variable, given in equation (8):  

6 = %�
78

79:
                                           (8) 

η is the scaled sensitivity of β with respect to the standard 

deviation, σ, of each basic random variable, expressed in 

equation (9) as: 

; = %�
78

7<:
                                           (9) 

The variables σc / ρy, P =Fc / Ft, L1, L2, T1 and T2 are as 

defined earlier. 

Note: P = Fc (compression), or Ft (tension), as the case 

may be 

Table 1. Sensitivity Factors with β, i, And Pf - Member 1 (Compressive) (λ = 

0.25). 

Variable 
Sensitivity Factor 

α ϒ δ  η 

σc .0002 .0002 -.0002 .0001 

P .9280 .9280 -.0215 -3.0895 

L1 -.3726 -.3726 .3726 -.5637 

T1 .0000 .0000 .0000 .0000 

L2 .0000 .0000 .0000 .0000 

T2 .0000 .0000 .0000 .0000 

β = 4.06, i = 8, Pf = 2.447 x 10-5. 

Table 2. Sensitivity Factors with β, i, And Pf – Member 16 (Tensile) (λ = 

0.25). 

Variable 
Sensitivity Factor 

α ϒ δ  η 

/0 .0003 .0003 -.0003 .0001 

P .9501 .9501 -1.3669 1.3199 

L1 -.3119 -.3119 .3119 .1184 

T1 .0000 .0000 .0000 .0000 

L2 .0000 .0000 .0000 .0000 

T2 .0000 .0000 .0000 .0000 

β = -1.22, i = 4, Pf = 8.882 x 10-1. 
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Table 3. Sensitivity Factors with β, i, And Pf – Member1 (compressive) (λ = 

0.55). 

Variable 
Sensitivity Factor 

α ϒ δ  η 

σc s-.6854 -.6854 1.2961 -1.9854 

P . 6854 .6854 -.2206 -1.5997 

L1 -.1283 -.1283 .1283 -.0656 

T1 -.1283 -.1283 .1283 -.0656 

L2 -.1172 -.1172 .1172 -.0547 

T2 -.1172 -.1172 .1172 -.0547 

β = 3.98, i = 6, Pf = 3.413 x 10-5. 

Table 4. Sensitivity Factors with β, i, And Pf – Member16 (Tensile) (λ = 

0.55). 

Variable 
Sensitivity Factor 

α ϒ δ  η 

/0 -.6808 -.6808 2.1459 -4.8341 

P .6808 .6808 .6396 -4.511 

L1 -.1406 -.1406 .1406 -.2066 

T1 -1406 -.1406 .1406 .2066 

L2 -.1295 -.1295 .1295 -.1754 

T2 -.1295 -.1295 .1295 -.1754 

β = 10.455, i = 11, Pf = 1.000 x 10-10. 

Table 5. Sensitivity Factors with β, i, And Pf – Member 1 (Compressive) (λ = 

1.0). 

Variable 
Sensitivity Factor 

α ϒ δ  η 

σc -.6857 -.6857 1.2244 -1.7456 

P .6857 .6857 -.2928 -1.3597 

L1 -.1275 -.1275 .1275 -.0560 

T1 -.1275 -.1275 .1275 -.0560 

L2 -.1164 -.1164 .1164 -.0467 

T2 -.1164 -.1164 .1164 -.0467 

β = 3.44, i = 6, Pf = 2.842 x 10-4. 

Table 6. Sensitivity Factors with β, i, And Pf – Member 16 (Tensile) (λ = 

1.0). 

Variable 
Sensitivity Factor 

α ϒ δ  η 

/0 -.6854 -.6854 1.3021 -2.0055 

P .6854 .6854 -.2145 -1.6197 

L1 -.1284 -.1284 .1284 -.0664 

T1 -.1284 -.1284 .1284 -.0664 

L2 -.1173 -.1173 .1173 -.0554 

T2 -.1173 -.1173 .1173 -.0554 

β = 4.03, i = 6, Pf = 2.823 x 10-5. 

Table 7. Sensitivity Factors with β, i, And Pf – Member 1 (Compressive) (λ	 =	

1.5). 

Variable 
Sensitivity Factor 

α ϒ δ  η 

σc -.6859 -.6859 1.1663 -1.5509 

P .6859 .6859 -.3515 -1.1649 

L1 -.1268 -.1268 .1268 -.0484 

T1 -.1268 -.1268 .1268 -.0484 

L2 -.1157 -.1157 .1157 -.0403 

T2 -.1157 -.1157 .1157 -.0403 

β = 3.01, i = 6, Pf = 1.297 x 10-3 

Table 8. Sensitivity Factors with β, i, And Pf – Member 16 (Tensile) (λ = 

1.5). 

Variable 
Sensitivity Factor 

α ϒ δ  η 

/0 -.6816 -.6816 2.0283 -4.4393 

P . 6816 .6816 -.5202 -4.0558 

L1 -.1385 -.1385 .1385 -.1831 

T1 -.1385 -.1385 .1385 -.1831 

L2 -.1275 -.1275 .1275 -.1550 

T2 -.1275 -.1275 .1275 -.1550 

β = 9.54, i = 11, Pf = 2.823 x 10-10. 

4.2. Probability of Failure and Reliability Index 

Attempt was made to get a clear interpretation, using table 

9, which shows members with negative values of reliability 

index, β, corresponding to specific load ratio, λ. The 

percentage of truss members, already classified as struts or 

ties, with negative reliability index is also computed. 

Table 9. Number and Percentage of Negative Reliability Index, β. 

λ Negative β % 

0.25 
C 17 37.78 

T 1 3.57 

0.55 
C 8 17.78 

T 0 0.00 

1.0 
C 12 26.67 

T 0 0.00 

1.5 
C 16 35.56 

T 0 0.00 

C = Compression, T = Tension. 

The information in table 3 was further used to plot total 

violation of the limit state in the study. It must be noted that 

negative value of β implies total violation of the limit state 

being investigated. 

 

Figure 8. Percentage of Limit State Violation of Members at Varying Load 

Ratio – Members in Compression. 
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Figure 9. Percentage of Limit State Violation of Members at Varying Load 

Ratio – Members in Tension. 

4.3. Sensitivity Factors 

It must be noted that all input random variables do not 

have equal influence on the statistics (like mean and standard 

deviation) of the output. Hence, the use of sensitivity factors 

in determination of reliability index to account for the 

importance of each random variable. 

The plots of the sensitivity factors against the load ratios 

considered have been presented. It can be seen from figures 7 

to 15 that the sensitivity factor, δ, gives a positive plot for all 

load ratios except for the compressive force member 1 

(Figure 11) and tensile force member 16 at load ratio 1.0 

(Figure 15). These are due to the effect of the applied load 

ratios being higher than the capacities/strength of these 

members. Furthermore, the effect of the sensitivity factors α 

and ϒ is minimal on the compressive force member 1 and 

tensile force member 16 as shown in Figures 11 and 15, 

because of the capacities of the members that are greater than 

the applied load ratios. However, the effect of the remaining 

sensitivity factors, α, ϒ, and η, on the reliability index, β, 

produced negative plots as presented.  

 

Figure 10. Sensitivity Factors against Load Ratio for Compressive Strength 

(Member 1). 

 

Figure 11. Sensitivity Factors against Load Ratio for Compressive Force 

(Member 1). 

 

Figure 12. Sensitivity Factors against Load Ratio for Leg Length 1 

(Member 1). 

 

Figure 13. Sensitivity Factors against Load Ratio for Thickness 1 

(Member 1). 

 

Figure 14. Sensitivity Factors against Load Ratio for Leg Length 2 and 

Thickness 2 (Member 1). 
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Figure 15. Sensitivity Factors against Load Ratio for Tensile Force 

(Member 16). 

5. Conclusion 

From this research on structural steel roof truss systems, 

the limit state function has been shown and defined as a 

function of many variables (load components, resistance 

parameters, material properties, dimensions, and analysis 

factors) which are uncertain. However, these uncertain 

variables have been treated as random variables using 

reliability-based approach.  

From the result obtained on the selected truss element 

investigated in the study, for the newly designed steel roof 

truss system, it must be noted that struts showed more 

concern than ties (table 9 and figures 8 and 9); i.e., struts 

displayed total violation of the limit state function (equations 

4 to 7) than ties. Negative value of β implies total violation of 

the limit state being investigated. Ties showed negligible 

violation. 
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