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Abstract: The purpose of this paper is to develop methodology for living system regulatorika under norm and diseases based 

on the ORASTA concept which consists of the operator-regulator OR (capable to accept, recycle and transfer signals) and ASTA 

(active system with time average, carrying out a feedback loop in system for finite time). The paper draws on results made by 

using methods of quantitative and qualitative analysis of ORASTA equations. The paper concludes that living systems have the 

following regimes: rest, stable stationary state, regular oscillations which can be identified as normal condition and irregular 

fluctuations with destructive changes conform to diseases. The paper provides new methods, laws able to describe regulatory 

mechanisms in biosystem at the norm and anomalies taking into account spatial and temporal relations. 
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1. Introduction 

Worldwide development of the theory and practice of the 

regulatory mechanisms functioning of living systems at the 

main hierarchical levels of the organization is connected with 

its successful application to biology, medicine and 

agriculture, because it allows to choose the most effective 

ways for diseases prophylaxis and treatment, for agricultural 

techniques of cultivation and plant selection, to creation 

various biotechnology products. The works, devoted to 

different types of mathematical modeling of living system 

regulatory mechanisms, by B. Goodwin, J. Smith, M. Eigen, 

V. A. Ratner, E. E. Selkova, D. S. Chernavsky (subcellular 

level); Antomonov, Sendov, R. Tsanev (cellular level); L. I. 

Lischetovich, Y. Kibardin, K. K. Dzhanseitov (organ-tissue 

level); N. Rashevsky, A. M. Molchanov, G. I. Marchuk 

(organismal level) and other are discovered basics 

mechanisms of biosystem regulation at considered levels, 

permitting using mathematical modeling to solve medical 

and biological problems.  

However, to date, there is no united approach to create 

mathematical models and effective methods for the 

quantitative analyzing regulatory mechanisms of living 

systems, taking into account spatial and temporal organization. 

2. Materials and Methods 

The concept of the regulatorika and ORASTA 

Regulatorika is the science that involves the study of 

interconnected activity of regulatory mechanisms based on 

the ORASTA concept which consists of the operator-regulator 

OR (capable to accept, recycle and transfer signals) and ASTA 

(active system with time average, carrying out a feedback 

loop in system for finite time). Using ORASTA the 

functional-differential equations taking into account 

stimulating and inhibiting interactions, temporal relations, 

combined feedback and cooperativity in considered processes 

are developed [1]: 
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Here ( )iX t  are the sizes characterizing quantity of a 

signals, developed by i -th OR at the time moment ;t  ikh  are 

a time intervals necessary for i -th OR activity changing 

under the k -th OR activity influence; 0ia , ib  are parameters 

of formation and disintegration speeds of i -th signal, 

accordingly; ( )i tϕ  are continuous, positive initial functions. It 

is entered the vector 
1,..., ),(c nC Cµ  describing mutual relations 

between biological systems and external medium. Here 
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Let us consider regulatorika equations in the following 

common form 
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The regulatorika equations can be considered in the 

following form 
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The following regulatorika laws are formulated. The law 

of regulatorika energy conservation: 

0.
c

µ =  

The adjustability law: The system is called regulated, if 

internal temporal conditions inversely proportional to 

external,  

1,hb =  ,h b  

are the vectors. 

The law of a normal regulatorika: There exist such systems 

of regulatorika named normal, in which internal temporal 

conditions are in the balance with the external (see Figure 1). 

,rρ =  1.сµ =  

 

Figure 1. Normal regulatorika, in which internal temporal conditions are in 

the balance with the external. 

The law of a supernormal regulatorika: There exist such 

systems of regulatorika named supernormal, in which internal 

temporal conditions more than the external (Figure 2). 

1,   ,    1.cm r hbρ> > <  

 

Figure 2. Supernormal regulatorika, in which internal temporal conditions 

more than the external. 

The law of an insufficient regulatorika: There exist such 

systems of regulatorika named insufficient, in which internal 

temporal conditions less than the external (Figure 3):  
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Figure 3. Insufficient regulatorika, in which internal temporal conditions 

less than the external. 



90 Mahruy Saidalieva and Mohiniso Baxromovna Hidirova:  Mathematical Modelling Living Systems   

Regulatory Mechanisms at the Norm and Anomalies 

Next section is devoted to applying regulatorika concept 

for analyzing the interconnected activity between molecular-

genetic systems of hepatocytes and hepatitis B viruses taking 

into account microRNA action. 

3. Results 

Realization of the concept 

Infection with the hepatitis B virus (HBV) remains a 

global health problem and it is estimated that about 2 billion 

people worldwide are infected with this virus, more than 350 

million people are sick. Chronic HBV infection can lead to 

primary carcinoma of the liver. The genome of the hepatitis 

B virus encodes microRNA. These viral microRNAs can 

participate in suppressing the expression of own viral genes. 

The regulatory mechanisms of microRNA action have not 

been studied in detail. Disclosure of the regulatory 

mechanisms of the microRNA action will help to determine 

the mechanisms of formation and development of the 

infectious process at viral hepatitis B at the molecular genetic 

level and will allow finding effective ways for targeted 

therapeutic and preventive influence on the molecular-

genetic system of the liver cells. Taking into consideration 

that the hepatitis B virus by its microRNA affects the cell, 

suppressing it (Figure 4), then equations of minimal 

mathematical model for interconnected regulatorika between 

hepatocyte and viral microRNA molecular-genetic systems 

have the following kind 
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where 1( )X t  is the concentration of hepatocyte mRNA; 2 ( )X t  

is the concentration of the hepatitis B virus microRNA; 1θ , 2θ  

are corresponding average activity durations of hepatocyte 

and hepatitis B virus molecular-genetic systems, 

respectively; h  is the time radius of the cell (the time 

required for carrying out the feedback of molecular genetic 

systems); 1a , 2a  are non-negative constants, expressing the 

resource availability for considered genes systems and 

products. 

The system equation (2) has a trivial equilibrium position, 

has instability of infinitely distant points in the first quadrant 

of phase space and a nonnegative solution for nonnegative 

initial values of the functions. The coordinates of the 

equilibrium position 1 2( , )ξ ξ ξ  are determined from 

equations 
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Researching equation (3) solutions we find that when 

1 21,    a a e> >
 

there are non-trivial equilibrium positions for equation (2). 

 

Figure 4. Interconnected regulatorika between hepatocyte and viral 

microRNA molecular-genetic systems. 

Here in Figure 5, in F area there is only a trivial 

equilibrium position, in G and H areas there is a nontrivial 

equilibrium position, and in G area the equilibrium position 

of the dependent equation in equation (2) is trivial.  

 

Figure 5. Parametric portrait for equation (2). 

Let us analyze the stability nature of equilibrium positions 

for equation (2).  

Introducing small 1 2( ),    ( )z t z t  near 1 2( , )ξ ξ ξ  we have 
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After linearization we have 
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In the case of a trivial equilibrium position, we have 
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Analysis equation (4) shows that there is stability for 

trivial equilibrium position 0(00)  at 1 1.a < Near non-trivial 

equilibrium positions we have the following characteristic 

equation  
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Analysis equation (5) shows that there is the stability by 

1X  and there is the instability possibility for given 

equilibrium position by 2X  at 
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where η  is the root of the following equation 
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The presence of a trivial attractor means that for the 

elements activation of the regulatory system, it is required a 

certain threshold influence that removes the system from the 

basin of the trivial attractor. The existence of non-trivial 

equilibrium positions means that considered system has a 

potential functional activity with an infinite attractor basin. In 

addition for regulatorika equations we can use approximated 

functional-differential equations and its discrete analogy 

when we consider the concrete biological systems [2], [3], 

[14]. It is necessary to note that discrete recurrent equations 

as model systems for equation (2) are especially useful, 

because, in this case we can apply such methods as Lamerey 

diagrams construction [3], calculation of Lyapunov number 

[4], definition of “chaotic degree” [5]. Computer 

investigations with model equations for equation (1) and 

equation (2) have shown that the non-trivial attractor can lose 

own stability depending on various time delay and external 

influence according regulatorika laws and can have such 

solutions behavior that can be identified as normal 

functioning (stationary regime and regular oscillation mode 

or Poincare type limit cycles (Figure 6) and as anomalous 

behavior (irregular oscillations (Figure 7) and the "black 

hole" effect (Figure 8). This allows to model the normal and 

anomalous states of real biological systems [6] and to solve 

correction problems to improve their functioning [7], [8].  

Researches show that in chaos area there are small regions 

with normal behavior called “r-windows”. Quantitative 

researches have shown that the basic characteristics of “r-

windows” (quantity, the sizes and location) have nonlinear, 

difficult character. For example, if parameters of resource 

availability and a associativity are increasing then it does not 

necessarily mean that number of “r-windows” must to 

increase. The organism, using adaptive mechanisms, can 

enter into the nearest region of regular decisions. It means 

normal activity of biosystem.  

 

Figure 6. Poincare type limit cycles in model system for equation (2). 

 

Figure 7. Chaos in the model system for equation (2). 

 

Figure 8. “Black hole” in the model system for equation (2). 

Dynamics of Lyapunov number, calculated on РС for 



92 Mahruy Saidalieva and Mohiniso Baxromovna Hidirova:  Mathematical Modelling Living Systems   

Regulatory Mechanisms at the Norm and Anomalies 

discrete analogy for model system (2), help to estimate 

“chaotic degree” and to investigate the small regions with 

normal regulatorika (“r-windows”) in chaos area at various 

parameters values (Figure 9).  

A common analysis of equation (1) and equation (2) and a 

series of computational experiments make it possible to 

determine that the hepatitis B virus’s molecular-genetic 

system have an influence on the hepatocyte based on the 

inhibition mechanism. The functioning suppression of the 

hepatocyte molecular-genetic system is directly proportional 

to the activity level the virus’s molecular genetic system (in 

particular, to the level of microRNA concentration). 

Moreover, suppression has an exponential nature. This means 

that the suppression intensification occurs not in a linear and 

not in a multiple, but exponential degree. Evidently, this 

mechanism determines the often observed transcendence of 

virus’s molecular-genetic systems in mutual functioning. 

 

Figure 9. Dynamics of Lyapunov number in the model system for equation 

(2) (arrows show “r-windows”). 

The next mechanism of interaction between hepatocytes 

and hepatitis B viruses we can reveal by analyzing solutions 

behavior in dependence on the parameters changing. The 

solutions transition from the normal behavior into the area of 

unpredictable behavior and sharp destructive changes occurs 

with the increased growth of the resource parameter value. 

Consequently, the mechanism for the interaction between 

hepatocytes and hepatitis B viruses is the intensification 

mechanism of genes productivity in hepatocyte, which is 

imposed by hepatitis B viruses. 

The analysis results show that there is the mechanism of 

temporary improvement of the hepatocyte state in the field of 

unpredictable behavior. A hepatocyte, which is in area of 

unpredictable behavior, may enter inside a small region with 

"r-windows" and relatively improve its state, since the 

systems behavior inside the "r-windows" is regular. 

Researches results and defined regulatory mechanisms 

allows, at computer support of laboratory and clinical 

researches of infectious process at hepatitis B, to define 

molecular-genetic bases of pathogenesis at different level of 

microRNA concentration, to carry out diagnostics and 

forecasting of characteristic stages of disease course during 

hepatitis B. 

Thus existence of the following regimes of regulatorika 

between molecular-genetic system of hepatitis B viruses and 

hepatocytes has been revealed: monotonous reduction, 

stationary condition, self-oscillations, irregular fluctuations 

(chaos), sharp destructive chaos death (“black hole” effect). 

Researches results show existence of the following 

regulatory mechanisms during diseases development: the 

inhibition mechanism, the mechanism of mobilization of 

potential possibilities of an organism at anomalies, the 

mechanism of temporal improvement of system.  

4. Conclusions 

The methods, laws and mechanisms of living systems 

regulatorika make it possible to effectively analyze the 

biological systems regulatory mechanisms functioning at the 

norm and anomalies. Methods for qualitative and quantitative 

analysis of "black hole" effect appearance regularities allow 

to evaluate the conditions for destructive changes beginning, 

which is very important for practical medicine. For a 

qualitative study of living systems functioning mechanisms, 

we can use the system of differential-delay equations and its 

model systems in the form of functional and discrete 

equations. Among the model systems for differential-delay 

equations, the discrete model systems are the most simple 

and convenient for qualitative and quantitative studies of 

living systems regulatorika. Computer analysis with the 

construction of Lamerey diagrams, Lyapunov number 

calculation make it possible to quickly evaluate the general 

pattern, characteristic features and basic behavior regimes for 

solutions of equations (1). Methods of qualitative and 

quantitative analysis of living systems regulatorika equations 

make it possible to obtain approximate solutions of nonlinear 

differential-delay equations, to evaluate the behavior of 

irregular solutions and "chaos degree", to analyze the 

functioning patterns of living systems. It is especially 

important to study the structural features of the dynamic 

chaos region, to identify areas with regular behavior (“r-

windows”) in the environment of irregular oscillations, since 

the presence of small regions with normal behavior in the 

region of anomalies makes it possible to choose a possible 

path for withdrawing the system state from the region of 

irregular functioning to the region with the normal state. The 

obtained results can be used to develop information 

technology tools for quantitative studies of living systems at 

the basic levels of biosystems organization at the norm and at 

various diseases. 
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