

Software Engineering
2016; 4(3): 50-58
http://www.sciencepublishinggroup.com/j/se
doi: 10.11648/j.se.20160403.11
ISSN: 2376-8029 (Print); ISSN: 2376-8037 (Online)

An Approach About Monitoring Generic Properties on C
Programs Using Aspect-Oriented Programming with ACC
(AspeCtC)

Pikeroen Olivier

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Email address:

olivier.pikeroen@gmail.com

To cite this article:
Pikeroen Olivier. An Approach About Monitoring Generic Properties on C Programs Using Aspect-Oriented Programming with ACC

(AspeCtC). Software Engineering. Vol. 4, No. 3, 2016, pp. 50-58. doi: 10.11648/j.se.20160403.11

Received: April 30, 2016; Accepted: June 4, 2016; Published: June 8, 2016

Abstract: For systems which deal with serious or dangerous things (for example nuclear power plant), programs are

constrained by legislation to be safe in any case, which requires verification process during the execution, in other words

“Runtime Verification” (RV). The field of runtime verification has many different names: runtime monitoring, runtime

checking, runtime result checking, runtime reflection, monitoring oriented programming, design by contract, runtime analysis,

dynamic analysis, trace analysis, fault protection, etc. Aspect-oriented programming (AOP) is a useful paradigm for monitoring

programs, even if it was not created for this purpose. Indeed, AOP tries to deal with crosscutting concerns (tangled and

scattered codes) by “capturing” them within a new entity called aspect, and runtime verification properties are conceptually

transversal to the code they verify, unavoidably resulting in such crosscutting codes. AOP is always used as an extension of an

existing language. Hence it is necessary to design an aspect language extending the target language, and to use what is called a

weaver, to realize a binding operation between the target program and the aspects. Thus, one can find many

aspect-programming extensions (including an aspect language and an aspect weaver) for most programming languages. The

first one to be developed was AspectJ, designed for Java, and which has been the best-known reference among aspect-oriented

tools until now. We use an AspectJ-like tool, straight inspired from AspectJ but designed for C, called ACC, which is itself an

improved version of AspectC. The purpose of this paper is to explore the possibility of implementing and monitoring generic

(also called parameterized) verification properties, i.e. which could be used on any target code, with ACC through a basic

example. As ACC, contrary to AspectJ, does not provide abstraction for aspects, which would have made generic monitoring

an easy task, we tried to simulate abstraction by making use of macros in the aspect code, which boils down to monitor every

parameterized property within one macro function. We will see that despite losses of expressiveness without complexification

of the monitoring code, the method still allows monitoring generically any property which is already monitorable directly in

ACC.

Keywords: Runtime Verification, Monitoring, Aspect-Oriented Programming, Generic Properties, AspectC, ACC

1. Introduction

1.1. Runtime Verification

Today, programs are everywhere, and need to satisfy many

constraints, in order to suit the expectations of the people

depending on its behavior. Traditionally, it exists two ways for

verifying program executions behavior. The first one, called

static analysis, applies before execution. There are three types

of static analysis verification techniques: model checking,

theorem proving, and static code analysis (testing). However,

model checking is not adapted to high size systems, theorem

proving is a (semi-)manual technique, and testing cannot deal

with all the property behaviors. The second one, dynamic

analysis, inspects single executions of the system under

scrutiny [4]. Runtime verification is a dynamic analysis

method, which only focuses on detecting faults, i.e. deviations

between the current behavior and the expected behavior [8]. It

considers a system to be checked, and a set of properties to be

checked against the system execution. An execution is viewed

51 Pikeroen Olivier: An Approach About Monitoring Generic Properties on C Programs Using
Aspect-Oriented Programming with ACC (AspeCtC)

as a finite (or some say possibly infinite) sequence of program

states, or a finite trace (or word, where each state can be

viewed as a letter, or a symbol). This allows a formal

representation of RV systems. We can define an alphabet as a

set of symbols; a language over an alphabet A as a subset of A*;

a property over an alphabet A as a language over A.

A runtime verification process typically consists of the

following three stages [4]. During the first stage, a monitor is

generated, from a formal property. A monitor for a language on

an alphabet is a device which as input takes events, that is to

say a list of symbols (a trace) of the alphabet, produced by the

running system, and emits a value (verdict) for the last symbol,

based on the history of received events. Hence, when

monitoring, we would rather see a language as a set of traces

over an alphabet A, and a property, more precisely, as a

mapping from the set of all traces over A to a set of verdicts.

Then, monitoring would consist in defining the language

which denotes the set of valid words given by a property (i.e.

traces whose property's associated verdict indicates them

valid), and checking whether the current word is an element of

the language (i.e. finding the traces which emit a valid verdict

according to the property). Or in other words, a monitor checks

whether an execution meets a correctness property. The second

stage is called instrumentation, and consists in preparing

(instrumenting) the system to generate relevant events for the

monitor. In the third stage, the monitor eventually analyses the

execution, thanks to the generated events.

Runtime verification research works on two different

aspects. The first one is about checking of traces, as

algorithms to check property specifications over given traces.

The second one is about generation of traces, as

instrumentation.

1.2. Aspect-Oriented Programming

Instrumentation can be achieved using aspect-oriented

programming, abbreviated AOP (as it happens in XspeC [6],

an extension of AspectC with state machines, inspired by

Rmor [5], a runtime verification framework to monitor C

programs against state machines). Hence, we briefly

introduce the AOP paradigm.

In programming, a concern is what interests stakeholders.

When developing a software, programmers ideally wish they

were able to separate concerns into modules, and develop

them in isolation, one at a time. The problem they meet is

that some concerns impact multiple components. These are

called cross-cutting concerns. There are two types of

cross-cutting codes: tangling, when each component contains

the implementation to satisfy different concerns (one module,

many concerns); scattering, when codes that realize a

particular concern are spread across multiple components

(one concern, many modules).

Cross-cutting codes can be found when coding verification

(checking program behavior), as well as logging (tracking

program behavior), policy enforcement (correcting behavior),

security management (preventing attacks), profiling

(exploring where a program spends its time), memory

management, visualization of program executions, etc.

AOP tries to deal with both tangling and scattering issues.

According to Gregor Kiczales, the inventor of the concept of

aspect, “AOP is about capturing cross-cutting concerns”.

Thus, an aspect is a software entity which captures a

cross-cutting concern [7]. Given that AOP is always used as

an extension of an existing language, it is necessary to use

what is called a weaver, to realize a binding operation

between the target program and the aspects. Weaving can be

done during compilation or execution. To implement aspects,

AOP uses join points which are points in the program where

aspects can be inserted. Then, a crosscut (or pointcut) is a set

of join points, and an advice is a code block implementing an

aspect behavior.

These notions are the basis to understand AOP adapted to

any language, and thus, for C.

In our case, instrumentation is encapsulated within aspects

and integrated into the system through the weaving process,

where events are represented by pointcuts.

2. About AspeCtC (ACC)

2.1. AOP Concepts Applied on AOP Tools

As we said previously, aspect-oriented programming (or

AOP) is a paradigm aiming at modularizing cross-cutting

concerns, with the concept of aspect. Therefore, it brings to

programs avoidance of code redundancy, better reusability,

maintainability, configurability, etc. Thus, it may apply in

many domains such as tracing, synchronization, buffering,

security, error handling, constraint checks, etc.

We saw the most basics concepts about AOP (i.e. join points,

pointcuts, advices). Now, we should introduce further

advanced ones, which are available on almost all current AOP

tools. Advices generally support different types as code advice

(before, after, around), introductions, or aspect order. The

keywords before, after and around specify wherever the code

advice should be executed with respect to the matched join

point (respectively before, after, or around, i.e. some code

before and some code after, optionally separated by the call to

a function usually named proceed, which makes the matched

join point execute). Introductions allow to extend the behavior

of the program by adding into it new attributes or methods.

Advices may also be used, when several aspects match the

same join point, to specify the execution order of these aspects.

Join points are declared by a join point description language,

of which sentences are called pointcut expressions. Building

blocks of pointcut expressions are called match expressions,

which can be used with pointcut functions and logical

operations. One can generally give pointcuts a name so that

one can reuse them elsewhere. Two usual join points (or

pointcuts) are call and execution join points, which match

respectively a call and an execution of a function.

2.2. Introduction to AspectC and ACC

2.2.1. Overview

AspectC has been the first aspect language for C, written

by Gregor Kiczales and Yvonne Coady, which was inspired

 Software Engineering 2016; 4(3): 50-58 52

by AspectJ. The official website says indeed: “The initial

design of AspectC was taken directly from the non-object

oriented subset of AspectJ”. Unlike the latter, there is no

explicit aspect declaration, as in AspectC, an aspect is a file

or a list of files which are able to modularize a crosscutting

concern, syntactically containing AspectC extensions and C

code. Procedure calls (call pointcut) and executions

(execution pointcut) can be used in advices. The dynamic

cflow pointcut selects all join points which occur in the

control flow of another join point. However, variables

cannot be accessed in advices and there is no introduction

advices either. Access to typed context is possible. Pointcuts

args and result provide deeper matching by allowing access

to context information (function arguments and return

value), which can even be modified through advice code.

AspectC seems unmaintained since 2003 without any

official releases.

ACC (AspeCtC or AspeCt-oriented C), started to be

developed in 2006, has been the most regularly released

aspect language for C until 2008, and designed by the

people behind TinyC2 [13], under the direction of

Hans-Arno Jacobsen. ACC transforms source code and

offers its own internal compiler framework for parsing C.

The compiler consists in translating code written in

AspeCt-oriented C into ANSI C code. This code can be

compiled by any ANSI C compliant compiler, e.g. GCC.

ACC is actually an updated version of the original AspectC,

but it brings a lot of improvements. For example, like in

AspectJ, it adds a JoinPoint structure (provided in ACC

library) to provide join point context or access to function

arguments (through the pointer this). Arguments passed to

around advices cannot be modified directly via the captured

context. But instead, one should use the JoinPoint structure

which contains pointers to the matched function’s

arguments. ACC provides a number of new pointcuts like

callp (which matches function pointer calls), infunc, infile

(which respectively match code inside a function, a file) and

there are get/set join points which allow access to global

variables (only). Introductions are now available, i.e. code

can be introduced into structures and unions. Furthermore,

ACC provides exception handling aspects, which use a

special pointcut called preturn, which returns a

user-provided error value errorvalue as return value. The

last release of ACC was in 2010, and the project seems

abandoned since then, with several remaining lacks. It is a

closed system, in the sense that one cannot augment it with

new pointcuts or access the internal structure of a C

program in order to perform static analysis. Maintenance of

ACC by its developers is not active and as its core

component is closed it is not so easy to extend it [10] [11].

2.2.2. Language Design

The AspectC language grammar is quite equivalent to its

“father” AspectJ. However, as they are respectively extended

languages of C and Java, they unavoidably slightly differ

from each other. We present here the main AOP concepts

designed in ACC.

As we said above, contrary to AspectJ, in AspectC and its

improved version ACC, aspects are not considered as

classes (concept which does not exist in C), but as files,

with the extension. acc. Thus, an aspect file itself represents

an aspect.

Pointcuts in ACC are defined like in AspectJ, as shown in

Figure 1. Match expressions allow the use of “wildcards” to

provide smarter join point matching. The wildcard “$”

matches any length of continuous strings, and “...” matches

any length item list.

Figure 1. ACC: pointcut definition.

Advice generic definition is given in Figure 2. The return

type (typeName) of the advice must be specified only for

around advices, otherwise it must not. And typeName must be

the same type as the return type of the matched join point. The

different advice types (adviceType) are before, after and

around. The advice acts like a function, and thus may have

arguments (“parameter list”), written like in a standard C

function (the argument type followed by the argument name).

The “pointcuts” represent any valid logical combination of

pointcut expressions (using the logical operators “&&”, “||”,

“!”). Finally, one may write any valid ACC code in the advice

body (reminding that any valid C code is also valid ACC code).

around advices should return a value, like a C function (with

the keyword return), whose type is identical to the advice

return type typeName. The value returned by the advice will

be the value returned by the matched join point. Other kinds of

advice (introductions, exception handling) have their own

(different) definition grammar.

Figure 2. ACC: advice definition.

2.3. Conclusion

ACC is an upgrade version of AspectC, which is itself, as

AspectC++, inspired from AspectJ. Thus, it provides lots of

useful advanced pointcuts like cflow to advise in the control

flow of a join point, but also created its own, like callp to

advise the call to a pointer function. It also provides a join

point structure (or API) with members to store the join point

context information structure through the AspectJ-/OOP-like

pointer this. However, it is unfortunate that the project has

been abandoned without being totally achieved (some

“todo”s remain in the source code), letting the compiler with

several bugs and leaving us dissatisfied about few

functionalities (e.g. bugs using the exception handling

feature and the JoinPoint structure members, and lacks of

expressiveness of match expressions' type-matching using

wildcards).

53 Pikeroen Olivier: An Approach About Monitoring Generic Properties on C Programs Using
Aspect-Oriented Programming with ACC (AspeCtC)

3. Towards Generic Runtime Verification

with ACC

3.1. The Reasons for Choosing ACC

At this point, we saw the concepts of both runtime

verification and aspect-oriented programming. Runtime

verification is a dynamic analysis approach to detect faults

during runtime. Aspect-oriented programming is a paradigm

which captures cross-cutting concerns, which unavoidably exist

in many codes, particularly when programming verification.

Thus, aspect-oriented tools are a godsend for runtime

verification. However, AOP applications in the field of runtime

verification are surprisingly rare for C language, maybe because

no AOP tools for C has ever emerged as a reference, as they all

suffer some lacks or have been unmaintained.

The aspect-oriented tool for C we chose is ACC for several

reasons. First of all, one should know that the most famous

(and used) tool for aspect-oriented programming is AspectJ.

But the scope of our research is limited to C language only,

unlike AspectJ which has been implemented for Java. Thus,

one could focus on AspectC++ which is totally inspired of

AspectJ and at first glance is able to weave in C. However,

even though it is possible to weave in C code with AspectC++

[12], it is unfortunately not plainly possible. Indeed the

documentation says: “Currently ac++ generates C++ code,

which cannot be compiled by a C compiler”. Although it also

adds: “As for many hardware platforms in the embedded

domain no C++ compiler is available we are actively looking

for a solution.”, which could give us hope for a plain C code

support in aspect weaving and compiling in the near future,

and thus still makes AspectC++ potentially interesting for us,

actually, the developers do not seem to make it a priority, as it

has been several years that nothing came out about this

support. Thus, the natural way was to make do with AspectC

given that it is also an AspectJ-like aspect-oriented extending

language, admittedly less documented, used, and released, but

plainly designed for C. Because of certain bugs and lacks

regularly discovered when working with ACC, we set about

searching for other tools, and found the documentation of

Aspicere which raised our interest (particularly because it

provides generic pointcuts, as well as most of existing AOP

features, and also because its design is based on the

“coevolution” of source code and the build system [1], which

would make the aspect-oriented tool, contrary to ACC, more

adapted to the evolution of the build system). However,

unfortunately, many attempts failed to install the latter because

of absence of updates for many years. We also found several

other tools for AOP (Arachne [3], C4, WeaveC, Xweaver), but

which regarding the analysis made by Bram Adams [1], do not

provide more aspect-oriented features than ACC. Furthermore,

some of them have not been released for many years

(Arachne), are untraceable (C4), or poorly documented

(WeaveC). For these reasons, we chose working with ACC.

We should notice, however, that in the course of our research,

a new compiler, called Movec [14] has been developed, as it

happens, to fill the lacks of ACC about allowing generic

monitoring. Movec is a monitor-oriented compiler and

language inspired from JavaMOP (in Java), which aims at

providing parametric runtime verification for C programs.

3.2. The Properties to Check Under Scrutiny Applied to a

File Example

The example we chose here is inspired from the lectures of

Klaus Havelund about monitoring in AspectJ. Consider a file,

which one can open and close. We will check the following

two properties at runtime:

� Response: A file should eventually be closed once

opened.

� Request: A file cannot be closed unless it has been

opened.

The two properties have something in common: they are of

temporal dimension. Indeed, they implicitly imply the notions of

past and future. The first one gives a specification about the

future of an element (here the file, which shall be closed) under a

present condition (when one opens it). This property is called a

response property: whenever the method Q is called on an

element e, eventually the method R will be called on e. The

second property gives a specification about the past of an element

(here the file, which should have been opened) under a present

condition (when one tries to close it). This property is called a

request property: whenever the method Q is called on an element

e, in the past the method P must have been called on e.

We use the well-known standard functions of stdio.h: fopen

and fclose. Consider the code given in Figure 3. The properties

verification amounts to only advise the functions fopen and

fclose. Closing file2 should lead to a “request” error because it

has not been opened before. And a “response” error should be

found before the end of the execution because file2 has not

been closed ever. For later reuse, we give in Figure 4 the

relevant pointcuts.

Figure 3. Monitoring a file example: the source code.

Figure 4. Monitoring a file example: the needed pointcuts.

3.3. Analysis of the Elements Needed in the Aspect Code

3.3.1. Storing the Objects Targeted by the Properties

First of all, we need to consider the elements we need.

When an error occurs, e.g. a file which has not been closed

before the end of the execution (response property), one might

want to know which file it is, i.e. the file name. Because the

 Software Engineering 2016; 4(3): 50-58 54

type FILE does not provide such information method to the

programmer, we have to store the name for this file when it is

opened (with fopen), because it is when the name is explicitly

specified. This can be done easily with the ACC pointer this.

What kind of element would be the best to store this value?

Actually, we need to consider the case when many files are

opened, so we need an array. This array should be declared

global in the aspect file so that every advice could access it.

And because one cannot directly access the name from the file,

one should need to store the pair (file, name). But the file and

its name are of different type, so one should use a structure.

Therefore, we need an array of a structure-type elements. The

advantage of a structure is that one can extend it easily with

new members if needed.

3.3.2. Considering Dealing with Objects of Any Type

As we deal with arrays, we might want to have “array

handling” methods (e.g. addFile, findFile, removeFile). But if

we consider now that we would like to advise functions which

affect other elements, we would need to rewrite the array

handling functions. It would be a waste of time (and space)

because the only thing changing would be the type of the

parsed elements. One could consider the idea of using generic

parsing array functions. Then one would think about using the

only generic type of C language, i.e. void*, the pointer to void.

One can find on the web several implementations of such

generic array handling methods.

3.3.3. Optimizing the Runtime Overhead

However, one generally researched purpose (or constraint)

when applying runtime verification methods to a target

program is to prevent any runtime overhead, or at least to

minimize it at most. Well, linear array parsing is O(n) where n

is the array length, which is not recommended for its speed

when one work on many elements. As in our case we use

aspects for monitoring, i.e. checking code at runtime, and thus

may not know in advance the number of elements we will

work on, one could think about a faster array parsing method.

It exists such a one, of course, and it is called hashing.

Unfortunately, the latter does not exist by default in C,

therefore one should look for independently provided ones.

On the other hand, they are quite numerous, even though

significant efficiency differences exist between them. This is

not the purpose of this paper to discuss about the best existing

hash table implementation for C, but we may still give some

names: TommyDS, khash, uthash, Concurrency Kit,

googledensehash, etc. The one we chose is TommyDS,

because it is well documented and provides clear and

numerous tests with the corresponding source code, which

show that it is one of the fastest existing hash table (according

to its own tests yet). To use the tommy_hashlin (TommyDS'

recommended hash table) methods, one must first of all

download the tommyds package. One just need to copy the

following files (being aware of their extension when

compiling with ACC1) into the directory containing the source

1 Source files must be compiled by ACC with extension .mcc by default instead

of .c. This can be changed in the parameters of the acc command.

and aspect files: tommychain.h, tommyhash.h, tommyhash.c,

tommyhashlin.h, tommyhashlin.c, tommylist.h, tommylist.c,

tommytypes.h. Then, one must include the file tommyhashlin.h

via an #include directive in the aspect files using the

TommyDS methods. Furthermore, to store the elements in the

hash table, one must first define them as a member of a

structure which also contains a member of type tommy_node.

3.3.4. Dealing with Faults

Eventually, we need to provide some code to deal with

occurring faults. If we have a glance at the request property: “a

file cannot be closed unless it has been opened”, we have to

think about what should happen whenever the program tries to

close a file which is not open. As the file is not open, the

easiest way would be to totally skip the execution of the

closing function (fclose). We can do that by advising the latter

function with an around advice without the call of proceed.

And the advice should return a value instead of the function,

which would likely correspond to a default error value. Now,

looking at the response property, we need to decide what

should happen, before the end of the program execution, to the

open files which have not been closed yet. One could think of

merely displaying an error message and let the developer of

the target code solve the problem, another might consider

closing the files as necessary and hence close them through the

aspect code. In both cases, one should provide a dedicated

function to deal with all those files.

Figure 5. Monitoring a file example: the aspect code structure.

55 Pikeroen Olivier: An Approach About Monitoring Generic Properties on C Programs Using
Aspect-Oriented Programming with ACC (AspeCtC)

3.3.5. The Final Code

The aspect file (Figure 5) contains the structure FileUtil to

access the files information, and a structure TommyObject to

access the hash table data. A function responseFile is provided

to do both printing a message and close the file in order to deal

with faults in the response property, as well as a function

compareFile needed by TommyDS to search within the hash

table. The latter, which has name files, stores objects of type

FileUtil, and is created before the execution of the program

and destroyed after it. There are three advices. The first one

stores the opened files in the hash table at the time they are

opened. The second one advises the closing of the files to

check the request property, i.e. whether the matched file is

currently open (is in the hash table, in which case it should be

removed from it), or not, in which case an error will occur and

the advice code should deal with it. The last advice matches

the end of the program execution (but before that the hash

table is deleted!), to check the response property, i.e. whether

some files have still not been closed (the hash table is not

empty), in which case the advice code should deal with it too.

The aspect code for the advices is presented in Figure 6. The

“open” advice is not particularly interesting, as it only inserts

elements into the hash table, so we do not give it. The “close”

advice handles the request property, removes the file from the

hash table (tommy_hashlin_remove) when the file is being

closed but currently open, or skips the execution of fclose with

the standard error return value EOF when the file is not

currently open. The last advice (pointcut prog_exec) advises

the end of the program execution for the response property,

and closes the open files which have not been closed yet, using

the function responseFile.

Figure 6. Monitoring a file example: the advices code.

The output of the executed woven code will eventually be the one given in Figure 7.

Figure 7. Monitoring a file example: the woven and executed code output.

3.4. Reusing Properties via Macros

3.4.1. Explanation

We saw how to monitor, with a file example, temporal

properties, and used generic data structures to be able to

monitor any kind of element. These data structures are helpful

to prevent from implementing the same data handling methods

multiple times for multiple kinds of elements. But now, we

would like to be able to advise multiple kinds of join points

using the same advice implementation. Unfortunately, unlike

AspectJ and AspectC++, ACC does not provide generic

(abstract) pointcuts, which could have make that work easy [9].

Two solutions may be considered. The first one would be to

directly provide ACC with generic pointcuts. We did not go

into this approach in depth. However, as C language has not

been designed for providing abstraction, and ACC is totally

implemented in C (and ACC language itself), and as we said is

a closed system, this solution seems quite hard. Other AOP

tools for C used the features of other languages, as the

templates of Prolog (in Aspicere [1] [2]), to design their

pointcut language, including generic pointcuts. The approach

we chose consists in using macros to write advices.

The idea is to simulate generic join points thanks to macro

functions. For example, to write a generic pointcut, one might

write a macro, like in Figure 8, taking three arguments: one

identifier, the second would be a list of parameters which

would correspond to the arguments of the pointcuts args

and/or result (in the pointcut expression) for manipulating the

join point context, and the third a pointcut expression (using

the previous arguments).

 Software Engineering 2016; 4(3): 50-58 56

Figure 8. Monitoring using macros: an "abstract pointcut".

Then, for example, we might want to have two pointcuts: one which matches the call of the function fopen, the other matching

calls to the function fclose. Thus, we would write twice the macro ABSTRACT_POINTCUT, each with a different pointcut

expression (see Figure 9).

Figure 9. Monitoring using macros: creating two different pointuts with the same macro.

The macro functions will be replaced during preprocessing by ACC’s valid language pointcut definitions (see Figure 10).

At this point, using macros is obviously useless, but it may become interesting when writing advices, particularly in the case

where the latter would verify the same property (the advice code would have the same behavior) on elements which can be of

multiple kinds, handled by some generic methods.

Figure 10. Monitoring using macros: the "abstract pointcut" after preprocessing.

Figure 11. Applying the REQUEST and RESPONSE macros on both the previous file example and memory allocations.

3.4.2. Back to the Response/Request Properties

Using macros becomes interesting when we choose to apply

them to both the response and request properties studied above.

As we already explained the implementation of these

properties and generic aspect code using macros, combining

both should not be a problem. As a result, we have two macro

functions, REQUEST and RESPONSE. The REQUEST macro

takes 7 arguments:

� IDName: an identifier for the property and its items

(methods, pointcuts, structures, etc.)

� requestedJP: the pointcut expression which matches the

past event

� requestingJP: the pointcut expression which matches the

present event

� objType: the type of the object on which the property

applies, it must be identical to the type of the variable

given in the pointcut args or result

� object: the name of the object on which the property

applies, it can be any name, but must be identical to the

name of the variable given in the pointcut args or result

pointcuts

� errRetType: when a fault is detected, the type of the value

which must be returned by the matched function

� errRetVal: when a fault is detected, the value which must

be returned by the matched function

The RESPONSE macro takes 7 arguments:

� IDName: an identifier for the property and its items

(methods, pointcuts, structures, etc.)

� askingJP: the pointcut expression which matches the

present event

� asnweringJP: the pointcut expression which matches the

future event

� endEvent: event matching the end of the execution (must

contain the whole advice definition, without the advice

code)

� objType: the type of the object on which the property

applies, it must be identical to the type of the variable

given in the pointcut args or result

� object: the name of the object on which the property

applies, it can be any name, but must be identical to the

name of the variable given in the pointcut args or result

pointcuts

57 Pikeroen Olivier: An Approach About Monitoring Generic Properties on C Programs Using
Aspect-Oriented Programming with ACC (AspeCtC)

� errFunc: when a fault is detected, function that will be

called on each object which led to the fault

Not only we can use these macros to verify request and

response properties on the previous file example, but also on

other methods, for example malloc: we can check that a call to

malloc on an object eventually leads to a call to free on the

same object (see Figure 11). Therefore, monitoring the

response and request properties can be done now through only

one (macro) function per property. One may also now

implement new macros for verifying other properties (of any

kind, supposing that it is already possible to monitor them

without macros).

3.4.3. Weak Points

With these macros, information about the object cannot be

added through a structure (e.g. the name of the file), as the

structure should be provided by the user and hence its

attributes are not known by the macro which therefore cannot

easily deal with them generically.

One can also criticize the fact that here we just allow

advices with no more no less than one argument. We cannot

indeed have e.g. args(var1, var2) and act on both variables

var1 and var2 in the advice code.

More generally, using macros to implement advices limits

the level of expressiveness of the aspect code: the number of

arguments one wants to deal with, access to context

information, user-provided behavior, syntax constraints in the

macros arguments which can easily lead to errors, etc. Another

issue inherent to macros is also the debugging difficulty when

errors occur. Of course, all these problems might be solvable

with deep and accurate implementation of these macros, but

the code would become at the same time proportionally

complicated, as well as the use of the macros, where the

number of their arguments would increase accordingly.

A further approach, thus, could be to encapsulate these

macros into a graphical interface where the user would only

need to choose, as “options” to select, the arguments of the

macros, regarding his needs.

4. Conclusion

As research about runtime verification has been growing

more and more with interest and ideas, aspect-oriented

programming has been one of the most popular methods used

for monitoring, because its paradigm directly handles

instrumentation. However, until today, unlike AspectJ, no

AOP tools for C has been appreciated as a reference, and

most provided tools for this language are either outdated or

contain some lacks in one part or another. Thus, we chose

ACC, as it provides lots of features and its language is

directly inspired from AspectJ. Unfortunately, it does not

allow writing generic advices, which could have helped to

monitor generic properties. Hence, we tried an approach,

using macros, combined with hash table methods for C, to

simulate the effect of generic advising. This approach

succeeded in using one aspect implementation to monitor

one property on any kind of object, but suffered from some

consequent lacks in expressiveness and control of the

monitoring code. Still, for some purposes, the method can be

interesting, as it allows any kind of properties which can be

monitored with ACC on a single type of element to be

monitored generically (on any type), as abstract aspects

would do.

References

[1] Bram Adams, “Co-evolution of Source Code and the Build
System: Impact on the Introduction of AOSD in Legacy
Systems”, PhD thesis in Ghent University, Department of
Information Technology, (March 2008).

[2] Bram Adams and Tom Tourwe, “Aspect orientation for C:
express yourself”, in 3rd Software-Engineering Properties of
Languages and Aspect Technologies Workshop (SPLAT),
AOSD (2005).

[3] Remi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc
Menaud, Marc Segura-Devillechaise, and Mario Sudholt, “An
expressive aspect language for system applications with
Arachne”, in Transactions on Aspect-Oriented Software
Development I, Lecture Notes on Computer Science, vol. 3880,
pp 174-213 (2006).

[4] Ylies Falcone, Klaus Havelund, and Giles Reger, “A tutorial on
runtime verification”, in Engineering Dependable Software
Systems, vol. 34, pp 141-175 (2013).

[5] Klaus Havelund, “Runtime verification of C programs”, in
Proceedings of the 20th IFIP TC 6/WG 6.1 International
Conference on Testing of Communicating Systems (TestCom
2008) and the 8th International Workshop on Formal
Approaches to Testing of Software (FATES 2008), Lecture
Notes in Computer Science, vol. 5047, pp 7-22 (2008).

[6] Klaus Havelund and Eric Van Wyk, “Aspect-oriented
monitoring of C programs”, in the 3rd Domain-Specific Aspect
Languages Workshop (2008).

[7] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and John
Irwin, “Aspect-oriented programming”, in Proceedings of the
11th European Conference on Object-Oriented Programming
(ECOOP 1997), Lecture Notes in Computer Science, vol. 1241,
pp 220-242 (1997).

[8] Martin Leucker and Christian Schallhart, “A brief account of
runtime verification”, in The Journal of Logic and Algebraic
Programming, vol. 78, pp 293-303 (2009).

[9] Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk,
“Generic advice: On the combination of AOP with generative
programming in AspectC++”, in Proceedings of the Third
International Conference on Generative Programming and
Component Engineering (GPCE 2004), Lecture Notes in
Computer Science, vol. 3286, pp 55-74 (2004).

[10] E. M. Novikov, “An approach to implementation of
aspect-oriented programming for C”, in Programming and
Computer Software, vol. 39, pp 194-206 (2013).

[11] Justin Seyster, Ketan Dixit, Xiaowan Huang, Radu Grosu,
Klaus Havelund, Scott A. Smolka, Scott D. Stoller, and Erez
Zadok, “Inter Aspect: Aspect-oriented instrumentation with
GCC”, in Formal Methods in System Design, vol. 41, pp
295-320 (December 2012).

 Software Engineering 2016; 4(3): 50-58 58

[12] Olaf Spinczyk and Daniel Lohmann, “The design and
implementation of AspectC++”, in Knowledge-Based Systems,
vol. 20, pp 636-651 (2007).

[13] Charles Zhang and Hans-Arno Jacobsen, “TinyC2: Towards
building a dynamic weaving aspect language for C”, in
Proceedings of the 2nd AOSD Workshop on Foundations of
Aspect-Oriented Languages (March 2003).

[14] Zhe Chen, Zhemin Wang, Yunlong Zhu, Hongwei Xi, and
Zhibin Yang, “Parametric runtime verification of C programs”,
in Proceedings of the 22nd International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS 2016), Lecture Notess in Computer Science, vol.
9636, pp 299-315 (2016).

