

Software Engineering
2014; 2(1): 1-14

Published online September 30, 2014 (http://www.sciencepublishinggroup.com/j/se)

doi: 10.11648/j.se.20140201.11

A framework for architecture-centric practices integration
into agile software development [APIASD]

G. H. El-Khawaga
1
, Galal Hassan Galal-Edeen

2
, A. M. Riad

1

1Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
2Information Systems Department, Faculty of Computers and Information, Cairo University, Cairo, Egypt

Email address:
Ghada.elkhawaga@ieee.org (G. H. El-Khawaga), Galal@acm.org (G. H. Galal-Edeen), amriad2000@mans.edu.eg (A. M. Riad)

To cite this article:
G. H. El-Khawaga, Galal Hassan Galal-Edeen, A. M. Riad. A framework for architecture-centric practices integration into agile software

development [APIASD]. Software Engineering. Vol. 2, No. 1, 2014, pp. 1-14. doi: 10.11648/j.se.20140201.11

Abstract: The need for having a clear roadmap for a software product developed using an agile method is a reasonable

implication of the agilists’ tendency of establishing a planning-driven process rather than a plan-driven one, and chasing and

welcoming change rather than limiting it. Building an initial architecture for a product will serve as the railway for a planning

process that can enable managing change accommodation rather than unmanaged change accommodation. Change

accommodation –while not considering the proposed changes’ effects- may serve its purpose of flexibility on the short term, but

on the long term will uncover a complex, unmanageable set of relations between software components within an eroded

architecture. In this paper, a framework for embedding architectural practices into an agile software development process –while

avoiding problems of current agile architecting, and keeping agile development values- is presented.

Keywords: Agile Software Development, Agile Architecting, Quality Attributes, Software Architectures,

Architecting Framework

1. Introduction

The agile approach has been remarked for achieving higher

quality through adopting simple to apply yet productive, and

people-oriented set of practices. Agilists struggled to combine

a variety of practices and activities –including architecting

ones- into a process, which ensures producing agile software,

which can be always responding to changing requirements and

in the same time achieving business value. Architecting

principles and practices advocated by agile methods are

believed to result in problematic architectures [1].

Agilists’ view of architecting as heavy-weighted efforts

associated with much more modeling and documentation is a

serious problem of agile architecting. Unfortunately, to avoid

traditional architecting, agilists exaggerated into simplicity [3],

to the extent of underestimating the importance of certain

activities such as architectures’ documenting, missing the

main tenet of these activities, and considering these activities

as a burden, overlooking their goal. According to Hadar, not

having a roadmap of the direction where the development

process is going would result in opportunistic architecture [2],

in which inserting some requirements would be applicable

while inserting other requirements that would cause

modifications to tightly coupled components may cause

problems. Another problem is that quality attributes are not

given sufficient care. Simplicity or simple design is achieved

-from agilists’ point of view- by having a barely good enough

architecture [1]. Agilists tend to avoid exerting effort on

designing for unforeseen changes. Therefore, agile developers

may ignore functionalities, which are not specified within user

stories even if they are application-related functionalities ([3]

& [6]). However; these functionalities they ignore are not all

always about unforeseen changes, some of them are about

quality attributes or functionalities which are necessary to be

added sooner or later and the customer may not be aware of

their importance. As a consequence; agile methods are

accused of ignoring quality attributes such as reliability,

scalability and changeability ([3], [1] & [7]), which would

cause architecture breakers through the project lifetime [3].

Modifying quality attributes is believed to be costly [5] and

can affect system functionalities negatively [6]. Not

accommodating these changes early in the development

process is sufficient to tear down the myth of having better

quality using agile methods.

Also, agilists used metaphors sometimes to substitute lack

of architecture [6]. It was proved in many projects that chosen

metaphors often result in poor architectures, because these

metaphors maybe not helpful enough or even correct [8]. Irit

2 G. H. El-Khawaga et al.: A framework for architecture-centric practices integration into agile

software development [APIASD]

Hadar showed that despite creating metaphors to achieve

concretion of abstract concepts, metaphors sometimes don’t

provide the desired clearance and cause confusion and

meaning distortion [2]. Metaphors were argued to be a

methodological weak point [9], because they usually don’t

give precise or definite meaning and they become subject to

how each member in the team would understand its meaning

and tenet. This practice was widely ignored [10] because it has

never been completely understood. Even agilists like Fowler

claimed being not able to understand what is meant by a

metaphor and how to use it ([8] & [9]).

Advocating refactoring along the way is a major problem of

agile architecting, as well. Agilists claim that they can

accommodate any upcoming change using refactoring. They

consider it an alternative to designing up front. As refactoring

strongly affects the internal structure of software in an attempt

to reduce complexity, it can have implications on software

architecture and its quality. Kruchten emphasized several

times that architecture will not gradually emerge through

refactoring as many agilists misunderstand, instead

refactoring won’t help in architectural decisions that are hard

to undo or change lately during development process [6]..

Architectural refactoring effectiveness for achieving quality is

another issue that rises here. Authors like Bourquin & Keller

emphasized that architectural refactoring is effective in

increasing an application’s maintainability and consequently

reducing costs [11]. However, Buschmann mentioned that

refactoring is not suitable for inserting new functions or

improve operational quality attributes; because such

refactorings would alter a system’s behavior [12]. This claim

sounds reasonable as long as the main aim of refactoring is to

alter internal structure without changing external behavior,

and it also raises critical questions about the viability of

refactoring –in the context of agile development- to leverage a

system’s architecture and alter it later to insert missed quality

attributes. Another issue is that non-systemic refactorings can

result in inefficiencies that the whole system may suffer from,

as Sharifloo [7] claimed. Bourquin & Keller mentioned that

refactoring to overcome certain architecture violations is

likely to produce other architecture violations, and even they

can be of a greater number than the ones these refactorings

were carried out to overcome [11]. If considering architectural

erosion to be a result of accumulating several architecture

violations, then architectural refactorings may on the long

term result in architecture erosion and as a result architecture

degradation.

Architecting problems have side effects that are manifested

through the limitations of agile methods. Examples of these

limitations are [13]: limited support of agile development for

building reusable artifacts, limited support for developing

safety-critical software, and the limited support for developing

large, complex software. The goal of this research is to

introduce a framework for architecting in the context of agile

development, while not falling into the same problems of

current agile architecting trends, and maximizing business

value that can be reached through employing an agile software

development approach. Section two of this paper includes an

introduction of previous work exerted in the same field,

section three is where the proposed framework is illustrated

and presented; and section four includes a verification of this

framework, both from the agile software development and

architecting sides. And finally, this work is concluded in

section five.

2. Previous Work

Agilists and methodologists worked together to increase

agile methods’ applicability and to overcome architecting

issues and application-oriented limitations, while preserving

benefits and advantages agile methods can offer. To overcome

these limitations; they had tried many techniques. In the

coming subsections, two trails are explained.

2.1. Refining the Design Process

In this solution path, agilists suggested replacing the whole

design process with a modified sub-process that inherits agile

methods’ advantages accompanied with another software

development approach and at the same time avoids

shortcomings of the standalone approaches. They got to a

design sub-process named Agile Model Driven Development

(AMDD). AMDD is the agile version of Model Driven

Development (MDD) [4]. According to Picek & Strahonja’s

definition of MDD, models are used as the primary artifacts

throughout the software development lifecycle [14]. While

this definition contradicts with the value of agile development

which confirms that working software is the primary artifact;

Ambler explained that agile models are those which are barely

good enough [4]. This means that AMDD’s trend is not to go

far in modeling, but it is to create models which are at the most

effective point they could possibly be at.

In his introduction to AMDD [4], Ambler advocated

providing a big picture at the beginning of each release

through the envisioning activity. However, a needed big

picture would be at the level of a project release. While

claiming that AMDD is a critical strategy for scaling agile

software development beyond the small, co-located team

approach seen in the first stage of agile adoption [15], lack of a

big picture at the project level would cause challenging

integration problems [16], and may result in fragile

architectures, which can resist further changes. It is noticeable

that in his various articles and papers illustrating AMDD ([4]

& [15]); Ambler avoided defining precisely which MDD

model is needed or resulting from each activity, when

transformations between models are held, and how to include

any missed details in the transformation process so as to be

present in the resulting model. Also, while MDD is referred to

as a set of approaches in which code is automatically or

semi-automatically generated from more abstract models [14],

Ambler has argued that using modeling tools would require

modeling skill set and specialized expertise [4]. Also, Ambler

argued that with AMDD, a little bit of modeling is done and

then a lot of coding [15]. This declaration seems to be a clear

violation of the basic idea of MDD which aims at moving the

development efforts from programming to the higher level of

Software Engineering 2014; 2(1): 1-14 3

abstraction and concentrate efforts on modeling and

generating needed code from these models [14].

2.2. Using a Hybrid Approach of Agile and Traditional

Practice

In this solution path, process practitioners targeted mainly

agile methods’ ability to scale up and their applicability for

large-scale systems. They used mixtures of agile practices

with plan-driven practices to construct a hybrid framework,

where agile practices are used where their advantages are

maximized, and plan-driven practices are used where their

strengths can be maximally inherited. In balancing agility and

discipline, Bohem & Turner have introduced a risk-based

approach to choose the right mix of agility and control in the

development strategy used for a certain application [3]. In the

proposed approach, a risk-based analysis is used to decide on

parts where agile risks dominate and others where plan-driven

risks dominate. The amount of planning, architecting,

prototyping and testing needed can be considered given the

analysis results. As a result, parts can be considered, where

risk-based agile process and those where risk-based

plan-driven process can be applied. Bohem & Turner have

applied their proposed framework on an agent-based planning

system for national crisis management which is a very large

highly critical system [3]. This framework provided constant

monitoring and evaluation to handle risks that can come up

during development lifecycle. However, this framework may

require experienced staff having different skills, can precisely

measure possible risks, and can carefully merge agile practices

with plan-driven practices in a way that best reflects the

inherited advantages of both of these approaches.

3. Introducing APIASD

Through this framework- entitled APIASD (Architecting

Practices Integration into Agile Software Development)- an

initial architecture is achieved to serve as the base for a final

form that will emerge through continuous evolution and as a

result of growing and accumulated understanding of business

goals and user requirements that either come up or change

through the project’s lifetime. APIASD is the result of

integrating tenets, some activities, and some practices of GA

method [17], QAW [18], ADD [19], and ATAM [20] into an

agile software development process. The reason for adopting

practices and activities from these methods –especially QAW,

ADD, ATAM- is that they are originally complementing each

other and pursuing architecture development based on quality

attributes, which is the basic objective of this work. They have

the same characteristics of simplicity and reliance on joint and

collaborative work, besides supporting iterative and

incremental development. Using practices from GA, and

ATAM is expected to facilitate performing change impact

analysis that would be needed to obtain clear expectations

about the effect of changes to components, connectors, and

their relationships. Practices from GA also facilitate collecting

information about requirements from which architectural

drivers and relations between them will be extracted. Using

ATAM parts is helpful in figuring out conflicts between

quality attributes, so as to make suitable decisions to handle

these conflicts. Using practices from QAW, and ADD can

result in having a roadmap to follow in slicing incremental

portions of the software to be developed based on achieving

both of quality attributes side-by-side with functional user

requirements without getting involved in big design upfront

while gaining benefits of having a big picture of the software.

For more detailed of APIASD, a level-based diagram is shown

through figure 1. This figure is built upon a general model of

agile development presented by Layton [21]. The steps of

Layton’s model are shown with a faded color in dashed

squares, while additions made as a result of merging

APIASD’s steps with the original model are shown within

white boxes.

There are no prerequisites concerning project’s size, type or

domain to apply APIASD upon. It is assumed that if it was

agreed that an agile software development method is suitable

for developing a certain software product, then this project has

satisfied the prerequisites for applying APIASD on. Also,

there are no modifications or changes to the structure of a team

adopting an agile approach while attempting to apply

APIASD. If there are additions or shifts in roles as a result of

applying the framework, they will be mentioned in their

context. The coming subsections include an illustration of

phases of APIASD.

4 G. H. El-Khawaga et al.: A framework for architecture-centric practices integration into agile

software development [APIASD]

Figure 1. Level-based diagram of APIASD.

Software Engineering 2014; 2(1): 1-14 5

3.1. Value Directions Analysis

Studying and exploring value directions that may have

global effect on the entire software system is inevitable to

come up with an initial idea of how a software product would

look like and the rationale behind design decisions to be made

about this software. This trend can help formulate

architectural drivers and enable change impact analysis [17],

by searching for conflicting value directions that provide more

potential for changes through the software’s lifecycle. Figure

2 gives an overview of basic steps of this phase.

The purpose of choosing to apply these steps after project

chartering is that after defining the basic lines of a project

concerning business goals, vision, team roles, and work

agreements; an initial understanding of value directions

affecting the product should be clarified so as to act as a guide

for quality attributes, functional requirements, as well as

design constraints –i.e. architectural drivers -identification.

These value directions are open to modifications and changes

whenever a clearer understanding of software’s goals and

requirements is reached. This can dispel any doubt that this

step can act as a gate for inserting any heavy planning into an

agile process. This phase is performed through a

brainstorming session. Identifying and characterizing value

directions is the first move towards identifying quality

attributes explicitly in APIASD.

Figure 2. Value directions’ analysis phase.

3.1.1. Identifying Value Influencing Directions

There is a demanding need to consider value directions

coming from the context of software to be developed

side-by-side with value directions resulting from

understanding this software’s concerns. This step prepares and

supplies participants with necessary information to extract

quality attributes concerns in subsequent steps. At this early

stage, value directions are initial and subject to further

exploration and specification. So, according to Hofmeister et

al. [17], attention would be paid to identifying cross-cutting

value directions that can have influence on most prospective

components. Attention would be paid also to identifying value

directions that may be subject to change or would be difficult

to satisfy [17]. Team members should focus their efforts

mainly on identifying factors representing quality attributes of

the software to be built. Value directions identification is the

first step towards realizing business goals.

3.1.2. Characterizing Value Directions and Their Mutual

Impact

After identifying value influencing directions through the

previous step, a resulting set of value directions recorded on

index cards is available. Till this moment, the only relation

between identified directions is that they all represent the

same product, but not all of them have the same criticality for

the software product to be developed. Therefore, there should

be a way for differentiation between them according to their

importance and their contribution to business goals

achievement from stakeholders viewpoints, and their

changeability and hence the software’s susceptibility to

change on different levels –requirements, architecture, code,

or documentation levels. For each value direction defined

through the previous step, development team and stakeholders

should brainstorm to identify these two characteristics:

• Changeability. Hofmeister described this characteristic

as identifying how a value direction is likely to change

during or after development, and how often it will change

[17]. This characteristic will be very beneficial through

architecture design process, because it can help in

locating components which would be more change-prone;

because if a tracing is made back to requirements these

components translate, there will be a direct relation with

change-prone value directions.

• Importance. User acceptance, and business goals are the

main reference for every practice, and their achievement

is the main goal of every artifact resulting through any

agile software development process. The intent of

identifying the importance of a value direction is to

define to what extent this direction is negotiable or

critical from business stakeholders’ viewpoint. To define

this characteristic, the power of an agile team -which

comprises many aspects, interests, and trends- is called

here.

The product owner and the onsite customer’s opinions

represent directive factors while brainstorming to determine

this characteristic. Also, the impact of these value directions

on the expected architecture should be identified. Hofmeister

suggested that characterizing a product factor’s impact would

be by exploring its change effect on components, other value

directions, modes of operation, and other design decisions

[17]. In APIASD, what matters at this stage is to identify a

direction’s change effect on other value directions. This will

help in identifying conflicts between value directions; and

based on their importance and negotiability, a decision can be

made. In this early stage, it is not expected to have much

information about which components will be there neither

what design decisions will be made, and as it is not expected to

depend on a development team members’ experience.

6 G. H. El-Khawaga et al.: A framework for architecture-centric practices integration into agile

software development [APIASD]

3.2. Quality Attributes’ Analysis

This phase provides a trial to convert quality attributes

captured through value directions into tangible form to be

addressed through and guide architecture creation. The steps

of this phase are presented through figure 3. It is important to

note that shaded steps are about activities held normally in the

context of agile development, whether this framework is

applied or not. The reason why quality attribute-related

feature cards creation and shaping is suggested to be held at

the stage just before story writing is that quality attributes are

cross-cutting and they can have explicit effect on shaping

functional requirements and as quality attributes realization

should be advanced to functional requirements as it was

explained before.

This phase imports practices from QAW, and ATAM, with

modifications to be applicable in the context of an agile

software development process. Steps and activities of this

phase require presence of the architect among the whole team

–which is guaranteed in teams adopting an agile process- to

collaborate into discussions through which quality attributes

will be made concrete. A new role of a scribe emerges. This

phase is held in general through a series of brainstorming

sessions, except for some practices which can be held first by

individuals then these individuals join in a session to discuss

their thoughts and the final output will be resulting from

collaborative work.

Figure 3. Quality attributes’ analysis phase.

3.2.1. Quality Attribute Scenarios Generation

After defining software architectural drivers, they are

transformed into an analyzable form that can be used to make

a decision about strategies to be used to realize business goals

and user requirements. Usually in agile development, quality

attributes aren’t explicitly addressed in feature cards neither in

user stories. They can be concluded implicitly from a

customer’s specification of what s/he aspires to have from

obtaining the software under development. A solution to this

issue is to use quality attribute scenarios, and providing them

in a form compatible with this of functional features as

specified in the context of an agile software development

process. Scenario brainstorming is held through at least two

rounds, where each stakeholder can contribute at least two

scenarios [18]. APIASD suggests supplying participants of the

scenario brainstorming session with general scenarios for

quality attribute requirements identified for the software to be

developed so as to guide them and facilitate scenario

generation. General scenarios are those which are system

independent and can, potentially, pertain to any system and

turned into concrete system-specific scenarios [22].

Participants in the brainstorming session will be asked to

determine general scenario parts of relevance and apply them

on the system in hands.

Scenario brainstorming works well with large groups that it

enables creativity, facilitates communication, and helps

expressing the collective minds of the participants [20],

besides building group buy-in to the architecture design

process. The team leader works as a facilitator, who is

responsible for referring to the list of quality attributes

identified and making sure that each quality attribute has at

least one scenario concretizing and representing it. Another

team member will act as a scribe who is responsible for filling

cards with agreed upon scenarios.

Clements et al. [20] proposed some undesired properties of

brainstormed scenarios like:

� Having overlapping issues and representing the same

concerns. This can be handled through scenario

consolidation as it will be explained later.

� Addressing issues that are unlikely to arise in the

software’s lifetime. This property will be overcome

whenever the scenario will be prioritized according to its

importance.

� Addressing issues of low priority to the development

effort. Clements et al. [20] didn’t clarify these issues

more. However, this is unlikely to happen through

APIASD, because quality attributes identified before are

prioritized according to their importance, and generated

scenarios will be prioritized as will be explained later.

Another property of resulting scenarios is that they may be

system-specific [18]. This case demands the architect’s

interference to separate system-related concerns from

software-concerns so as to enable software architectural

decision making [18].

After finalizing scenario brainstorming session, the scribe

works on transforming scenarios into a form to be compatible

with feature cards embodying user stories that will be

generated through story writing and persona creation sessions.

A quality attribute-related feature card has some fields like:

Software Engineering 2014; 2(1): 1-14 7

feature ID, feature name, description, feature type – whether

being technical or business-, , estimated work effort (days),

story points, planned iteration, associated quality attribute

concern, customer rank (H/M/L), architect rank (H/M/L), user

(source of stimulus), associated features (IDs only),

acceptance criteria, and associated tasks.

3.2.2. Consolidation and Prioritization of Quality

Attribute-Related Feature Cards

Clements et al. [20] suggested how this step can proceed.

The team leader leaves about 10 minutes for participants to

review the quality attribute-related feature cards created

through the previous step. Each participant takes down notes

about scenarios s/he thinks should be merged. When time is

out, the team leader asks participants to propose pairs of

scenarios to be merged and why they think they should be

merged. Then for each pair of scenarios to be merged, a

decision is made through voting by raising hands. If there is a

reasonable objection on the merge, then a decision would be

made of leaving the addressed scenarios untouched. The

agreed upon merging between scenario pairs are processed by

the scribe who should read out loudly the text of remaining

scenarios for participants to be assured that these scenarios are

the ones they wanted to be left, while striking out the ones to

be removed. Scenario consolidation helps in preventing a

stakeholder from dividing his/her votes –while prioritizing

scenarios- among two scenarios addressing the same issue,

and subsequently eliminating their change of gaining a high

priority based on their votes [20], [18].

After obtaining the final list of quality attribute scenarios,

these scenarios should be prioritized. Prioritizing scenarios

will help in selecting the right portion of the software to begin

analyzing, based on business value, effort needed to achieve

these scenarios, and impact on the architecture to be created.

Scenario prioritization can enable incremental development

which is the basis of agile software development. There is a

need for scenario prioritization to be held again based on the

relative impact of the scenario on the architecture to be

developed., because differentiation based on quality attributes’

preference and their impact on each other –and hence on the

architecture to be developed- will affect the order in which

scenarios will have solution strategies suggested for, as will be

explained through the coming phase. This prioritization will

be held by the architect in 10 minutes; after which, s/he should

present to the whole stakeholders and team members ranked

scenarios through an oral presentation of the rationale for

these rankings. The architect’s ranking of scenarios should be

based mainly –besides his/her experience- on the quality

attribute-related value directions’ impact on each other and on

the architecture to be created, as well as their changeability.

Priorities would be in the form of (H/M/L); while “H” denotes

a high rank, “M” denotes a medium rank, and L denotes a low

rank.

3.2.3. Quality Attribute Tree Generation

To step towards identifying strategies to achieve the desired

quality attributes, a utility tree is generated. Constructing a

utility tree serves to map generated scenarios to the quality

attributes they are representing, so as to ensure there is no

missed user desired quality attribute not to be addressed by the

architecture to be developed. In ATAM, a utility tree is used to

move from general to specific, i.e. to begin with quality

attributes and have team leader and architects getting together

to identify scenarios representing the desired quality attributes

[20]. In APIASD, quality attributes and their representing user

required scenarios are already there; but still there is a need to

identify –based on the identified scenarios- which aspects or

quality attribute concerns really matter. Identifying needed

quality attribute concerns enables figuring out commonly used

strategies and patterns addressing those concerns. A utility

tree enables relating several scenarios to one quality attribute;

and therefore facilitates discovering whether they have

conflicts together or with scenarios representing other quality

attributes. In presence of a visual representation of mappings

and relations between scenarios and quality attributes the way

offered by a utility tree; further conflicts can be handled

whenever their sources are located. Constructing a utility tree

is one of the architecture-related practices which make an

architecture evaluation –whenever carried out- becomes more

about a confirmation exercise than being an investigatory one.

A utility tree is built upon four levels [20], [22]; utility is the

root node, the second level contains quality attribute

requirements specified through value directions, the third

level contains quality attribute concerns which are to be

specified through this step, and the forth level contains

scenarios relevant to each quality attribute associated with

their pair of rankings.

Quality attribute concerns –or as Wojcik et al. [19] called

them design concerns- are refinements to quality attributes

that bring more specification into a wide definition of a quality

attribute to help facilitate identification of a suitable solution

[19]. Identifying quality attribute concerns is the

responsibility of an architect. The architect is the one to

construct an initial version of the utility tree, before holding a

meeting with the team where this initial utility tree is

discussed and refined. The architect should clarify to the team

why s/he thinks a scenario represents a certain quality attribute

concern.

After making sure that all the identified quality attributes

and their associated scenarios are represented through quality

attribute-related feature cards, the team works collaboratively

on identifying, prioritizing, and grouping related

functionality-related feature cards. Having quality

attribute-related feature cards present, while writing

functionality-related feature cards, will facilitate deciding

dependencies of functionalities on several quality attribute

scenarios, without going through detailed design work.

Identifying dependencies also will affect how functional

features will be grouped into related clusters. It worth

mentioning here that identifying dependencies of

functionality-related features upon quality attribute-related

features doesn’t necessitate implementing quality

attribute-related feature cards before functionality-related

ones. Instead, it obligates implementing the associated quality

attribute-related features as a precondition to have a functional

8 G. H. El-Khawaga et al.: A framework for architecture-centric practices integration into agile

software development [APIASD]

feature gaining acceptance not as a precondition to have it

operational. So, identified quality attribute-related feature

cards are placed in the product backlog till

functionality-related ones are prepared to have both types of

cards estimated to determine their relative sizes.

3.2.4. Quality Attribute-Related Feature Cards Estimation

Scenario estimation or quality attribute-related feature

cards’ estimation is a practice held the same way as for

functionality-related feature cards. Smith & Sidky explained

estimating relevant size of feature cards using story points

[23]. Each feature card is assigned a number indicating its size

in relevance to other features. Numbers are derived from the

Fibonacci scale. These numbers represent what is meant by

story points. Numbers can be replaced with any objects the

team agreed to use. Smith & Sidky [23] emphasized the

usefulness of using story points –in absence of detailed

information about tasks and effort estimation (in terms of days)

for a certain feature- while allocating features to a release and

determining an iteration within which these features are

implemented. Estimating a feature size is a group effort that

represents the collective mind of a team’s members and

increases their sense of ownership for the project they are

working on.

3.3. Architecture Shaping Phase

Figure 4. Architecture shaping phase.

Now; there is a need for defining a roadmap for the

project’s components’ relations and interactions, how these

components are expected to satisfy quality attribute

requirements, and how an integration between quality

attribute and functional requirements is to be managed. This

stage is needed so as not to waste a team’s effort just in

building structure while increasing long term costs, in

absence of an architecture whose structure follows its form.

Figure 4 highlights main steps of this phase. Activities and

practices of this phase are mainly adopted from ADD

method, while identifying tradeoffs and risks associated

with strategies and architectural decisions made are inspired

from ATAM practices. At this stage, the resulting initial

architecture is built upon the highest priority quality

attribute concerns and features, and the remaining ones are

inserted into the architecture through conducting further

iterations of the same phase presented in this subsection.

This architecture evolves and grows to incorporate further

features and quality attribute concerns as changes hit by the

product to be developed. Attendance of the architect is not

optional; because many activities carried out are guided by

the architect’s experience and knowledge as well as his/her

discussions with the whole team.

3.3.1. Design Strategies and Solution Patterns Identification

This step begins by receiving the highest priority quality

attribute-related as well as functionality-related features along

with design constraints defined previously in value directions’

identification step. These inputs serve as architectural drivers.

Building the architecture based on highly prioritized quality

attribute scenarios/features helps in figuring out main design

concerns –by tracing these scenarios back to their related

quality attribute concerns identified in the product’s utility

tree- besides being useful in identifying discriminating

parameters to be the basis for preferring between suggested

design decisions to address design concerns identified. Using

functionality-related features will help in considering their

related design concerns through checking scenarios upon

which a feature depends and mapping these scenarios to their

associated quality attribute concerns in the utility tree.

After identifying design concerns associated with selected

architectural drivers, the architect defines discriminating

parameters [19], which serve as conditions that should be met

by selected strategies. These parameters represent comparison

criteria whose values are used to select a strategy or a design

decision from the candidate solution strategies and design

decisions of each design concern. Discrimination parameters

are derived from response measures of scenarios related to the

design concerns, or from user requirements that show quality

attribute-related concerns like a requirement that a software

system should be able to support 100 client queries.

Defining design concerns helps in identifying and pointing

out the search areas of strategies needed to satisfy these

concerns. According to Bass et al. [22], an architectural

strategy can be defined as a collection of design decisions that

influence the control of a quality attribute response, while an

architectural pattern represents a package of strategies that

are concerned with different quality attributes but have a

basic motivation. A list of candidate patterns to satisfy

identified concerns can be obtained depending on the

architect’s experience and knowledge, or through commonly

used and known architectural strategies for achieving quality

attributes [19]. Quantitative models aren’t applicable here due

to the crosscutting nature of quality attributes which makes

building an executable model requires having a complete

architecture, which is not available at this stage. Add to this

Software Engineering 2014; 2(1): 1-14 9

having some quality attributes which cannot be quantified like

modifiability. Also, building quantitative models is not cost

effective at this stage. Therefore, APIASD suggests making

estimates of expected values of discriminating parameters

based on architect’s and development team experience. After

determining discriminating parameters’ values, a decision

should be made about which pattern to select based on a

discussion between the architect and the development team

members. A decision matrix is constructed, like the one

represented by table 1.

The decision column in the table below is where the pattern

chosen is recorded, while the implications column is used for

recording further analysis done to enable discovering

expected consequences of the decision made. The purpose of

analyzing consequences of an architectural decision is to

provide insights into possible dependencies between decisions

made and decisions to be made or to highlight possible impact

of making changes to the chosen pattern or one of its

components before making this change.

Table 1. Architectural patterns’ decision matrix.

 Pattern 1 ….. Pattern M Decision Implications

Design concern 1

:

Discriminating

Parameter

1

Discriminating

Parameter

(N)

Discriminating

Parameter

1

Discriminating

Parameter

(N)

Values associated with each discriminating parameter of each design concern go here

Chosen

pattern’s name

goes here

Design concern N

Analyzing consequences of an architectural decision can

also highlight the extent to which a change can affect

achievement of the addressed quality attribute or/and other

quality attributes. Building on the agile mindset, obtaining a

precise and clear analysis of an architectural decision change

consequences bears uncertainty, because they are about

expectations of the future. Besides, it is impossible to design

an architecture that accounts for all possible evolutions in the

software’s requirements. However, given the requirements

and their associated design decisions, it is possible to define

some cases where change can cause a conflict with other

attributes or might be risky to the whole software.

Implications can include sensitivity points, tradeoff points,

risks, and non-risks resulting from applying the chosen pattern.

A sensitivity point for a certain quality attribute represents a

decision with an effect on the degree to which this quality

attribute can be achieved. Variations in the decision are

followed by a serious variation in the resulting value of the

quality attribute. Discovering sensitivity points of an

architectural decision –like discovering tradeoff points, risks,

and non-risks- is a collaborative activity based on asking

elicitation questions. These questions can be inspired by the

architect’s experience.

For a software architecture planned to address many quality

attributes and their concerns, it is expected to have

relationships between these quality attributes, and

subsequently between strategies chosen to achieve them.

Franch & Carvallo characterized relations between quality

attributes to be as either [24]: collaboration, increasing a

quality attribute concern will lead to an increase in another; or

damage, decreasing a quality attribute concern will lead to a

reduction in another; or dependency, a quality attribute

requires achieving some level of another quality attribute to be

achieved. Identifying the relationship type between two

quality attributes can provide a way to identify tradeoff points

between techniques chosen. In general, tradeoff points

between quantified quality attributes are easier to identify than

those involving quality attributes that cannot be quantified like

modifiability for example [25]. This case highlights the

necessity of tracing quality attributes that cannot be quantified

back to their related scenarios and value directions to get

information about which value directions –and hence quality

attributes- are affected. This is done through the impact

characteristic associated with each product factor. Having

tradeoff points affecting quality attributes of high importance

can raise risks about making related architectural decisions.

These risks should be highlighted. Also, a non risk is an

architectural decision that is appropriate in the context of the

quality attributes that it affects [26]. The importance of

identifying non-risks lies in examining whether it remains a

non-risk and represents a strength point of an architecture

decision whenever this architecture decision changes.

3.3.2. Verifying and Refining Requirements

Now, a mapping should be done between selected strategies

and architectural drivers. The purpose of this mapping is to

ensure that no architectural driver was missed in the strategies’

identification process. Moreover, visualizing which strategies

should together serve to reach a specific architectural driver

can help in looking for inconsistencies and decide how to

resolve them. As the architecture to be developed in this stage

is an initial one and is subject to evolution through the

project’s lifecycle, and as the chosen architectural drivers will

be allocated to releases as requirements; mapping and

grouping chosen strategies to architectural drivers will help in

reusing decisions and implications identified in upcoming

architecture-related activities through the project’s releases. A

skeleton for tables representing desired mappings should

include architectural drivers, associated design concerns, and

associated architectural decisions. The identified mapping can

help in deciding how patterns relate to each other and give

insights into new element types that emerge as a result of

10 G. H. El-Khawaga et al.: A framework for architecture-centric practices integration into agile

software development [APIASD]

combining patterns [19].

By this stage, a list of software elements up to this moment

is available. Having a list of elements available, it is time to

move into more visualization of a proposed architecture. The

development team gathers to construct needed views that are

expected to provide a general overview of the architecture

after identifying its basic lines. Types of views to be

constructed are influenced by which quality attributes are

highly required for the product to be developed. For example,

if performance is a critical quality attribute, then a process

view is required. Constructing such views enables defining

integration points between functional and quality attribute

requirements. Weaving the quality attribute requirements with

the functional ones, according to Moreira et al. [27], can be in

one of the following forms:

� Overlapping, where a quality attribute requirement

modifies a functional one it transverses. This case is

translated through having the quality attribute

requirements required before or after the functional ones.

� Overriding, where a quality attribute requirement

superposes a functional one it transverses. This case is

translated through having the behavior described by a

quality attribute requirement substituting the functional

one’s described behavior.

� Wrapping, where a quality attribute requirement

encapsulates a functional one it transverses. This case is

described by having the behavior described by a

functional requirement wrapped by this described by a

quality attribute requirement.

The development team should return back to update the

project backlog to add feature cards about new elements to be

prioritized, grouped, and estimated as was done for all other

cards; and these elements should be reflected through

constructed views.

3.4. Architecture-Related Release and Iteration Work

APIASD is well-formed to suit the incremental and iterative

nature of agile software development. It includes work to be

done at the release as well as the iteration levels, and this work

should be repeated till a final version of the needed

architecture emerges. Figure 5 represents steps of this phase,

while faded squares represent either phase three that will be

repeated; or work held normally in the context of agile

development, whether or not APIASD is applied.

3.4.1. Choosing an Element to Architect (Release-Level)

Choosing and allocating suitable features to be developed

through upcoming release is much more facilitated through

using APIASD, because the generated initial architecture

provides a roadmap of basic elements of a product to be,

and all what the development team need to do is to choose

an element of the system to work on in the coming release.

Wojcik et al. [19] suggested that choosing an element to

focus on in the coming cycle of architecture development

can be subject to one of four criteria or a compromise

between them all. These criteria are business ones,

organizational ones, risk and difficulty ones, or current

knowledge available of the architecture. These criteria are

easily defined, because architectural strategies identified are

mapped to their architectural drivers, which were built upon

value directions that are characterized, and their associated

development risks can be figured out. Add to this that

strategies used were elicited to identify their sensitivity and

tradeoff points besides associated risks. At this stage where

the basic lines of an architecture have been already formed

and it is a matter of assignment of an element to a release,

risk and difficulty of developing an element can be defined,

not precisely but to a limit good enough to make a decision

upon.

Figure 5. Architecture-related release and iteration.

3.4.2. Instantiating Architectural Elements and Allocating

Responsibilities (Release-Level)

This step is the same as its equivalent in ADD. Having an

initial list of software elements, these elements are instantiated

and assigned responsibilities according to their types [19].

Bass et al. [28] and Wojcik et al. [19] suggested some criteria

that can be used to group or allocate functionality like:

functional coherence, where requirements grouped together

exhibit low coupling and high cohesion; or similar patterns of

data or computation behavior, where responsibilities showing

similar patterns of behavior, like for example, accessing

database in a similar fashion; or similar levels of abstraction,

Software Engineering 2014; 2(1): 1-14 11

where responsibilities related to hardware and others which

are more abstract are separated, or locality of responsibility,

where purely local responsibilities should be separated from

those related to providing services to other elements.

3.4.3. Defining Interfaces for Elements to be Implemented

(Iteration-Level)

In this step; interfaces between elements allocated to the

current iteration and other elements –which are needed to

perform features to be obtained from an iteration- should be

identified. According to Wojcik et al. [19], an element’s

interface describes the PROVIDES and REQUIRES

assumptions a software element makes about others or are

made about it. Patterns and architectural decisions manifested

through software elements can ease specifying interactions

between them. For example, calls, subscribes to, and notifies

are some kinds of interactions that come specific based on

used patterns [28]. This step yields writing tasks associated

with each feature card, and integrates well with feature card

modeling activity held by the development team which is

explained by Smith & Sidky [23], where team members walk

through a feature to identify needed elements, interfaces and

interactions between them, and decide needed tasks to

implement this feature. After a team’s understanding of user

requirements –both quality attributes and functionalities-

grows, and as the project continues to provide working

software through releases; the project’s software architecture

continues evolving till it reaches its final form.

4. Verifying APIASD

This section aims at proving that APIASD is adhering to

basic lines of its guiding umbrellas. APIASD is proved to

follow software architecture design basics and achieving them.

In the same time, it shouldn’t violate agile software

development values and principles. For achieving this purpose,

a defining model of architecting methods and a guiding set of

agile software development distinguishing criteria are used to

identify the APIASD’s level of adherence to both sides.

4.1. Architecting-Wise Verification

Several authors tried to define criteria representing

commonalities between architecture design methods and to

generalize them to reach a model for software architecture

creation approach. Depending on the general model proposed

by Hofmeister et al. [29], developing a software architecture is

based on three activities; architectural analysis, architectural

synthesis, and architectural evaluation; and produce some

artifacts, like candidate architectural solutions, and views

representing the produced architecture. The following points

summarize how APIASD elements achieve and map to each

criteria of the general model of software architecture design as

proposed by Hofmeister et al. [29]:

� Architectural analysis: this activity is achieved through

Identifying and characterizing value directions, then

quality attribute scenarios’ creation and their

transformation into prioritized feature cards, and related

activities; serve to elicit and form requirements based on

context and concern-related needs. Through Determining

highly prioritized quality attributes and functional

requirements to begin with identifying architectural

drivers that will shape the resulting architecture.

� Architectural synthesis: This activity is done

incrementally and iteratively through APIASD.

Architecture shaping phase encapsulates the architectural

synthesis effort. Design strategies are identified and

associated with them their sensitivity points and possible

risks. Identified strategies are translated into

responsibilities allocated to software elements. For each

element, interfaces are identified at the beginning of the

iteration when the element is going to be implemented.

� Architectural evaluation: A mapping between

architectural drivers and chosen strategies is constructed

to ensure satisfaction of all architectural drivers. Basing

architectural decisions’ making on discriminating

parameters and clearly documenting this provides a

chance for revising these decisions. Besides, necessary

views are constructed to visualize the relations between

elements and make sure that no architectural driver was

missed. Also views’ creation helps in integrating quality

attributes and functional requirements.

� Architectural concerns: are handled through Value

directions, functional requirements, quality attribute

requirements, quality attribute concerns, design

constraints

� Context: Team members can impose value directions

–and hence quality attribute scenarios- based on

domain-experience or organizational constraints, as long

as the imposed value directions are aligned with business

goals of the product to be developed.

� Architecturally significant requirements: are handled

through having Prioritized architectural drivers chosen to

be the basis for strategies and patterns selection. They

have the most impact on the element chosen to be the

subject of a release.

� Candidate architectural solutions: Strategies and

patterns are proposed for each quality attribute concern.

Then a decision is made based on discriminating

parameters’ values, and team experiences and knowledge

of similar cases. Architectural strategies and patterns are

up to modification based on subsequent analysis and

understanding in upcoming releases.

� Validated architecture: The mapping constructed

between architectural drivers and chosen architectural

decisions represents act as a joining hinge between the

cause and result serving to form an initial architecture

validated through associated discriminating parameters,

and non-risks identified. Also, at the beginning of each

release where an element is chosen to be analyzed more,

its associated architectural drivers are chosen. The initial

architecture is validated for satisfaction of high priority

requirements and constraints with respect to the

12 G. H. El-Khawaga et al.: A framework for architecture-centric practices integration into agile

software development [APIASD]

decomposition.

� Backlog: APIASD emphasized the importance of placing

prioritized quality attribute scenarios –i.e. representative

feature cards- and functionality-related cards in the

product backlog. On the other hand, creating an initial

architecture and listing its basic elements can guide

decomposing a software system into increments and

identify quality attribute and functional requirements to

be the focus of a certain release. Therefore, APIASD

enables and relies on the concept of a backlog.

� Views: APIASD doesn’t impose creating a certain set of

views. There is an emphasis on creating simple views

which are barely good enough to represent the created

architecture and as simple as possible to communicate

the design and achieve the purpose of their creation.

Also, APIASD is believed to meet the guiding principles of

architecture development provided by Rozanski & Woods

[30]. Among the met guidelines is APIASD’s ability to

integrate with any chosen agile development method, and

being technology neutral. APIASD guides an architect in

using solution strategies by basing the choice decision on

discriminating parameters derived from quality attribute

scenarios to ensure that chosen solution strategies are driven

by architectural drivers. APIASD also guides the architect in

his/her future use of chosen solution strategies by imposing

identification of factors or decisions that can be sensitive

either to the same quality attribute the strategy is addressing or

to other ones and may cause a conflict or influence them

negatively. APIASD suggests using practices that can

facilitate communicating architectural decisions to

stakeholders and collaborating during decision making

process.

Falessi et al. defined nine categories of architects’ needs to

be this basis for evaluating software architecture design

methods [31]. These criteria and how they are mapped on

APIASD are as follows:

� Abstraction and Refinement: APIASD’s ability to add

details is present through further decomposition of an

element in subsequent releases. Also, views’ construction

helps in discovering more details about elements’

interactions. While removing details is shown through

utility tree creation and capturing the quality attribute

concern behind each scenario.

� Empirical validation: APIASD is based on GA, QAW,

ADD, and ATAM. These methods (except for ATAM) are

proposed and verified on paper only. However, a case

study was used to validate APIASD, and a paper on this

issue is under revision.

� Risk management: Risks are identified through APIASD,

and handling them whenever they occur is up to the

architect and development team to choose suitable

strategies to mitigate risks.

� Interaction management: Interactions between strategies

chosen are discovered and their impact change can be

managed through making decisions, while considering

affected quality attribute’ priorities.

� Concerns: APIASD supports presenting different

concerns and considering them. Architecture concerns

are identified through early phases and the resulting

architecture is presented by different views

� Tool support: There is not a specific tool adapted for

usage by APIASD. However, through the comparison

presented by Tang et al. [32], some tools were found to be

able to offer some capabilities required by APIASD;

examples of these tools are PAKME and ADDSS. Also,

Bohem & In introduced QARCC, a tool for discovering

conflicts between quality attributes [33].

� Knowledgebase: A few number of tools provide

knowledge repository about scenarios and patterns; an

example is PAKME [34].

� Requirements management: APIASD enables

architecture development incrementally and iteratively,

which facilitates responding to requirements changes and

accommodating them. Also, each strategy decided for

usage is analyzed to discover potential change impact

whenever a change occurs.

� Number of activities: All classes of architecture

development-related activities are covered.

� APIASD ensures the balance between being customer

value-driven, while taking technical considerations into

account, while prioritizing user stories.

4.2. Agile-Wise Verification

APIASD takes a minimalist approach to architecture while

the highest priority architectural drivers are identified and the

simplest design effort is done to achieve them. An initial

version of the architecture enables project management to

organize work assignments, and configuration management to

setup development infrastructure; and the product builders to

decide on the test strategy [28].

Having APIASD based on methods like QAW, ADD, and

ATAM provides it flexibility to have barely good enough

practices to reach an initial architecture early, while

postponing those practices concerned with functional

requirements –like instantiating elements and allocating

responsibilities- to be done on the release-level and those

approaching technical details and implementation-related

details –like identifying interfaces between elements- to be

done on the iteration-level. This development trend can enable

simplicity in design, responding to changes, and waiting till

more uncertainty about user requirements is reduced.

Changes in quality attributes are to be managed properly

through building an architecture where insights into changes’

impacts on quality attributes –if any- can be provided.

Concentrating on driving the resulting architecture by quality

attribute requirements is expected to reduce the need for

architectural refactoring to include quality attributes. APIASD

aims at finding a balance between investing in quality

improvements, and feature growth so as to keep on achieving

value both in the short and long terms.

Practices proposed through APIASD praise and encourage

individuals and interactions among them through

brainstorming sessions and joint decision making facilitated

by discussions and voting. All team members are equally

Software Engineering 2014; 2(1): 1-14 13

important and their interference and presence is adding to the

effectiveness of architecture development process. Even in

activities where the architect’s presence is mandatory to have

his/her opinion providing guidance and added value to

decision making; a decision made is not made individually by

the architect and just communicated through documents and

diagrams to the whole team without persuasion or discussion

as done in the context of traditional development methods.

Customer collaboration is maximized and communication

between different stakeholders is supported and facilitated

through stakeholders’ –especially the customer- involvement

through all framework activities. This enables shorter

feedback cycles and ensures always being driven by user

requirements; especially architectural significant ones.

In the context of APIASD, architectural artifacts produced

are kept to the minimum and don’t impose exerting much

documentation efforts. Documenting architectural artifacts is

handled the way that enables travelling light –in agile

development terminology- and helps proceeding to another

software development stage, while keeping early design

decisions that critically affect all subsequent development

efforts. It is up to the development team to choose the best way

to radiate architectural information through a project; but for

storage and reusability purposes, keeping an electronic copy

of the architectural artefacts produced, like views and decision

tables, is advisable.

5. Conclusion

Agile architects should advocate a development culture that

values making architectural design decisions based on careful

analysis of requirements and give a due care to quality

attribute requirements in advance, especially that they do not

change as rapidly as functional requirements. APIASD

presents a way to develop an architecture driven by

architectural drivers, especially quality attribute requirements,

that serve to shape an architecture and give it the ability to

survive, while absorbing and accommodating changes as they

come up. APIASD can successfully bridge the gap between

requirements and software architecture and yield a roadmap to

be used to build a software product that can achieve maximum

level of customer value as a basic goal. Through APIASD is

believed to be aligned with the agile software development

mindset conveyed through agile values and principles as well

as architecting basic principles.

References

[1] Jensen, R. N., Moller, T., Sonder, P. & Tornehoj, G., (2006),
“Architecture and Design in eXtreme Programming;
Introducing Developer Stories”, proceedings of Extreme
Programming and Agile Processes in Software Engineering,
7th International Conference (XP 2006), Oulu, Finland, 17-22
June, Springer Verlag, pp. 133-142.

[2] Mancl, D., Hadar, E., Fraser, S., Hadar, I., Miller, G. R. &
Opdyke, B., (2009), “Architecture in an Agile World”,

proceedings of the ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and
Applications (OOPLSA 09), Orlando, Florida, USA, 25-19
October, ACM, pp. 841-844.

[3] Boehm, B. & Turner, R., (2004), Balancing Agility and
Discipline: A Guide for the Perplexed, Addison Wesley
Professional, Indiana, USA.

[4] Ambler, S. W., (2007), “Agile Model Driven Development
(AMDD)”, XOOTIC, Vol. 12, No. 1, pp. 13-21.

[5] Faber, R., (2010), “Architects as service providers”, IEEE
Software, vol. 27, no. 2, pp. 33-40.

[6] Abrahamsson, P., Babar, M. A. & Kruchten, P., (2010), “Agility
and Architecture: Can They Coexist?”, IEEE Software, Vol. 27,
No. 2, pp. 16-22.

[7] Sharifloo, A. A., Saffarian, A. & Shams, F., (2008),
“Embedding Architectural practices into Extreme
Programming”, proceedings of the 19th Australian Software
Engineering Conference (ASWEC), Perth, Western Australia,
Australia, 26-28 March, IEEE, pp. 310-319.

[8] Khaled, R., Barr, P., Noble, J. & Biddle, R., (2004), “Extreme
programming system metaphor: A semiotic approach”,
proceedings of the 7th International Workshop on
Organizational Semiotics, Setúbal, Portugal, 19-20 July, pp.
152-172.

[9] West, D., (2002), “Metaphor, Architecture, and XP”,
proceedings of the third International Conference on Extreme
Programming and Agile Processes in Software Engineering
(XP 2002), Sardinia, Italy, 26-30 May, pp. 101- 104.

[10] Herbsleb, J., Root, D. & Tomayko, J., (2003), “The eXtreme
Programming (XP) Metaphor and Software Architecture”,
School of Computer Science, Carnegie Mellon, Pittsburgh, PA,
USA.

[11] Bourquin, F. & Keller, R. K., (2007), “High-impact Refactoring
Based on Architecture Violations”, Proceedings of the 11th
European Conference on Software Maintenance and
Reengineering, (CSMR '07),Amsterdam, Holland, 21-23 Mar.,
IEEE, pp. 149-158.

[12] Buschmann, F., (2011), “Gardening Your Architecture, Part 1:
Refactoring”, IEEE Software, Vol. 28, No. 4, pp. 92-94.

[13] Turk, D., France, R. & Rumpe, B., (2002), “Limitations of
Agile Software Processes”, the third International Conference
on Extreme Programming and Agile Processes in Software
Engineering (XP 2002), Sardinia, Italy.

[14] Picek, R. & Strahonja, V., (2007), “Model Driven Development
– Future or Failure of Software Development?”, proceedings of
the 18th International Conference on Information and
Intelligent Systems (IIS2007), Varaždin, Croatia, 12-14
September, pp. 407-414.

[15] Ambler, S. W., (2007), “Agile Model Driven Development
(AMDD): The key to scaling agile software development”,
available at: http://www.agilemodeling.com/essays/amdd.htm ,
last access: 10 September 2014.

[16] Elssamadisy, A. & Schalliol, G., (2002), “Recognizing and
responding to bad smells in extreme programming”,
proceedings of the 24th International Conference on Software
Engineering (ICSE'02), Orlando, Florida, USA, 19-25 May,
ACM, pp. 617- 622.

14 G. H. El-Khawaga et al.: A framework for architecture-centric practices integration into agile

software development [APIASD]

[17] Hofmeister, C., Nord, R. & Soni, D., (2000), Applied Software
Architecture, Addison Wesley Professional, Indiana, USA.

[18] Barbacci, M., Ellison, R., Lattanze, A., Stafford, J., Weinstock,
C. & Wood, W., (2003), “Quality Attribute Workshops
(QAWs)”, CMU Software Engineering Institute, Pittsburgh, PA,
USA.

[19] Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P.,
Nord, R. & Wood, B., (2006), “Attribute-Driven Design
(ADD)”, CMU Software Engineering Institute, Pittsburgh, PA,
USA.

[20] Clements, P. C., Kazman, R. & Klein, M., (2002), Evaluating
software architectures: Methods and case studies, Addison
Wesley Professional, Indiana, USA.

[21] Layton, M. C., (2012), Agile Project Management For
Dummies, John Wiley & Sons Inc., NJ, USA.

[22] Bass, L., Clements, P. & Kazman, R., (2003), Software
Architecture in Practice, Addison Wesley Professional, Indiana,
USA.

[23] Smith, G. & Sidky, A., (2009), Becoming Agile in an imperfect
world, Manning Publications Co., NY, USA.

[24] Franch, X. & Carvallo, J. P., (2003), “Using quality models in
software package selection”, IEEE Software, Vol. 20, No. 1, pp.
34 – 41

[25] Hochmuller, H., (1999), “Towards the Proper Integration of
Extra-Functional Requirements”, Australasian Journal of
Information Systems, Vol. 6, No. 2, pp. 98-117.

[26] Barbacci, M., Clements, P., Lattanze, A., Northrop, L. & Wood,
W., (2003), “Using the Architecture Tradeoff Analysis Method
(ATAM) to Evaluate the Software Architecture for a Product
Line of Avionics Systems: A Case Study”, CMU Software
Engineering Institute, Pittsburgh, PA, USA.

[27] Moreira, A., Araujo, J. & Brito, I., (2002), “Crosscutting
quality attributes for requirements engineering”, proceedings of
the 14th international conference on Software Engineering and
Knowledge Engineering (SEKE'02), Ischia, Italy, 15-19 July,
ACM, pp. 167-174.

[28] Bass, L., Klein, M. & Bachmann, F., (2001), “Quality Attribute
Design Primitives and the Attribute Driven Design Method”,
CMU Software Engineering Institute, Pittsburgh, PA, USA.

[29] Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran, A.
& America, P., (2007), “A general model of software
architecture design derived from five industrial approaches”,
Journal of Systems and Software, Vol. 80, No. 1, pp. 106-126.

[30] Rozanski, N. & Woods, E., (2005), Software Systems
Architecture: Working With Stakeholders Using Viewpoints and
Perspectives, Addison-Wesley Professional, Boston, USA

[31] Falessi, D., Cantone, G. & Kruchten, P., (2007), “Do
Architecture Design Methods Meet Architects’ Needs?”,
proceedings of the Working IEEE/IFIP Conference on Software
Architecture (WICSA'07), Mumbai, India, 6-9 January, IEEE,
44-53 .

[32] Tang, A., Avgeriou, P., Jansen, A., Capilla, R. & Babar, M. A,
(2010), “A comparative study of architecture knowledge
management tools”, Journal of Systems and Software, Vol. 83,

No. 3, pp. 352–370.

[33] Boehm, B. & In, H., (1996), “Identifying quality-requirement
conflicts”, IEEE Software, Vol. 13, No. 2, pp. 25- 35.

[34] Babar, M. A. & Capilla, R., (2008), “Capturing and Using
Quality Attributes Knowledge in Software Architecture
Evaluation Process”, proceedings of the 1st International
Workshop on Managing Requirements Knowledge(MARK'08),
Barcelona, Spain, 8 September, IEEE, pp. 53-62.

