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Abstract: In this paper, the complete monotonic parameter function involving the Gamma function is considered. The
necessary and sufficient condition of the parameter fis presented. As an application, two meaningful inequalities of Gamma

function are obtained.
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1. Introduction

The classical Gamma function in [1,3] is defined by
r(x)= J.: te™dt,(x >0) €))

The logarithmic derivative of the Gamma function in [1,3]
is defined as follows

(=21 (50) @

There are lots of literatures and applications about the
completely monotonic functions and logarithmic completely
monotonic functions, for example, [2,4,5,6-10] and the
references therein.

The function [ is said to be completely monotonic on an
interval [ if f has derivatives of all orders on/ and

(-1)" /¥ (x) 20 3)

If the inequality is strict for all x7 and » =0 is said to
be strictly completely monotonic function.

A positive function f is said to be logarithmic
completely monotonic on an interval [/ ifits logarithm In f
satisfies

(-1) [ (x)]" 20 4)

If the inequality is strict for all xO7 and » > 0is said to

be strictly logarithmically completely monotonic function.

In this paper, we are about to consider the completely
monotonic property of a parameter functions involving the
Gamma function as follows.

2. Main Results
Theorem 2.1.
The function f,(x)=1-Ilnx+ lln Mx+a) is strictly
x

completely monotonic on (0, 00) ifand only if 1 < o< f, where

L 1 1
itexists 0<t, <1 suchthat f=——-——.
ty e° -1

Proof. By using the Leibnitz’rule,

[ ()] =2 () (). )

We have

(n)
fgf")(x):—(lnx)(")+(llnr(x+a')j G

X

Then we can obtain
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£ (x) = _(_1)" I (ij " (nr x+a))( )
=M+(lj()lnr(x+a)+ > (")(_j W (x+a)

X X k=1 X
_1\" —_1\ 1\ | " _ (n—k) _ | 1\ |
- B0 (a2 () B e e = R ) Y
X X k=1 X

where we denotes

a (—1)(7F)
h(x)=Z+InT (x+a)+ ), W (x+a). ®)

n k=1 k!xik

We can count the derivative of A (x) as follows

h'(x):l+lP(x+a’)—LP(x+a)—xLP'(x+a)+x¢'(x+a’)+%x2¢"(x+a)

n
(1) g (1) (=)’ !
oot x"TWPU (x+a) + X"W (x+a) = W) (x+ ) +—. 9
Base on above, we have
1 (=1)" !
—n'(x)= Y (x+a)+—. (10)
L () =Sl ()L
Combining (6) with the following formula,
(n _1)' —_[® 1 —xt
I J.O t""edt . (11)
we have
1 (_1)2"+1 o " ~(x+a)t -1 - I O I ¢ ~(x+a)t _ 1= te”™ n-1_-xt
—n(x)= ra gty =—| |t -— dt =— | |1-—— dt
x" h (x) n! -[o l-e' di+ _-[0 £ e dt n!JO ¢ 1-¢” ¢ n!o 1-¢” ¢ (12)
Here we let while ¢>0. In this case, we can obtain
te'™ t(1-a)<0, 17
glr)=1-5—. (13) (1-a) a7
then a should satisfies the following necessary and
Since 0<t/e' —1<I1fort>0, then sufficient condition
tet—m‘ a 2 l > (18)
0<——<e™™, (14)
e -1 and the function h(x) is strictly increasing, then for any

x>0, we have

t-at hix)>h(0)=Inl(a 20, 19
1_et-m<g(t)<1_t€’ 1<1 (15) ( ) ( ) ( ) ( )
e -

especially, we have

on x>0,anda =1.

If we need A (x) =0, then we should have On the other hand, we find

1-€™" 20, (16)
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. —1_m — 11 = 20
ltlfr()lg(t) 1 lflﬂo 1 1 1111101 ~ 0 (20)
and
o S ri(l-a)d ™ 1+(l-a) . l-a
. —1_m T =1- = ]-lim——= 21
fime (1) =1=im =y = 1= lim——— - lim =lim e =1 @b
for a>0. 0 <t, <1such that the (28) holdsfor a =1, we denote [ as
We can also count g'(¢) as follows follows
2t-ta t—at
T (1-ta) =™ (1+1~ta) cpgep=t_
g'(r)= (22) lsasp= g 0<h<t (30)

(-

then it means one must have g'(¢) = 0, while in this second
condition, we get

¢ (1-ta)z1+t-ta. (23)
In this case, we can find that a should satisfies the
necessary and sufficient condition as following

asl——L—J>0.

t € @4)

Consider first condition a = 1 with the second one, we have

lsasl—tl ,t>0. (25)
t e -1
But we should have
1
—— >1,t>0. (26)
t e —
We can find that ¢ should satisfies
~In(1-#)<¢<l. (27)

In fact, we can describe the condition (26) into the
following form

el 1+ (28)
1
--1
t
We have the following fact that
i i
lim| 1+-— | =lim| I+—| =e- (29)
‘-
--1 P —-1
t t

Base on the fact above, we can get a result that there exist a

Then the theorem follows directly. We can easily get the
following corollary.

Corollary 2.2. The function g,(x)=3/(x+a)/x is
strictly logarithmically completely monotonic on (0,00) if

and only ifI<a < f,, where it exists 0<¢, <1such that

b1
t, €' -1
3. Two Applications

Following the notation above, by applying the complete
monotonicity of g, (x) , we can obtain the following

inequalities.
Theorem 3.1. Ifn >0, 1<a < 3, then

0< (n:l/l‘(n+a+1)

"<e, 31
e © D
and
oo Anra) | (32)
T (n+a+1)

1

e -1

L 1
where it exists 0<¢, <1 suchthat f=—-
tO

Proof. Consider the complete monotonicity of g, (x) , We

have

gr(a+a) <{/I‘(b+a)’

(33)
a b
for a >b>0.It means
“I_(a+a') a
—<—, 34
JT(bra) b 9

Let a=n+1,b=n>0,we get
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T (n+a+1) n+l

"F(n+a’) n

) (35)

then

nee "I'(n+a’)

< lim(n—ﬂj =e. (36)
n-e n

Using the following fact

n+l n+l
lim( n j <1im(1—L] =e'. (37
n -0 n+1 n -0 n+l
we get
n+l
O "F(n+a')
e’ <lim| ———rr—t— (38)
el T (n+a +1)
Theorem 3.2. Ifx >0, 1< a < 3, then we have
o x+k+l”_ x+ﬂ+k+1
0< H ( ) <1. (39)
Ay (x+a+k)

Especially, for a enough large positive integer n , we have

0<"*2(n+[a']+1)!<1
N

n+l (n +[a (40)

o 1 1
where it exists 0 <7, <1such that f=——-— .
t, e’'—

Proof. Using the completely monotonic property of g, (x)
again, we get

o x+k+], )
0 < lim mqm”—”k”
x| x+k”'(x+a’+k) el b x+k

for all x>0. If x=nis a positive integer, and k =0, we
have a classical useful inequality

=1, (41)

A7) Al ) e
ATl -

ol

then

o<t A tlal+)

21 43
" rf+a])!

neeptl

for a enough large n .
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