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Abstract: In this paper, the complete monotonic parameter function involving the Gamma function is considered. The 

necessary and sufficient condition of the parameter f is presented. As an application, two meaningful inequalities of Gamma 

function are obtained. 
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1. Introduction 

The classical Gamma function in [1,3] is defined by 

( ) ( )1

0
, 0x tx t e dt x

∞ − −Γ = >∫           (1) 

The logarithmic derivative of the Gamma function in [1,3] 

is defined as follows 

( ) ( )
( ) ( ), 0

x
x x

x

′Γ
Ψ = >

Γ
            (2) 

There are lots of literatures and applications about the 

completely monotonic functions and logarithmic completely 

monotonic functions, for example, [2,4,5,6-10] and the 

references therein. 

The function f  is said to be completely monotonic on an 

interval I  if f  has derivatives of all orders on I  and 

( ) ( ) ( )1 0
n n

f x− ≥                (3) 

If the inequality is strict for all x I∈ and 0n ≥ is said to 

be strictly completely monotonic function. 

A positive function f  is said to be logarithmic 

completely monotonic on an interval I  if its logarithm ln f

satisfies 

( ) ( ) ( )
1 ln 0

nn
f x− ≥               (4) 

If the inequality is strict for all x I∈ and 0n > is said to 

be strictly logarithmically completely monotonic function. 

In this paper, we are about to consider the completely 

monotonic property of a parameter functions involving the 

Gamma function as follows. 

2. Main Results 

Theorem 2.1. 

The function
1

( ) 1 ln ln ( )f x x x
x

α α= − + Γ + is strictly 

completely monotonic on ( )0,∞ if and only if 1 ≤ α ≤ β, where 

it exists 
0

0 1t< <  such that 
0

0

1 1

1
tt e
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−

. 

Proof. By using the Leibnitz’rule, 
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We have 
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Then we can obtain 
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where we denotes 

( ) ( ) ( )( )
( ) ( )1

1

1
ln

!

k
n

k

k
k

x
h x x x

n k x
α α

−
−

−
=

−
= + Γ + + Ψ +∑ .                            (8) 

We can count the derivative of ( )h x  as follows 

( ) ( ) ( ) ( ) ( ) ( )21 1

2
h x x x x x x x x x

n
α α α α α′ ′ ′ ′′= + Ψ + − Ψ + − Ψ + + Ψ + + Ψ +  

( )
( )

( ) ( ) ( ) ( ) ( ) ( )1 11 1

1 ! !

n n

n n nnx x x x
n n

α α− −− −
+ + Ψ + + Ψ +

−
⋯

( ) ( ) ( )1 1

!

n

nnx x
n n

α
−

= Ψ + + .              (9) 

Base on above, we have 
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Combining (6) with the following formula, 
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we have 
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Here we let 
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especially, we have 
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If we need ( ) 0h x ≥ , then we should have 

1- 0
t t

e
α− ≥ ,                   (16) 

while 0t > . In this case, we can obtain 

( )1 0t α− ≤ ,                    (17) 

then α  should satisfies the following necessary and 

sufficient condition 

1α ≥ ,                        (18) 

and the function ( )h x  is strictly increasing, then for any 

0x > , we have 

( ) ( ) ( )0 ln 0h x h α> = Γ ≥ ,              (19) 

on 0x > , and 1α ≥ . 

On the other hand, we find 
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for 0α > . 

We can also count ( )g t′  as follows 
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then it means one must have ( ) 0g t′ ≥ , while in this second 

condition, we get 

( )1 1te t t tα α− ≥ + − .            (23) 

In this case, we can find that α  should satisfies the 

necessary and sufficient condition as following 
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Consider first condition 1α ≥ with the second one, we have 
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But we should have 
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We can find that t  should satisfies 

( )ln 1 1t t− − ≤ < .                (27) 

In fact, we can describe the condition (26) into the 

following form 
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We have the following fact that 
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Base on the fact above, we can get a result that there exist a 

0
0 1t< < such that the (28) holdsfor 1α ≥ , we denote β as 

follows 
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Then the theorem follows directly. We can easily get the 

following corollary. 

Corollary 2.2. The function ( ) ( ) /xg x x xα α= Γ + is 

strictly logarithmically completely monotonic on ( )0,∞ if 

and only if 1 ,α β≤ ≤ , where it exists 
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3. Two Applications 

Following the notation above, by applying the complete 

monotonicity of ( )g xα , we can obtain the following 

inequalities. 

Theorem 3.1. If 0n > , 1 α β≤ ≤ , then 
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Proof. Consider the complete monotonicity of ( )g xα , we 

have 
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Using the following fact 
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Theorem 3.2. If 0x > , 1 α β≤ ≤ , then we have 
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Especially, for a enough large positive integer n , we have 

[ ]( )
[ ]( )

2

1

1 !
0 1

!

n

n

n

n

α

α

+

+

+ +
< <

+
,          (40) 

where it exists
0

0 1t< < such that 
0

0

1 1

1
tt e

β = −
−

. 

Proof. Using the completely monotonic property of ( )g xα

again, we get 
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for all 0x > . If x n= is a positive integer, and 0k = , we 

have a classical useful inequality 
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for a enough large n . 
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