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Abstract: The Riesz means, or sometimes typical means, were introduced by M. Riesz and have been studied in connection 

with summability of Fourier series and of Dirichlet series [8] and [11]. In number-theoretic context, it is the Riesz sum rather than 

the Riesz mean that has been extensively studied. The Riesz sums appear as long as there appears the G-function. Cf. Remark 1 

and [14]. As is shown below, the Riesz sum corresponds to integration while Landau's differencing is an analogue of 

differentiation. This integration-differentiation aspect has been the driving force of many researches on number-theoretic 

asymptotic formulas. Ingham's decent treatment [13] of the prime number theorem is one typical example. We state some 

efficient theorems that give asymptotic formulas for the sums of coefficients of the generating Dirichlet series not necessarily 

satisfying the functional equation. 
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1. Introduction 

The Riesz means, or sometimes typical means, were 

introduced by M. Riesz and have been studied in connection 

with sum ability of Fourier series and of Dirichlet series [8] 

and [11]. Given an increasing sequence  of real 

numbers and a sequence  of complex numbers, the 

Riesz sum of order  is defined as in [8, p.2] and [11, p.21] 

by 

      (1.1) 

where 

              (1.2) 

where the prime on the summation sign means that when 

, the corresponding term is to be halved. 

(1.1) or rather normalized  which appears 

in (G-8-2) is called the Riesz sum of order  If 

 approaches a limit  as , the 

sequence  is called Riesz summable or  

summble to , which is called the Riesz mean of the 

sequence. Sometimes the negative order Riesz sum is 

considered, in which case the sum is taken over all  

which are not equal to . 

In number theory it is often the case that the main study of 

research is the behavior of an arithmetic function whose 

generating function is given explicitly, say in the form of a 

Dirichlet series or an Euler product. Then the problem 

amounts to extracting the essential main term from the data 

on generating functions. 

In this number-theoretic context, it is the Riesz sum rather 

than the Riesz mean that has been extensively studied. The 

Riesz sums appear as long as there appears the  Cf. 

Remark 1. There is some mention on the divisor problem in 

[7] in the light of the Riesz sum and there are enormous 

amount of literature on the Riesz sums and we shall not dwell 

on well-known cases very in detail. We are concerned with 

the case where the generating function does not necessarily 

satisfy the functional equation and concentrate on asymptotic 

formulas rather than exact identities. 

An example is given. 

Recall the definition of the periodic Bernoulli polynomial 

etc. ([14, p.170]). Then 
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say, or 

 

Integration of both sides amounts to (1.1): 

 

where we used . 

The application of the Riesz sum comes into play through 

Perron's formula (1.6) below, sometimes in truncated form. 

The application of the truncated first order Riesz sum appears 

on [10, p.105 ] and a truncated general order Riesz sum is 

treated in [13] in both of which the functional equation is not 

assumed. Riesz sums with the functional equation can be 

found e.g. in [9], where by differencing, the asymptotic 

formula for the original sum is deduced. The principle goes 

back to Landau [15] in which one can find the integral order 

Riesz sum and its reduction to the original partial sum by 

differencing. 

The general formula for the difference operator of order 

 with difference  is given by 

     (1.3) 

If  has the  derivative , then 

   (1.4) 

The Riesz kernel which produces the Riesz sum is defined 

by 

  (1.5) 

Remark 1. Notes on (1.5). Let denote the order of 

the Riesz mean and set . Then (1.5) reads 

( ) 

                             (1.6) 

This can be found in Hardy-Riesz [11] and 

Chandrasekharan and Minakshisundaram [8] and used in the 

context of Perron's formula 

 (1.7) 

where the left-hand side sum is called the Riesz sum of order 

 and denoted  as mentioned above and 

. 

The special case of (1.6) with  is known as the 

discontinuous integral whose truncated form can be found e.g. 

in Davenport [10, pp.109-110]. This and the general case (1.6) 

can be proved by the method of residues, distinguishing the 

cases  and . 

Here as above, the prime on the summation sign means 

that when , the corresponding term is to be halved, 

and this halving comes from the peculiarity of the 

discontinuous integral. 

If the order , then the right-hand side member of 

(1.6) is 

 

and the Riesz sum amounts to the  times integration of 

the original sum . Thus Landau's differencing is an 

analogue of the integration and differentiation. 

In view of this integration-differentiation aspect there are a 

number of cases in which the Riesz sum appears in disguised 

form. Especially, when there is a gamma factor  

or  involved. 

The very special case  of (1.5) (and of the 

corresponding logarithmic case ( ) presents 

excessive complexities in notation, so that we follow Hardy 

and Riesz [11] to use (1.7) by suppressing the prime on the 
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summation. We are to bear this special case in mind although 

not explicitly stated. 

Remark 2. The Riesz summability is useful in summability 

of (Fourier) series. We recall e.g. the well-known result that 

the Riesz summability implies Abel summability [11, 

Theorem 24]. There is an explicit formula known for the 

transition. 

Lemma 1.1. The sum of the Abel mean at all 

points of the sector  other than the origin is 

      (1.8) 

Where  is the  Riesz sum defined in (1.1). 

2. Riesz Sums 

Definition 1. Let  be a real number (mostly we assume 

that it is nonnegative) and let , 

be arbitrary sequences of real numbers strictly increasing to 

infinity such that . Let  ne any 

sequence of complex numbers. Then we write 

         (2.1) 

and refer to  (resp. ) as the Riesz sum of 

order  of the second (resp. first) kind associated to the 

series (resp. ), where absolute 

convergence of the series is assumed in some half-plane 

. For the special choice of (resp. ),  

 or ,  denoting the norm of the integral 

ideal  (resp.  or ), we dennote the 

corresponding Riesz sum  (resp. ) by  

(resp. ) and refer to it as the arithmetic (resp/ 

logarithmic) Riesz sum of order  associated to the series 

or . 

Theorem 2.1. (Kanemitsu) Let  denote the abscissa of 

absolute convergence of the Dirichlet series 

               (2.2) 

Which we may assume  without loss of generality, 

for  and for  let  denote 

a Majorant of . Suppose that can be continued 

analytically to a meromorphic function in some region R0 

extending vertically from top to bottom fo the complex plane 

and bounded on the left by a piecewise smooth Jordan curve 

        (2.3) 

and that all the poles of lying in  are contained in 

a finite part of and are not on . Take a subregion  

whose boundary consists of the line segments , 

overline DA and that part of BC of  with  with 

 large enough for all the poles of  are contained in 

 and is to be taken as (2.7). I.e.  

and  

where  is a constant large enough. Suppose that 

 satisfies the following growth conditions: there exists 

a constant  such that 

       (2.4) 

    (2.5) 

     (2.6) 

where are positive, integrable and  as 

, and  is some constant. Then with 

              (2.7) 

with  constant  and if  is given by 

( ) 

        (2.8) 

    (2.9) 

with constants  such that  

 Then for any and with (2.7) we have 

the asymptotic formula 

       (2.10) 

provided that 

          (2.11) 

for some , where  is the sum of the residues of 

 in , 

   (2.12) 
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   (2.14) 

and . 

Theorem 2.2. Under the same condition as in Theorem 2.1, 

if  is given by 

         (2.15) 

Then with a constant  and we have the asymptotic 

formula 

           (2.16) 

where  is the sum of the residues of 

 in , 

   (2.17) 

Corollary 2.1. Suppose that the conditions of Theorem 2.1 

are satisfied and let be the maximum of the real parts of 

poles of  in , and be the maximum order of poles 

with real parts , and define  to be 1or 0 according as 

 has a pole in or not  to be 1 or 0 according as 

 or not . then 

    (2.18) 

               (2.19) 

where and or  according to the choice 

of . 

Similar results hold for the logarithmic Riesz sums with 

the following replacement to be made: Instead of  

we have  the sum of the residues of  in 

, instead of  we have , 

. We state a very convenient corollary. 

Corollary 2.2. Suppose that the conditions of Theorem 2.1 

are satisfied and suppose that we have the asymptotic 

formula 

     (2.20) 

with  a constant. Then 

  (2.21) 

where and all ’s amount to the reducing factor  

with possibly different constants  etc. in (2.14). 

3. Examples 

Example 3.1. Let  be an algebraic number field of 

degree  with discriminant . Let  be the ring 

of algebraic integers in  and let  be an artitrary, fixed 

non-zero ideal of . Let  be the group of all fractional 

ideals with numerators and denominators relatively prime to 

, and  denote the ray class group of ,  the 

quotient of  modulo the group  of principal ideals 

( ) with totally positive  such that .We 

define the Möbius function  on ideals in the same 

manner as in the rational case and for  we put 

             (3.1) 

Then we have 

Theorem 3.1. (A version of the Siegle-Walfisz prime ideal 

theorem) If 

             (3.2) 

with an arbitrary constant  however large it may be, we 

have 

       (3.3) 

with a constant  depending at most on  

and  and so is the constant. 

With Theorem 3.1 at hand, we may obtain generalizations 

of asymptotic formulas in [5], [16] with sharp estimate on the 

error term. 

Example 3.2. For  set 

       (3.4) 

Since  where  

indicates the Dedekind zeta-function of , we have 
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zeta: 

          (3.6) 

   (3.7) 

4. Quwllenangaben 

The Riesz sums may be thought of as integration or 

Abelian process ([4]) while differencing the Riesz sum to 

deduce a formula for the Riesz sum of order 0 corresponds to 

differentiation or Tauberian process. 

The logarithmic Riesz sums also appeared in various 

context and we refer to [1] and [2] for them for which the 

generating function satisfies the functional equation. 

For general modular relations, we refer to [9], [3] and the 

most comprehensive [14]. In the last ref., the Riesz sums are 

treated in Chapter 6. Some extracts and generalization have 

been made in [17]. 
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