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Abstract: The minimum distance for linear codes is one of the important parameters. The shift bound is a good lower bound of 

the minimum distance for cyclic codes, Reed-Muller codes and geometric Goppa codes. It is necessary to construct the maximum 

value of the independent set for the calculation of the shift bound. However, its computational complexity is very large, because 

the construction of the independent set is not unique. The authors proposed an algorithm for calculation of the independent set 

using the discrete Fourier transform in 2010. In this paper we give simple modification and new recurrent algorithms to improve 

the original algorithm. 
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1. Introduction 

For cyclic codes, some lower bounds are suggested. The 

shift bound is a well-known and good lower bound for its 

minimum distance [15, 14 ,9]. However, its computational 

complexity is very large. On the other hand, it is known that 

the Hamming weight of codeword is calculated by the discrete 

Fourier transform. The authors proposed an algorithm by 

discrete Fourier transform [16, 17, 3, 19, 18, 5]. We showed 

the complexity of proposed lower bound is less than shift 

bound [20,23].  

In this paper, we recall some concepts and notations 

concerned with cyclic code, discrete Fourier transform and the 

independent set in Section 2, the original proposed algorithm 

and its simple modification, and the procedure for 

construction of independent set by their two algorithms are 

shown in Section 3, respectively. We give the improvement of 

proposed algorithm using the recursive function and its 

concrete algorithm as the 2-depth version and the recursive 

version and their modified versions, evaluate their 

computational complexities in Section 4. Finally we describe 

conclusions in Section 5. 

2. Preliminaries 

In this section we recall the construction of a cyclic code 

from its defining set. We consider cyclic codes with length � 

over a finite field � = ��(�)  through this paper, where � = �	, � is a prime and 
 is a positive integer. Note that � 

is an �-th root of unity over �, � is an extension field of � 

including � and 
� means the residue class ring of integers 

modulo n whose elements are often identified as the 

representatives themselves. We use notations #�  as the 

cardinality of a set � and  �\� = { � ∈ � | � ∈� � }.  

Definition 1. A cyclotomic set ��(�) ⊂ 
� of � ∈ 
� over � is defined by  ��(�) = { ��� | 0 ≤ " < � }.  

Especially, we write $% = ��(�) if & = min � �(�) in 
�. ⋄ 

We consider the defining set for a cyclic code as a 

cyclotomic set or an union of some cyclotomic sets. Such a 

defining set is called complete (defining set) and we consider 
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only complete defining sets through this paper without notion.  

Definition 2. Let + =∪-./� $%0 . A cyclic code � = �(+) 

defined by its defining set + is  � = { 1 ∈ �� | 1(�2) = 0, ∀� ∈ + }, 
where  

1(5) = 6 12
�7/
2.8 52 

over � from 1 = (18, 1/, … , 1�7/).⋄ 

Note that a cyclic code �(+)  is corresponding to a 

complete defining set + as one to one.  

We denote :(�) the minimum distance of � defined by  :(�) = min { ;(1) | 1 ∈ �\{0} },  

where ;(<) = #{0 ≤ � < �|12 ≠ 0} is the Hamming weight 

of < = (18, 1/, … , 1�7/) . We denote :(�(+))  into :(+) 

because of correspondence of �(+) and +.  

Next we recall some well-known properties for the Blahut 

theorem and so on.  

Definition 3. Let > = (�8, �/, … , ��7/) be a vector with 

length � in ��. The discrete Fourier transform (DFT) of � is 

defined as  ? = +�@(>) = (�8, �/, … , ��7/) ∈ ��,  

where  

�2 = 6 �A
�7/
A.8 �2A 

for 0 ≤ � < �. ⋄ 

Definition 4. Let > = (�8, �/, … , ��7/) ∈ �� . The DFT 

matrix B(>) of � is defined by B(>) = [ 
2A  ] (0 ≤ �, E <�) with 
2A = �2FA  HIJ  �, i.e.,  

B(>) = K �8 �/ ⋯ ��7/�/ �M ⋯ �8⋮ ⋮ / ⋮��7/ �8 ⋯ ��7M
P  

over �  with size � × � , where (�8, �/, ⋯ , ��7/) =+�@(>).⋄ 

Lemma 1. [11,1] The Hamming weight ;(>)  of �  is 

corresponding to the rank of the DFT matrix B(>), i.e.,  ;(>) = rank B(>). 
Then we have  :(�) = min { rank B(<) | < ∈ �\{0} }.  

Definition 5. [8,10,2] If there is an �8 ∈ 
� such that  { �8 + E + �V | 1 ≤ E < X, 0 ≤ V ≤ & } ⊆ +,  

where a fixed � ∈ 
�  with gcd ( �, �) = 1 , then the 

Hartmann-Tzeng(HT) bound :]^(+)  is defined by the 

maximum value of X + &. ⋄ 

Especially, in the case of s = 0 at Definition 5 we call the 

value of δ the BCH bound :`a](+). 

Lemma 2. [2] For a cyclic code �(+) :`a](+) ≤ :]^(+) ≤ :(+). 
Following in this paper, we denote the complete defining 

set D of given code C(D) and any general complete defining 

sets are denoted by R. 

Definition 6. For a defining set $ ⊂ 
�  we define an 

independent set � of $ as follows:  

The empty set is an independent set of arbitrary defining 

set.  

For an 5 ∈� $ and an independent set � ⊆ $ of $, � ∪ {5} 

is also an independent set of $.  

If � is an independent set of $ and b ∈ 
�, then  � + b = {5 + b|5 ∈ �}  

is also an independent set of $. ⋄ 

Next lemma is obvious from definitions of the independent 

set in [7,10,9].  

Lemma 3. Let c8 = ∅ . There are two sequences e =(58, 5/, 5M, … , 5%7/)  and f = (b8, b/, bM, … , b%7/)  over 
� 

with c2F/ = (c2 + b2) ∪ {52} such that 52 ∈� $  and c2 + b2 ⊆$ then  

c2 = gh5i7/ + 6 bA
27/
A.i j k = 1,2, … , �m 

are independent sets of $.⋄ 

It is obvious that the cardinality of c2  is �.  

In general choice of 5 and b in Definition 6 and Lemma 3 

is not unique, then an independent set of $ is not also unique. 

The maximum size for all independent sets of $ is denoted �($) and the shift bound is defined by following definition.  

Definition 7. The shift bound :n(+) is defined as  

:n(+) = min o�($) p+ ⊆ ∀$ ⊂ 
� ,$ ≠ 
� is completehw.  

Theorem 1. [15,14,9] The shift bound :n(+) is a lower 

bound of the minimum distance :(+) of a cyclic code �(+) 

and the shift bound is greater than or equal to the HT bound, 

i.e.,  :]^(+) ≤ :n(+) ≤ :(+).  

3. Proposed Algorithm and Construction 

of Independent Set 

In this section we will refer a few definitions and lemmata 

in [1,18]  

Definition 8. Let Δ be a non-zero element in �, where � 

is an extension field of �. We define the general matrix �($) 

of a defining set $ as  �($) = y z2A  {8|2,A}� 
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with size � × �, where  

z2A = oΔ  if � + E (mod �) ∈� $,0  if � + E (mod �) ∈ $.h  

Definition 9. Let two sequences � = (�/, �M, … , �%)  and � = (E/, EM, … , E-) over 
� . We define a submatrix �($)(2,A) 
with size & × � of a general matrix �($) with size � × � by  

1 1 1 2 1

2 1 2 2 2

1 2

( , )

1 ,1( ) [ ]

t

t

u v

s s s t

i j i j i j

i j i j i ji j

i j u s v t

i j i j i j

g g g

g g g
G R g

g g g

≤ ≤ ≤ ≤

 
 
 
 
 
 

= =



⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

   (1) 

where the elements of the submatrix �($)(2,A) are fixed Δ or 

0 by Definition 8. ⋄ 

Definition 10. Let set a general matrix �($)  and its 

submatrix �($)(�,�). For a E ∈ �, a set of row indexes with 

non-zero element in the E-th column is called the support(-row) 

set of the E-th column denoted by �����i(E), i.e.,  �����i(E) = { �� ∈ � | z2�A = Δ }. 
And for a E ∈ �, the cardinality of above set is called the 

column weight of the E-th column denoted by ;��i(E), i.e.,  ;��i(E) = #�����i(E). 
Lemma 4. Let �($) be a general matrix and zA be one of 

its columns. If zA is a singleton, then the corresponding row 

is linearly independent from the other rows. ⋄ 

Lemma 5. Let �($, �, �) be a submatrix of general matrix 

of �($)  and zA  be one of its columns. Suppose zA  is a 

singleton and let row �  be its corresponding row. Let � �($, �, �) be the matrix obtained from �($, �, �) by erasing 

column E row �. Then �($, �, �) has full rank if and only if � �($, �, �) has full rank. ⋄ 

We proposed a simple method to calculate the independent 

set with discrete Fourier transform [19,22].  

Definition 11. For a cyclic code �(+), the proposed bound 

(left version) :�ℓ(+) is defined by  :�ℓ(+) = min { �ℓ($) | + ⊆ ∀$ ⊂ 
�, $ is complete }, 
where �ℓ($) is the final value of " in the below Algorithm A 

input $.  

We proposed a simple method to calculate the value �ℓ($) 

and the independent set with discrete Fourier transform 

[19,22].  

Let �($) be a cyclic code with a defining set $, " be a 

non-negative integer. The proposed algorithm for lower bound 

of the rank of the DFT matrix from its general matrix is as 

follows.  

[Algorithm A (the original: left version) ]  

1. Give the general matrix �($) using the defining set $. 

And set �(�,�) = �($) with � = � = 
� and " = 0.  

2. For �(�,�)  let 
 = { � ∈ � | z�� = 0 ∀� ∈ � }  be a 

set of indexes with all-zero column. Renew  

� ← �\
.  

3. For �(�,�) let 
���7��i  be the minimum value of the 

column weight, i.e., 
���7��i = 
��{;��i(�)|� ∈ �}       (2) 

and, give a set of their row indexes B��� = {� ∈ �|;��i = 
���7��i}    (3) 

and its minimum value be set �ℓ = min B ���. Then renew � and � by  � ← �\�����i(��),       � ← �\{��}    (4) 

from Definition 10, and " ← " + 1.  

4. If the submatrix �(�,�)  has two or more rows, i.e., #� > 1, then return to (Step 2).  

5. If one row matrix �(�,�), i.e., vector is non-zero vector, 

then renew " ← " + 1.  

It is clear that the last number of " is equal to the rank of a 

submatrix of general matrix. From the step 2 of the proposed 

algorithm, we can have the 1st column of (� − V + 1) × � 

submatrix of the general matrix �($) such as (ΔF, 0, ⋯ ,0).  

Property 1. For the general matrix �($) of a defining set $, 

the choice of making (ΔF, 0, ⋯ ,0) column have not influence 

on the rank of �($).  

Proof: For the general matrix �($) of a defining set $, 

from Definition 8, the weight of all columns and rows of �($) are as same as  $. the result are same whether we fix the 

1st column or the other column on step 2 of the proposed 

algorithm, because the columns or rows of general matrix �($) are cyclic sequentially. ⋄ 

The number of returning our proposed algorithm is equal to 

the rank of submatrix of general matrix. We show the method 

for construction of the independent set by the next example.  

Then we give another version of the Algorithm A as 

follows.  

[Algorithm A’ (right version) ]  

1. Same as Algorithm A.  

2. Same as Algorithm A.  

3. For �(�,�), the values 
���7��i  and B��� are also as 

same as Algorithm A. And the maximum value of B��� 

is set by �� = max B���. Then renew � and � by  � ← �\�����i(��), � ← �\{��} 

from Definition 10, and " ← " + 1.  

4. Same as Algorithm A.  

5. Same as Algorithm A.  

The number of returning our proposed algorithms are lower 

bounds of the rank of submatrix of general matrix �($). We 

show the method for construction of the independent set by the 

next example.  

Example 1. [12,21,22] For a binary cyclic code �  with 

length � = 73  and its defining set $/,�,�,�,/� = $/ ∪ $� ∪$� ∪ $� ∪ $/� , using our above proposed algorithms. By 

Algorithm A, the indexes of row and column are  � = (0,6,1,5,4,41,36,3,31,71,8,18,69,72)  
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and  � = (0,5,33,10,40,20,6,8,11,2,13,3,4,1).  

From [9], the two sequences e and f can calculate as  52 = �2F/ + E2F/, (� = 0,1, ⋯ , & − 1)  

and  

ob8 = 0,bA = �AF/ − �A , (E = 1, ⋯ , & − 1).h  

Therefore, the independent sets are  c8 = ∅,c/ = {0} ∪ {0},cM = (c/ + 6) ∪ {11},c� = (cM + (−5)) ∪ {34},c� = (c� + 4) ∪ {15},c� = (c� + (−1)) ∪ {44},c� = (c� + 37) ∪ {61},c� = (c� + (−5)) ∪ {42},c  = (c� + (−33)) ∪ {11},c� = (c  + 28) ∪ {42},c/8 = (c� + 40) ∪ {0},c// = (c/8 + (−63)) ∪ {21},c/M = (c// + 10) ∪ {21},c/� = (c/M + 51) ∪ {0},c/� = (c/� + 3) ∪ {0}.

  

Therefore, the independent sets are  c/� = {0,1,2,3,4,5,7,9,10,12,19,32,57,62}.  

Hence, we have the two sequences  

0 1 2 13
( , , , , ) (0,11,34,15,44,61,42,11, 42,0,21, 21,0,0)x x x x… =  

 

and  (b8, b/, bM , … , b/�) = (0,6, −5,4, −1,37, −5, −33,28,40, −63,10,51,3)  

By the Algorithm A’ (right version), the indexes of row and 

column are  � = (71,66,63,52,25,70,38,58,49,9,2,47,24,30,14,42)  

and  � = (72,67,27,55,34,63,22,62,69,50,57,51,71,68,70,66).  

Therefore, the independent sets are  

c8 = ∅,c/ = {0} ∪ {70},cM = (c/ + (−5)) ∪ {60},c� = (cM + (−3)) ∪ {17},c� = (c� + (−11)) ∪ {34},c� = (c� + (−27)) ∪ {59},c� = (c� + 45) ∪ {60},c� = (c� + (−32)) ∪ {60},c  = (c� + 20) ∪ {47},c� = (c  + (−9)) ∪ {45},c/8 = (c� + (−40)) ∪ {59},c// = (c/8 + (−7)) ∪ {59},c/M = (c// + 45) ∪ {25},c/� = (c/M + (−23)) ∪ {22},c/� = (c/� + 6) ∪ {25},c/� = (c/� + (−16)) ∪ {11},c/� = (c/� + 28) ∪ {35}.

  

Therefore, the independent sets are  c/� = {3,19,20,24,25,31,32,35,36,37,39,40,41,48,64,69}. 
Hence, we have the two sequences  (58, 5/, 5M … , 5/�) =(70,60,17,34,59,60,60,47,45,59,59,25,22,25,11,35)  

and  (b8, b/, bM, … , b/�) =(0, −5, −3, −11, −27,45, −32,20, −9, −40, −7,45, −23, 6, −16,28)  

The computational complexity for the construction of 

independent set is very large, because it is not unique. 

However the complexity of our proposed algorithms are very 

small. Running the left and right version algorithms, we are 

able to choose the maximum value from both of two version 

algorithms. 

4. More Improvement of the Algorithms 

In this section we consider the recursive function for more 

improvement of the algorithms at the previous section. Before 

that a simple improvement is shown in next Algorithm B. We 

give recurrent algorithms Algorithm C and Algorithm C’ 

finally. Moreover we discuss computational complexity 

concerned with proposed algorithms in this section [23].  

4.1. Recurrent Algorithms 

Definition 12. For a matrix �(�,�) and its B��� from (3) 

at the Algorithm A as  B��� = { E/, EM, … , E¡ } 

with E/ < EM < ⋯ < E¡ in 
�, we set (4) at the Algorithm A 

into  �(E%) ← � ∖ �����i(E%),   �(E%) ← � ∖ {E%}     (5) 

for E% ∈ B��� . Then we define the next column weight 
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�£5� − ;��i  of �(�,�) as                 �£5� − ;��i = 
g 0                        �¤ ⋕ � = 1,                        
���7��i          �¤ ⋕ � > 1, ⋕ B��� = 1,�£5� − ;��i   ¦¤  �(�(A§),�(A§)), ∀E% ∈ B���

h    (6) 

from (2), (4) and (5). Note that this function by (6) is the 

recursive function and multi-returns in the case of 3rd 

condition. For �(�,�)  we define a set of the column index ¨£5� − B��� as 

  ¨£5� − ;��i = © E ª�ℎ£ 
���
�
 �£5� − ;��i �� �¬�(A ),�(A )­,  ∀E ∈ B���  ®   (7) 

if #� > 1 and ¨£5� − B��� = B���  if #� = 1 from (6). ⋄ 

[Algorithm B (the 2-depth version) ]  

1. Give the general matrix �($) using the defining set $. 

And set �(�,�) = �($) with � = � = 
� and " = 0.  

2. For �(�,�)  let 
 = { � ∈ � | z�� = 0 ∀� ∈ � }  be a 

set of indexes with all-zero column. Renew by  � ← �\
. 
3. For �(�,�) let 
���7��i  be the minimum value of the 

column weight, i.e.,  
���7��i = min {  ;��i(�) | � ∈ � } 

and, give a set of their row indexes  B��� = { � ∈ � | ;��i(�) = 
���7��i  }. 
(a) If #B��� = 1 then set �ℓ = E/ from Definition 12.  

(b) If #B��� ≥ 2 then 

�ℓ = 
�� o E p �ℎ£ 
���
�
 ��k�£ ��                 
���7��i  ¦¤ �(�(A),�(A)), E ∈ B���w 

Then renew � and � by  � ← �\�����i(�ℓ), � ← �\{�ℓ} 

from Definition 10, and " ← " + 1.  

4. If the submatrix �(�,�)  has two or more rows, i.e., #� > 1, then return to (Step 2).  

5. If one row matrix �(�,�), i.e., vector is non-zero vector, 

then renew " ← " + 1.  

Unfortunately this Algorithm B is more computational 

complexity than the Algorithm A. However we expect that 

Algorithm B gives more good value than results of Algorithm 

A and Algorithm A’.  

Definition 13. For a matrix �(�,�)  , the column index �£5� − E by the recurrent calculation is defined as  

min min
w

next j Next Min− = −          (8) 

from Definition 12 and (7). ⋄ 

[Algorithm C (the recursive (step-by-step) version) ]  

1. Give the general matrix �($) using the defining set $. 

And set �(�,�) = �($) with � = � = 
� and " = 0.  

2. For �(�,�)  let 
 = { � ∈ � | z�� = 0 ∀� ∈ � }  be a 

set of indexes with all-zero column. Renew by  � ← �\
. 
3. For �(�,�) let 
���7��i  be the minimum value of the 

column weight, i.e.,  
���7��i = min {  ;��i(�) | � ∈ � } 

and, give a set of their row indexes B��� and the column 

index �ℓ by  B��� = { � ∈ � | ;��i(�) = 
���7��i  } 

and �ℓ = �£5� − E from (8) in definition 13. Then renew � 

and � by  � ← �\�����i(�ℓ), � ← �\{�ℓ} 

from Definition 10, and " ← " + 1.  

4. If the submatrix �(�,�)  has two or more rows, i.e., #� > 1, then return to (Step 2).  

5. If one row matrix �(�,�), i.e., vector is non-zero vector, 

then renew " ← " + 1.  

4.2. Computational Complexity of Proposed Algorithms 

In [22] we gave the computational complexity of the 

algorithm for the shift bound and the original proposed 

algorithm (Algorithm A). Let � be the code length and V be 

the dimension of code. The computational complexity of 

Algorithm A is °(VM�) and the computational complexity of 

algorithm for the shift bound is °(V±²�±²F/), where :n is its 

shift bound.  

In Algorithm C the general matrix �($) and the first (Step 

2) give �(�,�) with � − V rows. The depth of recurrence is :n, :n − 1, … ,1  at each cycle of (Step 3). Then the 

computational complexity of Algorithm C is °(V±²(� −V)±²³/M) at most.  

We show more improvement such that record of the depth "´ and general submatrix � (�, �) at bottom of recurrence are 

used as Algorithm C’.  

[Algorithm C’ (the recursive (large-step) version) ]  

1. Same as Algorithm C.  

2. Same as Algorithm C.  

3. For �(�,�) let 
���7��i  be the minimum value of the 

column weight, i.e.,  
���7��i = min {  ;��i(�) | � ∈ � } 

and, give a set of their row indexes B��� and the column 

index �ℓ by  B��� = { � ∈ � | ;��i(�) = 
���7��i  } 

and �ℓ = �£5� − E  from (7) in definition 13. Record and 

return the depth of recurrence "´ and the bottom submatrix �(�(A),�(A)). Then  �(�,�) ← �(�(A),�(A)) 
from Definition 12, and " ← " + "´.  
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4. Same as Algorithm C.  

5. Same as Algorithm C.  

The computational complexity of this algorithm (Algorithm 

C’) is °(V±²(� − V)±²) at most. 

5. Conclusion 

In this paper, we shown the improvement algorithms for 

construction of the independent set and lower bound of cyclic 

codes. We can obtain the larger value of independent set from 

our two version algorithms and discuss about their 

computational complexities. 

We know that the calculation of lower bound or minimum 

distance of �(+) by our proposed algorithms needs for all 

complete defining set $  with + ⊆ $ ⊂ 
� . Then we will 

discuss the algorithms furthermore, for example relationship 

between the proposed algorithms and the Roos bound[13,4], 

and so on. 
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