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Abstract: A simple proof of Tychonoff’s theorem (the compags of the product of compact spaces) as a dipptitation
of Zorn’s lemma is given. In contrast to the claabiCartan-Bourbaki proof which uses Zorn’s lemmié, our proof uses it
only once.
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1. Introduction

Tychonoff's theorem [5] states that the product aof
arbitrary family of compact topological spaces, hwithe
product topology, is compact. In a standard CaBaunrbaki
proof (cf. [1],[3],[6]) of this theorem, the ultid&r theorem
is used to obtain an ultrafilter (i.e. a maximaltef) G

This proof also seems to be a roundabout, since’Zor
lemma is applied twice. Therefore, it is desirabléind a
direct proof which uses Zorn’s lemma only once.

Zorn's lemma
U
Tychonoff’s theorem

including a filter F on the product space, and the axiom of In this paper we provide a shortcut proof of Tyobib's

choice is used in selecting an element of the prbdpace

theorem as a direct application of Zorn’s lemmahuiitt

which G converges to. If we start from the axiom of chpiceappealing to the axiom of choice or the ultrafiltezorem.

the flow of the argument is illustrated as follows.

Axiom of choice
/)
Zorn’s lemma + Axiom of choice
/)
Ultrafilter theorem + Axiom of choice
/)
Tychonoff’s theorem

This proof uses the axiom of choice twice. Alteively, if
we start from Zorn's lemma, the flow of the arguinén
slightly simpler.

Zorn's lemma
U
Ultrafilter theorem + Axiom of choice
U
Tychonoff’s theorem

2. Preliminaries

In this section, we state basic definitions andners about
filters on sets and compact topological spacesiredjin our
proof.

Zorn's Lemma.Let P be a non-empty partially ordered
set. Assume that for any non-empty chain (i.e. totally ordered
subset) C c P, there exists an upper bound of C in P. Then
P hasa maximal element.

Definition 2.1.A set F consisting of subsets of a set X is
called afilter on X, if the following conditions are satisfied:

1) deF, X€eF.

(2)Forany U,V cX,if UEF and U cV,then V €F.

(3)Forany U,V € F,wehave UNnV €F.

Afilter F onaset X iscalled an ultrafilter or a maximal
filter, if F is maximal with respect to the inclusion, that is, if
any filter including F must beequal to F.
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Note that with our definition, the power sB{X) is not a

Corollary. Let X,Y be two sets, and let f: X — Y be a

filter on X. Some authors call a filter with our definition amap. For any ultrafilter (i.e. a maximal filter) F on X,

proper filter, andP(X) a nonproper filter.

Definition 2.2.Let X,Y betwo sets, andlet f: X — Y be
amap.

(1) For a filter F on X, we define a filter f(F) onY
by

f(F)={VeY|f'(V) e F}

This is the smallest filter on Y including the set of the
images {f(U)|U € F}. Namely, we have

f(F)={VcY|AU e F (f(U) cV)}.

(2) For a filter G on Y such that f~1(V) # ¢ for all
V € G, wedefineafilter f~1(G) on X by

G ={UcXxaveds (f(v)cU)}

Thisisthe smallest filter on X including the set of the inverse
images {f~1(V)|V € G}.

Lemma 2.3Let X,Y betwo sets, and let f:X — Y bea
map. For a filter F on X and a filter G on Y such that
fffV)y#¢ for al VeG, we have a following
equivalence:

f(6) cF <G cf(F).
Proof: The equivalence follows since we have:
f@GcF
SVYUCX@AVEGH (V) cU)=>UEF)
SVYEGHI(V)EF)
=6 cf(F)

This is essentially the Galois connection betwebe t
power setsP(P(X)) and P(P(Y)) induced by the inverse

image mapf~1: P(Y) — P(X).

Lemma 2.4Let X,Y betwo sets, and let f:X — Y bea
map. Let F and G be filters on X and Y, respectively. If
f(F) c G, then there exists a filter H on X such that
FcH and G = f(H).

Proof: Note that for anyU € F we havef(U) € f(F) c
G, and thus for any € G, we havef(U)nV # ¢. This
implies that Un f~1(V) is not empty. LetH be the
smallest filter onX including F U f~1(G), namely, let

H={WcXJ3UeFaveGUnf1(V)c W)}

Then we haveF c H and f~1(G) c H, which implies
G c f(H) by Lemma 2.3.
Note that we have

fH)Y={ZcY3UEFaVeEGWUNf (V) c f 12N
ForanyU e F,V e G,andZ c Y,
UnfrWMcfr@=fU)nVcZ=ZE€qG,
and thus we gef (H) c G.

f(F) isalsoan ultrafilter on Y.

Definition 2.5. A topological space X is a set equipped
with a map N: X — P(P(X)) which satisfies the following
conditions:

(1) N(x) isafilteron X for all x € X.

(2)For all x € X, x belongs to the intersection N N(x).
Thatis, x € U for all U € N(x).

(3) For all x € X and for all U € N(x), there exists an
element V € N(x) such that Vc U and U € N(y) for
each y e V.

An element of N(x) iscalled a neighborhood of x.

Note that the empty set is a topological spaceesthe
empty map¢: & — P(P(¢p)) satisfies the above definition.

Definition 2.6. Let X be a topological space with the
neighborhood filter N(x) for x € X. A filter F on X is
said to convergeto an element x of X, and we write F — x,
if N(x) cF.

Lemma 2.7.Let X,Y be two topological spaces, ane let
f:X — Y be amap. For an element x € X, the following
conditions are equivalent:

(1) f iscontinuousat x, thatis, for any filter F on X, if
F - x then f(F) - f(x).

(2) f(N(x)) converges to f(x), that is, we have an
inclusion N(f(x)) c f(N(x)).

(3) fTHN(f()) € N().

Definition 2.8.A topological space X is called compact if
for any filter F on X, there exists a filter G on X and an
element x of X suchthat F c ¢ and G - x.

The above definition of compactness is equivalenthe
standard definition using open covers. We adoytéal inake
this paper self-contained.

Corollary. Any ultrafilter on a compact space converges.

Definition 2.9.For an arbitrary family of sets {X;},¢;, the
product set is defined as

[~ oot - U

i€l i€l

viel (x(i) € XL-)}.

An element of the product set is called a choice map of
{Xi}ier-

For each index i € I, the projection map pr; from the
product X = [[;; X; onto X; is defined by pr;(x) = x(i)
for x € X.

For example, we have a bijection betwedp; 3 X; and
X, X X, by assigning a pai(x(1),x(2)) to a choice map
x:{1,2} - X; UX,.

Definition 2.10. For an arbitrary family of topological
spaces {X;}ic;, the product topology on the product set
X =[1ie; X; is the weakest topology making the projections
{pr;: X - X;};; continuous. Namely, the neighborhood filter
of x € X isthe smallest filter including the union:

| Jor @lv e nprio)}

i€l
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or Ui pr; " (N(pri(x)))-

Lemma 2.11.For any filter F on the product space
X =Tlie X;, and an element x of X, the following two
conditions are equivalent.

Q) F-x

(2) pry(F) = pr;y(x) forall i el

Proof: The lemma follows from Definition 2.10 and
Lemma 2.3, as we have:

N(kx)cF
& pr; ! (N(pri(x)» cF forall i€l

& N(pri(x)) c pry(F) forall i e 1.

3. The Product of Two Compact Spaces

In this section, we present a proof of the compasgnof
the product of two compact spaces. Note that Zdemsma
is not required in the proof.

Proposition 3.1For any two compact topological spaces
X, and X, , the product spaceX; X X, = [lic3X; IS
compact.

Proof: Let F be a filter on the produck; x X,. Since X;
is a compact space, there exists a fillgron X; and an
elementx; of X; such thatpr;(F) c G, and G, - x;, by
Definition2.8 It follows from Lemma 2.4 there exists a filter
H, on X; x X, such thatF c H, and G, = pry(H;). By
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n=|Jclax(Gnec)

and

y=| Jixe(G. 0 e 0))

is an element ofP. Therefore a maximal elemeit, x) of
P exists. Note that ifG is included in a filterH, then since
(G,x) = (H,x), we have(G,x) = (H,x), and G must be
equal toH. Thus G is an ultrafilter. If x:J] — U;¢; X;, with
J #1, then there is an elemerite I with i ¢ J. Since
pr;(G) is an ultrafilter, by the corollary of Lemma 2anhd
X; is compact,pr;(G) converges to an elemempt of X;
by the corollary of Definition 2.8. This impliesahthe pair
(G,x U {(i,p)}) is an element o and is strictly bigger
than (G,x), contradicting its maximality. Thug =1 and
therefore,x is an element of the product spafde, X;. As
pr;(G) - pr;(x) for all i €I, the ultrafilter G converges to
x, by Lemma 2.11.

As a corollary, now we have:

Tychonoff's TheoremFor an arbitrary family of compact
topological spaces {X;};c;, the product space [];¢; X; with
the product topology is compact.

Proof: Since any filter on[];; X; is included in a
convergent filter, the product space is compact)bfinition
2.8.

Definition 2.8 again, as{, is a compact space, there exists eAppendix

fiter G, onX, and an elementxr, of X, such that
pro(H,) € G, and G, — x,. It follows from Lemma 2.4
there exists a filtetH, on X; x X, such thatH, c H, and
G, = pry(H,). As the filter F is included in H, and
pry(H;) = x4, pry(H,) » x, implies the convergence df,

As an appendix, we present well-known proofs of the
axiom of choice and the ultrafilter theorem as &apions of
Zorn’s lemma. (Cf. [2],[4].)

Lemma 5.1.For a family of sets {X;};¢;, let C be any

to an element(x,x,), the product space is compact, bynon-empty chain consisting of maps x:J - U;e X; with

Definition 2.8.

4. The Proof

In this section, we prove Tychonoff's theorem adiract
application of Zorn's lemma. The idea is to constran
ultrafilter and an element of the product spaceuiameously
by taking a suitable partially ordered set.

Theorem 4.1.For an arbitrary family of compact
topological spaces {X;};c;, any filter on the product space
[Tie; X; with the product topology is included in a convergent
ultrafilter.

Proof: Let F be a filter on the product s¢{;c; X;. Let P
be the set of pairgG,x) where G is a filter on[];¢; X;
including F, and x:J - U, X; is a map with]clI
satisfying x(j) € X; and pr;(G) - x(j) forall j €J. If we
introduce a partial order oR by:

Gx)SHy)eGcHAxCy,

then P satisfies the assumption of Zorn’s lemma. Namel
(F,¢) e P, and for any non-empty chaif c P, its
suprimum sup(C) = (H,y) with

J c I satisfying x(j) € X; for all j €] (i.e. partial choice
maps of {X;};c;). The union UC is also a partial choice
map.

Proof: If (j,a) and (j,b) are elements olUC, then
there exist two partial choice mapsy € C such that
x(j) =a, andy(j) =b. Sincex cy or x Dy, we have
a=>b, and this implies thatUC is a partial map.
Furthermore, ifUC (j) = a, then there exists a partial
choice mapx € C such thatx(j) = a, and thusU C (j) =
x(j) belongs toX;.

Axiom of choice. For an arbitrary family of non-empty
sets{X;};¢;, the product set [];¢; X; isnot empty.

Proof: Let P be the set of partial choice maps {&f; };¢;.

If we introduce a partial order oA by the inclusion, therP
satisfies the assumption of Zorn's lemma. Namélg,émpty
map ¢ belongs toP, and for any non-empty chaifi c P,
the unionU C is in P, by Lemma 5.1. Therefore a maximal
elementx of P exists. If x:J = U, X;, with J # 1, then
there is an element€ I with i & J. Since X; is not empty,
there exists an elemenp of X;. This implies that

Yeu {(i,p)} in P is strictly bigger thanx, contradicting its

maximality. Thusj =1, and thereforex is an element of
the product sef];¢; X;.
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Lemma 5.2For any non-empty chain C of filtersonaset filter and is in P, by Lemma 5.2. Therefore a maximal
X, theunion U C isalso afilter. elementG of P exists. G is an ultrafilter includingF.

Proof: We show that the union satisfies the three
conditions in Definition 2.1. (1) For all filter§ € U C, we
have ¢ € F, X € F, and thererforep g UC, X e UC. (2) References
If Ue UC and U cV c X, then there exists a filteF _ .
such thatU € F € C, and thusV € F € C and V € UC. (3) [1] N. Bourbaki, General Topology: Chapters 1-4, Sprifgrtag
Suppose thal/,V € UC, then there exist two filter&, G 1989.
such thatU e FeEC, andV eG €C. SinceFUG =F or [2] T.J. Jech, The Axiom of Choice,North-Holland, 1973.
FUG=G, we have U,V EFUG € C, which implies

[3] J.L.Kelly, General Topology, D. Van Nostrand Compénc.

UNnVeEFUGEC,andthuswe hav& NV e UC. 1955,
Ultrafilter Theorem.For any filter F on a set X, there
exists an ultrafilter (i.e. a maximal filter) including F. [4] G.H. Moore, Zermelo’s Axiom of Choice: Its Origins,
Proof: Let P be the set of filters o including F. If we Development, & Influence, Springer-Verlag 1982.
introduce a partial order oR by the inclusion, ther? |5 A Tychonoff, Uber die topologische Erweiterung WRéumen,
satisfies the assumption of Zorn's lemma. Naméhg P, Math. Ann. 102 (1929), 544-561.

and for any non-empty chai6 c P, the unionUC is a i i
[6] S. Willard, General Topology, Addison-Wesley 1970.



