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Abstract: A simple proof of Tychonoff’s theorem (the compactness of the product of compact spaces) as a direct application 
of Zorn’s lemma is given. In contrast to the classical Cartan-Bourbaki proof which uses Zorn’s lemma twice, our proof uses it 
only once. 
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1. Introduction 
Tychonoff’s theorem [5] states that the product of an 

arbitrary family of compact topological spaces, with the 
product topology, is compact. In a standard Cartan-Bourbaki 
proof (cf. [1],[3],[6]) of this theorem, the ultrafilter theorem 
is used to obtain an ultrafilter (i.e. a maximal filter) � 
including a filter � on the product space, and the axiom of 
choice is used in selecting an element of the product space 
which � converges to. If we start from the axiom of choice, 
the flow of the argument is illustrated as follows. 

Axiom of choice ⇓ 
Zorn’s lemma + Axiom of choice ⇓ 

Ultrafilter theorem + Axiom of choice ⇓ 
Tychonoff’s theorem 

This proof uses the axiom of choice twice. Alternatively, if 
we start from Zorn’s lemma, the flow of the argument is 
slightly simpler. 

Zorn’s lemma ⇓ 
Ultrafilter theorem + Axiom of choice ⇓ 

Tychonoff’s theorem 

This proof also seems to be a roundabout, since Zorn’s 
lemma is applied twice. Therefore, it is desirable to find a 
direct proof which uses Zorn’s lemma only once. 

Zorn’s lemma ⇓ 
Tychonoff’s theorem 

In this paper we provide a shortcut proof of Tychonoff’s 
theorem as a direct application of Zorn’s lemma without 
appealing to the axiom of choice or the ultrafilter theorem. 

2. Preliminaries 
In this section, we state basic definitions and lemmas about 

filters on sets and compact topological spaces required in our 
proof. 

Zorn’s Lemma. Let � be a non-empty partially ordered 
set. Assume that for any non-empty chain (i.e. totally ordered 
subset) � ⊂ �, there exists an upper bound of � in �. Then � has a maximal element. 

Definition 2.1. A set � consisting of subsets of a set � is 
called a filter on �, if the following conditions are satisfied: 

(1) ϕ ∉ �, � ∈ �. 
(2) For any �, 
 ⊂ �, if � ∈ � and � ⊂ 
, then 
 ∈ �. 
(3) For any �, 
 ∈ �, we have � ∩ 
 ∈ �. 
A filter � on a set � is called an ultrafilter or a maximal 

filter, if � is maximal with respect to the inclusion, that is, if 
any filter including � must be equal to �. 
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Note that with our definition, the power set P��� is not a 
filter on �. Some authors call a filter with our definition a 
proper filter, and P��� a nonproper filter. 

Definition 2.2. Let �, � be two sets, and let �: � ⟶ � be 
a map. 

(1) For a filter � on �, we define a filter 	���� on � 
by 

���� = �
 ⊂ �|����
� ∈ �� 
This is the smallest filter on �  including the set of the 
images �����|� ∈ ��. Namely, we have 

���� = �
 ⊂ �|∃� ∈ �	����� ⊂ 
��. 
(2) For a filter � on � such that ����
� ≠ ϕ for all 
 ∈ �, we define a filter ������ on � by 

������ = �� ⊂ �|∃
 ∈ �	�����
� ⊂ ���. 
This is the smallest filter on X including the set of the inverse 
images �����
�|
 ∈ ��. 

Lemma 2.3. Let �, � be two sets, and let �: � ⟶ � be a 
map. For a filter � on � and a filter � on � such that ����
� ≠ ϕ  for all 
 ∈ � , we have a following 
equivalence: 

������ ⊂ � ⟺ � ⊂ ����. 
Proof: The equivalence follows since we have: 

������ ⊂ � 

⟺ ∀� ⊂ ��∃
 ∈ ������
� ⊂ �� ⇒ � ∈ �� 
⟺ ∀
 ∈ ������
� ∈ �� 
⟺ � ⊂ ���� 

This is essentially the Galois connection between the 
power sets P�P���� and P�P���� induced by the inverse 
image map ���: P��� ⟶ P���. 

Lemma 2.4. Let �, � be two sets, and let �: � ⟶ � be a 
map. Let � and � be filters on � and �, respectively. If ���� ⊂ � , then there exists a filter "  on �  such that � ⊂ " and � = ��"�. 

Proof: Note that for any � ∈ � we have ���� ∈ ���� ⊂�, and thus for any 
 ∈ �, we have ���� ∩ 
 ≠ ϕ. This 
implies that � ∩ ����
�  is not empty. Let "  be the 
smallest filter on � including � ∪ ������, namely, let 

" = �$ ⊂ �|∃� ∈ �	∃
 ∈ �	�� ∩ ����
� ⊂ $��. 
Then we have � ⊂ " and ������ ⊂ ", which implies � ⊂ ��"� by Lemma 2.3. 
Note that we have 

��"� = �% ⊂ �|∃� ∈ �	∃
 ∈ �	�� ∩ ����
� ⊂ ����%���. 
For any � ∈ �, 
 ∈ �, and % ⊂ �, 

� ∩ ����
� ⊂ ����%� ⟹ ���� ∩ 
 ⊂ % ⟹ % ∈ �, 

and thus we get ��"� ⊂ �. 

Corollary. Let �, � be two sets, and let �: � ⟶ � be a 
map. For any ultrafilter (i.e. a maximal filter) �  on � , ���� is also an ultrafilter on �. 

Definition 2.5. A topological space � is a set equipped 
with a map ':� ⟶ P�P���� which satisfies the following 
conditions: 

(1) '�(� is a filter on � for all ( ∈ �. 
(2)For all ( ∈ �, ( belongs to the intersection ⋂'�(�. 

That is, ( ∈ � for all � ∈ '�(�. 
(3) For all ( ∈ � and for all � ∈ '�(�, there exists an 

element 
 ∈ '�(�  such that 
 ⊂ �  and 	� ∈ '�*�  for 
each * ∈ 
. 

An element of '�(� is called a neighborhood of (. 
Note that the empty set is a topological space since the 

empty map ϕ:ϕ ⟶ P�P�ϕ�� satisfies the above definition. 
Definition 2.6. Let �  be a topological space with the 

neighborhood filter '�(� for 	( ∈ �. A filter �  on �  is 
said to converge to an element ( of �, and we write � → (, 
if '�(� ⊂ �. 

Lemma 2.7. Let �, � be two topological spaces, ane let �: � ⟶ � be a map. For an element ( ∈ �, the following 
conditions are equivalent: 

(1) � is continuous at (, that is, for any filter � on �, if � → ( then ���� → ��(�. 
(2) ��'�(��  converges to ��(� , that is, we have an 

inclusion '���(�� ⊂ ��'�(��. 
(3) ����	',��(�-� ⊂ '�(�. 
Definition 2.8. A topological space � is called compact if 

for any filter � on �, there exists a filter � on � and an 
element ( of � such that � ⊂ � and � → (. 

The above definition of compactness is equivalent to the 
standard definition using open covers. We adopted it to make 
this paper self-contained. 

Corollary. Any ultrafilter on a compact space converges. 
Definition 2.9. For an arbitrary family of sets ��.�.∈/, the 

product set is defined as  

0�.
.∈/

= 1(: 2 →3�.
.∈/

4∀5 ∈ 2	�(�5� ∈ �.�6. 
An element of the product set is called a choice map of ��.�.∈/. 

For each index 5 ∈ 2, the projection map pr.  from the 
product � = ∏ �..∈/  onto �.  is defined by pr.�(� = (�5� 
for ( ∈ �. 

For example, we have a bijection between ∏ �..∈��,;�  and �� × �; by assigning a pair �(�1�, (�2�� to a choice map (: �1,2� → �� ∪ �;. 
Definition 2.10. For an arbitrary family of topological 

spaces ��.�.∈/ , the product topology on the product set 	� = ∏ �..∈/  is the weakest topology making the projections �pr. : � → �.�.∈/ continuous. Namely, the neighborhood filter 
of ( ∈ � is the smallest filter including the union: 

3?pr.�����@� ∈ ',pr.�(�-A
.∈/  
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or ⋃ pr.�� C',pr.�(�-D.∈/ . 

Lemma 2.11. For any filter �  on the product space � = ∏ �..∈/ , and an element (  of � , the following two 
conditions are equivalent. 

(1) � → ( 
(2) pr.��� → pr.�(� for all 5 ∈ 2 
Proof: The lemma follows from Definition 2.10 and 

Lemma 2.3, as we have: 

'�(� ⊂ �  

⟺ pr.�� C',pr.�(�-D ⊂ � for all 5 ∈ 2 
⟺',pr.�(�- ⊂ pr.��� for all 5 ∈ 2. 

3. The Product of Two Compact Spaces 
In this section, we present a proof of the compactness of 

the product of two compact spaces. Note that Zorn’s lemma 
is not required in the proof. 

Proposition 3.1. For any two compact topological spaces ��  and �; , the product space �� × �; ≅ ∏ �..∈��,;�  is 
compact. 

Proof: Let � be a filter on the product �� × �;. Since �� 
is a compact space, there exists a filter �� on �� and an 
element (� of �� such that pr���� ⊂ �� and �� → (�, by 
Definition2.8. It follows from Lemma 2.4 there exists a filter "�  on �� × �;  such that � ⊂ "�  and �� = pr��"��. By 
Definition 2.8 again, as �; is a compact space, there exists a 
filter �;  on�;  and an element (;  of �;  such that pr;�"�� ⊂ �;  and �; → (; . It follows from Lemma 2.4 
there exists a filter "; on �� × �; such that "� ⊂ "; and �; = pr;�";� . As the filter �  is included in ";  and pr��";� → (�, pr;�";� → (; implies the convergence of "; 
to an element �(�, (;�, the product space is compact, by 
Definition 2.8. 

4. The Proof 
In this section, we prove Tychonoff’s theorem as a direct 

application of Zorn’s lemma. The idea is to construct an 
ultrafilter and an element of the product space simultaneously 
by taking a suitable partially ordered set. 

Theorem 4.1. For an arbitrary family of compact 
topological spaces ��.�.∈/, any filter on the product space ∏ �..∈/  with the product topology is included in a convergent 
ultrafilter. 

Proof: Let � be a filter on the product set ∏ �..∈/ . Let � 
be the set of pairs ��, (� where � is a filter on ∏ �..∈/  
including � , and (: F → ⋃ �..∈/  is a map with F ⊂ 2 
satisfying (�G� ∈ �H and prH��� → (�G� for all G ∈ F. If we 
introduce a partial order on � by: 

��, (� ≦ �", *� ⟺ � ⊂ " ∧ ( ⊂ *, 

then � satisfies the assumption of Zorn’s lemma. Namely, ��, ϕ� ∈ � , and for any non-empty chain � ⊂ � , its 
suprimum sup��� = �", *� with  

" =3?�@∃(,��, (� ∈ �-A, 
and 

* =3?(@∃�,��, (� ∈ �-A 
is an element of �. Therefore a maximal element ��, (� of � exists. Note that if � is included in a filter ", then since ��, (� ≦ �", (�, we have ��, (� = �", (�, and � must be 
equal to ". Thus � is an ultrafilter. If (: F → ⋃ �..∈/ , with F ≠ 2 , then there is an element 5 ∈ 2  with 5 ∉ F . Since pr.��� is an ultrafilter, by the corollary of Lemma 2.4, and �.  is compact, pr.��� converges to an element M of �. 
by the corollary of Definition 2.8. This implies that the pair ��, ( ∪ ��5, M��� is an element of � and is strictly bigger 
than ��, (�, contradicting its maximality. Thus F = 2 and 
therefore, ( is an element of the product space ∏ �..∈/ . As pr.��� → pr.�(� for all 5 ∈ 2, the ultrafilter � converges to (, by Lemma 2.11. 

As a corollary, now we have: 
Tychonoff’s Theorem. For an arbitrary family of compact 

topological spaces ��.�.∈/ , the product space ∏ �..∈/  with 
the product topology is compact. 

Proof: Since any filter on ∏ �..∈/  is included in a 
convergent filter, the product space is compact, by Definition 
2.8. 

Appendix 
As an appendix, we present well-known proofs of the 

axiom of choice and the ultrafilter theorem as applications of 
Zorn’s lemma. (Cf. [2],[4].) 

Lemma 5.1. For a family of sets ��.�.∈/ , let �  be any 
non-empty chain consisting of maps (: F → ⋃ �..∈/  with F ⊂ 2 satisfying (�G� ∈ �H for all G ∈ F (i.e. partial choice 
maps of ��.�.∈/). The union ⋃� is also a partial choice 
map. 

Proof: If �G, N�  and �G, O�  are elements of ⋃� , then 
there exist two partial choice maps (, * ∈ �  such that (�G� = N, and *�G� = O. Since ( ⊂ * or ( ⊃ *, we have N = O , and this implies that ⋃�  is a partial map. 
Furthermore, if ⋃� �G� = N , then there exists a partial 
choice map ( ∈ � such that (�G� = N, and thus ⋃� �G� =(�G� belongs to �H. 

Axiom of choice. For an arbitrary family of non-empty 
sets��.�.∈/, the product set ∏ �..∈/  is not empty. 

Proof: Let � be the set of partial choice maps of ��.�.∈/. 
If we introduce a partial order on � by the inclusion, then � 
satisfies the assumption of Zorn’s lemma. Namely, the empty 
map ϕ belongs to �, and for any non-empty chain � ⊂ �, 
the union ⋃� is in �, by Lemma 5.1. Therefore a maximal 
element ( of � exists. If (: F → ⋃ �..∈/ , with F ≠ 2, then 
there is an element 5 ∈ 2 with 5 ∉ F. Since �. is not empty, 
there exists an element M  of �. . This implies that ( ∪ ��5, M�� in � is strictly bigger than (, contradicting its 
maximality. Thus F = 2, and therefore, ( is an element of 
the product set ∏ �..∈/ . 
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Lemma 5.2. For any non-empty chain � of filters on a set �, the union ⋃� is also a filter. 
Proof: We show that the union satisfies the three 

conditions in Definition 2.1. (1) For all filters � ∈ ⋃�, we 
have ϕ ∉ �, � ∈ �, and thererfore ϕ ∉ ⋃�, � ∈ ⋃�. (2) 
If � ∈ ⋃�  and � ⊂ 
 ⊂ � , then there exists a filter � 
such that � ∈ � ∈ �, and thus 
 ∈ � ∈ � and 
 ∈ ⋃�. (3) 
Suppose that �, 
 ∈ ⋃�, then there exist two filters �, � 
such that � ∈ � ∈ �, and 
 ∈ � ∈ �. Since � ∪ � = � or � ∪ � = � , we have �, 
 ∈ � ∪ � ∈ � , which implies � ∩ 
 ∈ � ∪ � ∈ �, and thus we have � ∩ 
 ∈ ⋃�. 

Ultrafilter Theorem. For any filter � on a set �, there 
exists an ultrafilter (i.e. a maximal filter) including �. 

Proof: Let � be the set of filters on � including �. If we 
introduce a partial order on �  by the inclusion, then � 
satisfies the assumption of Zorn’s lemma. Namely, � ∈ �, 
and for any non-empty chain � ⊂ �, the union ⋃� is a 

filter and is in �, by Lemma 5.2. Therefore a maximal 
element � of � exists. � is an ultrafilter including �. 
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