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Abstract: In 1942 Haskell B. Curry presented what is now called Curry's paradox which can be found in a logic 

independently of its stand on negation. In recent years there has been a revitalised interest in non-classical solutions to the 

semantic paradoxes. In this article the non-classical resolution of Curry’s Paradox and Shaw-Kwei' sparadox without rejection 

any contraction postulate is proposed. In additional relevant paraconsistent logic ���
#, 1 ≤ � < 
, in fact,provide an effective 

way of circumventing triviality of da Costa’s paraconsistent Set Theories�
�
�  
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1. Introduction 

In 1942 Haskell B. Curry presented what is now called 

Curry's paradox[1]. The paradox I have in mind can be 

found in a logic independently of its standon negation. The 

deduction appeals to no particular principles of negation, asit 

is negation-free. Any deduction must use some inferential 

principles. 

Here are the principles needed to derive the paradox. 

A transitive relation of consequence: we write this by 

⊢ and take ⊢  tobe a relation between statements, and we 

require that it be transitive: if� ⊢  �and � ⊢  � then� ⊢  �. 
Conjunction and implication: we require that the 

conjunction operator ∧be a greatest lower bound with respect 

to ⊢. That is, � ⊢  � and � ⊢  �if and only if� ⊢  � ∧  �. 
Furthermore, we require that there be a residual for 

conjunction: a connective →  such that � ∧  � ⊢  �  if and 

only if A ⊢ B → C. 

Unrestricted Modus Ponens rule : 

�, � →  � ⊢  �                            (1.1) 
Unrestricted Modus Tollens rule: 

� →  �, ¬� ⊢  ¬�                          (1.2) 

A paradox generator: we need only a very weak paradox 

generator. Wetake the �  scheme in the following 

enthymematic form: ���� ∧ � ⊢  � ;  � ∧  � ⊢  ���� for 

some true statement �.The idea is simple: ����  need not 

entail �.  Take �  to be the conjunction of all required 

background constraints. 

Diagonalisation. To generate the paradox we use a 

technique of diagonal lisati on to construct a statement Ψ 

such that Ψ  is equivalent to ��Ψ�  → �, where � is any 

statement you please. 

Curry’s paradox, is a paradox within the family of so-

called paradoxes of self-reference (or paradoxes of 

circularity). Like the liar paradox (e.g., ‘this sentence is false’) 

and Russell’ sparadox, Curry’s paradox challenges familiar 

naive theories, including naïve truth theory (unrestricted �-

schema) and naive set theory (unrestricted axiom of 

abstraction), respectively. If one acceptsnaive truth theory (or 

naive set theory), then Curry’s paradox becomes a direct 

challenge to one’s theory of logical implication or entailment. 

Unlike the liar and Russell paradoxes Curry’s paradox is 

negation-free; it may be generated irrespective of one’s 

theory of negation. 

There are basically two different versions of Curry's 

paradox, a truth-theoretic (or proof-theoretic) and a set-

theoretic version; these versions will be presented below. 

Truth-theoretic version. 

Assume that our truth predicate satisfies the following �-

schema: 

����  ↔  � 
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Assume, too, that we have the principle called Assertion 

(also known as pseudo modus ponens): 

Assertion:(� ∧ (� →  �))  →  � 

By diagonalization, self-reference we can get a sentence 

�such that � ↔ ( ����  →  
), where 
 is anything you like. 

(For effect, though, make 
 something obviously false, e.g. 


 ≡ 0 = 1) By an instance of the �-schema(”����  ↔  �”) 

we immediately get: ����  ↔  (����  →  
), 
Again, using the same instance of the �-Schema, we can 

substitute���, 
� for ���� in the above to get (1). 

1 ⊢  ���, 
� ↔  (���, 
�  →  
)  [by � -schema 

andSubstitution] 

2 ⊢  (���, 
�  ∧  (���, 
�  →  
))  →  
[by Assertion] 

3 ⊢  (���, 
�  ∧  ���, 
�)  →  
 [by Substitution, from 2] 

4 ⊢ C[T,F] → F [by Equivalence of � and � ∧  �, from 3] 

5 ⊢  ���, 
� [by Modus Ponens, from 1 and 4] 

6 ⊢  
 [by Modus Ponens, from 4 and 5] 

Letting 
 be anything entailing triviality Curry’s paradox 

quickly ’shows’that the world is trivial. 

Set-Theoretic Version 

The same result ensues within naive set theory. Assume, in 

particular, the 

(unrestricted) axiom of abstraction (or naive 

comprehension (NC)): 

Unrestricted Abstraction: $ ∈  {$|�($)}  ↔  �($). 
Moreover, assume that our conditional , → , satisfies 

Contraction (as above), 

which permits the deduction of () ∈  ) →  �) from 

) ∈  ) →  () ∈  ) → �). 
In the set-theoretic case,let ��
�, {$|$ ∈  $ →  
}, where 


remains as you please (but something obviously false, e.g. 


 ≡ 0 = 1). From here we reason thus: 
(1) ⊢  $ ∈  ��
�  ↔  ($ ∈  $ →  
) [by Unrestricted 

Abstraction] 
(2) ⊢  ��
�  ∈  ��
�  ↔  (��
�  ∈  ��
�  →  
) [by 

Universal Specification, from1] 
(3) ⊢  ��
�  ∈  ��
�  →  (��
�  ∈  ��
�  →  
) 

[bySimplification, from 2] 
(4) ⊢  ��
�  ∈  ��
�  →  
 [by Contraction, from 3] 
(5) ⊢  ��
�  ∈  ��
� [by Unrestricted Modus 

Ponens,from 2 and 4] 
(6) ⊢  
 [by Unrestricted Modus Ponens, from 4 and 5] 

So, coupling Contraction with the naive abstraction 

schema yields, via Curry’sparadox, triviality. 

This is a problem. Our true ��
�  entails an arbitrary 


.This inference arises independently of any treatment of 

negation. The form of the inference is reasonably well known. 

It is Curry’s paradox, and it causes a great deal of trouble to 

any non-classical approach to the paradoxes. In the next 

sections we show how the tools for Curry’s paradox are 

closer to hand than you might think. 

2. Relevant First-Order Logics in 

General 

Relevance logics are non-classical logics [2]-[15]. Called 

“relevant logics” in Britainand Australasia, these systems 

developed as attempts to avoid the paradoxesof material and 

strict implication. It is well known that relevant logic does 

notaccept an axiom scheme � →  (¬� →  �)  and the 

rule�, ¬� ⊢ �. Hence, in a natural way it might be used as 

basis for contradictory but non-trivial theories, i.e. 

paraconsistent ones. Among the paradoxes of material 

implication are: * →  (+ →  *), ¬* →  (* →  +), (* →
 +)  ∨  (+ → -).Among theparadoxes of strict implication are 

the following: (* ∧ ¬*)  →  +, * →  (+ →  +), * → (+ ∧
¬+).Relevant logicians point out that what is wrong with 

some of the paradoxes (and fallacies) is that is that the 

antecedents and consequents (or premises and conclusions) 

are on completely different topics. The notion of a topic, 

however,would seem not to be something that a logician 

should be interested in — it has to do with the content, not 

the form, of a sentence or inference. But there is a formal 

principle that relevant logicians apply to force theorems and 

inferences to “stay on topic”. This is the variable sharing 

principle. The variable sharing principle says that no formula 

of the form � →  � can be proven in a relevance logic if � 

and �  do not have at least one propositional variable 

(sometimes called a proposition letter) in common and that 

no inference can be shown valid if the premises and 

conclusion do not share at least one propositional variable. 

3. Curry’s Paradox Resolution Using 

Canonical Systems of Relevant Logic 

In the work of Anderson and Belnap [3] the central 

systems of relevance logic were the logic E of relevant 

entailment and the system R of relevant implication. The 

relationship between the two systems is that the entailment 

connective ofE was supposed to be a strict (i.e. necessitated) 

relevant implication. To compare the two, Meyer added a 

necessity operator to R (to produce the logicNR). 

It well known in set theories based on strong relevant 

logics, like E and R, as well as in classical set theory, if we 

add the naive comprehension axiom, we are able to derive 

any formula at all. Thus, naive set theories based on systems 

such as E and R are said to be “trivial” by Curry Paradox. 

The existence of this paradox has led Grishen, Brady, 

Restall, Priest, and others to abandon the axiom of 

contractionwhich we have dubbed 

K:((� →  (� →  �))  →  (� → �)). 
Brady has shown that by removing contraction, plus some 

other key theses, from R we obtain a logic that can accept 

naive comprehension without becoming trivial [4],[16],[17]. 

However, it is not just W that we must avoid. Shaw-Kwei 

[21] shows that avariant of Curry's paradox can trivialise a 

chain of weaker naive truth theories. Let us use the notations 

. →(/) 0and. →(�12) 0 

to mean0 and3. → 4. →(�) 056 correspondingly. 

Then the following axioms also lead to triviality 
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7�:3. → 4. →(�) 056 → 4. →(�) 05. 

We choose now a sentence8� via the diagonal lemma, that 

satisfies [22]: 

8� ↔ 4�-48�9 5 →(�) .5, 

where the notations °9to mean an fixed Godel numbering. 

Then by fullintersubstitutivity one obtain the equivalence 

;�: 8� ↔ 48� →(�) .5, 

which by postulate7�reduces to48� →(�) .5and by ;� to 8�. 

But from 8�  and 8� →(�) .  one can deduce .  byn 

applications of unrestricted modus ponens (1.1).For example, 

a natural implicational logic without contraction is 

Ƚukasiewicz's 3-valued logic:Ƚ>. Although logicȽ> does not 

contain K, it does contain 7?. In general the n+1-valued 

version of Ƚukasiewicz logic, Ƚ�12, validates 7�  andis thus 

unsuitable for the same reason [22],[23]. 

However, it well known that contraction is not the only 

route to triviality . There are logics which are contraction free 

that still trivializenaive comprehension schema(NC) 

[18].Abelian logic with axiom of relativity which we have 

dubbed 

@: 4(* → +) → +5 → *. 

Let A = {$|.($)}  and .($) = * → $ ∈ $.  Then as 

instance of NC one obtain (* → A ∈ A) → A ∈ A. Thus we 

obtain 

(1) ⊢ (* → A ∈ A) → A ∈ A[by NC] 

(2) ⊢ 4(* → A ∈ A) → (A ∈ A)5 → *[by instanceof @� 
(3) ⊢ *[by1,2 and Unrestricted Modus Ponens(1.1)]. 

4. Relevant First-Order Logic BC# 

In order to avoid the results mentioned in II and III, one 

could think of restrictions in initial formulation of the rule 

Unrestricted Modus Ponens (1.1).The postulates (or their 

axioms schemata) of propositional logic LP#�V�  are the 

following [19]: 

I. Logical postulates: 

(1) � →  (� →  �), 
(2) (� →  �)  →  ((� →  (� →  �))  →  (� →  �)), 
(3) A → (B → A∧ B), 

(4) � ∧  � →  �, 
(5) � ∧  � →  �, 
(6) � →  (� ∨  �), 
(7) � →  (� ∨  �), 
(8) (A → C) → ((B → C) → (A ∨ B → C)), 

(9) � ∨  ¬�, 
(10) � →  (¬� →  �). 

II. Restricted Modus Ponens rule: 

�, � →  � ⊢ � iff � ∉ J                      (1.3) 

or 

�, � →  � ⊢ � iff � ∉  J                   (1.4) 

which we have write for short 

�, � →  � ⊢K �or�, � →  � ⊢K,L �. 

5. Curry’s Paradox and Shaw-Kwei's 

Paradox Resolution Using Relevant 

First-Order Logic BC# 

In my paper [19] was shown that by removing only 

Unrestricted Modus Ponens rule (1.1)(without removing 

contraction etc.), plus some other key theses, from classical 

logic we obtain a logic that can accept naive comprehension 

without becoming trivial. 

Let us consider Curry’s paradox in a set theoretic version 

using Relevant First-Order Logic LP#with Restricted Modus 

Ponens rule (1.3). Let ��
� =  {$|$ ∈  $ →  
} andM�
� is a 

closed a well formed formula of ZFC(cwff) such 

that:M�
�  ↔ ��
�  ∈  ��
� .We assume now �N�(O
�)and 

denote by Δa set of all cwffsuch that Q ∈ Δ ↔ ¬�N�(O
� +
Q).Let us denote by symbol ST a set  

ST = { ��
� |
 ∈ Δ }  
We set now in (1.3). J = ST  From definition above we 

obtain the Restricted Modus Ponens rule: 

�, � →  � ⊢ � iff � ∉  SU.(1.5) 

Let 
 ∈  Δ. From here we reason thus: 

(1) ⊢  $ ∈  ��
�  ↔  ($ ∈  $ →  
)  [by Unrestricted 

Abstraction] 

(2) ⊢  ��
�  ∈  ��
�  ↔  (��
�  ∈  ��
�  →  
)  [by 

Universal Specification, from 1] 

(3) ⊢  ��
�  ∈  ��
�  →  (��
�  ∈  ��
�  →  
)  

[bySimplification, from 2] 

(4) ⊢  ��
�  ∈  ��
�  →  
 [by Contraction, from 3] 

(5) ⊬K ��
�  ∈  ��
� [by Restricted Modus Ponens (1.5), 

from 2 and 4] 

Let us denote by symbol SWT a set  

SWT = { ��
� |
 ∉ Δ } . 

Therefore 
�, � →  � ⊢ � iff � ∈ SWU(1.6) 

Let 
 ∉  Δ. From here we reason thus: 

(1) ⊢  $ ∈  ��
�  ↔  ($ ∈  $ →  
)  [by Unrestricted 

Abstraction] 

(2) ⊢  ��
�  ∈  ��
�  ↔  (��
�  ∈  ��
�  →  
)  [by 

Universal Specification, from 1] 

(3) ⊢  ��
�  ∈  ��
�  →  (��
�  ∈  ��
�  →  
)  

[bySimplification, from 2] 

(4) ⊢  ��
�  ∈  ��
�  →  
 [by Contraction, from 3] 

(5) ⊢  ��
�  ∈  ��
� [by Restricted Modus Ponens (1.6), 

from 2 and 4] 

(6) ⊢  
 [by Restricted Modus Ponens (1.6), from 4 and 

5] 
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Let us consider now Curry’s paradox in a set theoretic 

version using Relevant First-Order Logic LP#with Restricted 

Modus Ponens rule (1.4). We set now in (1.4). J = ST From 

definition above we obtain the Restricted Modus Ponens rule: 

�, � →  � ⊢ � iff � ∉  ST                     (1.7) 

Let 
 ∈  Δ. From here we reason thus: 

(1) ⊢  $ ∈  ��
�  ↔  ($ ∈  $ →  
)  [by Unrestricted 

Abstraction] 

(2) ⊢  ��
�  ∈  ��
�  ↔  (��
�  ∈  ��
�  →  
)  [by 

Universal Specification, from 1] 

(3) ⊢  ��
�  ∈  ��
�  →  (��
�  ∈  ��
�  →  
)  

[bySimplification, from 2] 

(4) ⊢  ��
�  ∈  ��
�  →  
 [by Contraction, from 3] 

(5) ⊬K ��
�  ∈  ��
� [by Restricted Modus Ponens (1.7), 

from 2 and 4] 

Let us consider now Curry’s paradox in a set theoretic 

version using Abelian logic with axiom of relativity and 

Restricted Modus Ponens (1.4). We set now in (1.4). J = Δ 

From definition above we obtain the Restricted Modus 

Ponens rule: 

�, � →  � ⊢ � iff � ∉  Δ                    (1.8) 

Let ��
�  = {$|.($)}  and .($) = 
 → $ ∈ $  and let 


 ∈  Δ. Then as instance of NC one obtain (
 → ��
� ∈
��
�) → ��
� ∈ ��
�. Thus we obtain 

(1) ⊢ (
 → (��
� ∈ ��
�)) → (��
� ∈ ��
�)[by NC] 

(2) ⊢ ((
 →  (��
� ∈  ��
�)) → (��
� ∈ ��
�)) →

[by instanceof @] 

(3) ⊬K 
[by 1,2 and Restricted Modus Ponens (1.7)]. 

Let us consider now Curry’s paradox in a truth theoretic 

version using Relevant First-Order Logic LP#with Restricted 

Modus Ponens rule (1.4). We set now in (1.4). J = Δ From 

definition above we obtain the Restricted Modus Ponens rule: 

�, � →  � ⊢ � iff � ∉  Δ.              (1.9) 

By diagonalization, self-reference we can get a sentence � 

such that � ↔  (����  →  
), where 
 ∈  Δ.  
By an instance of the � -schema (”����  ↔  �”)  we 

immediately get: ����  ↔  (����  →  
), 
Again, using the same instance of the �-Schema, we can 

substitute���, 
� for ���� in the above to get (1). 

(1) ⊢  ���, 
� ↔  (���, 
�  →  
)  [by � -schema 

andSubstitution] 

(2) ⊢  (���, 
�  ∧  (���, 
�  →  
))  →  
 [by Assertion] 

(3) ⊢  (���, 
�  ∧  ���, 
�)  →  
  [by Substitution, from 

2] 

(4) ⊢  ���, 
�  →  
  [by Equivalence of �  and � ∧  �, 
from 3] 

(5) ⊢  ���, 
� [by Restricted Modus Ponens (1.9), from 

1 and 4] 

(6) ⊬K 
 [byRestricted Modus Ponens (1.9), from 4 and 

5]. 

It easy to see that by using logic with 

appropriaterestrictedmodus ponens rule(1.4)Shaw-Kwei's 

paradoxdisappears by the same reason. 

6. The Resolution of X-Inconsistency 

Problem for the Infnite Valued 

Łukasiewicz Logic ȽY. Logic BC{Z}
# . 

It well known that in the infinite valued Łukasiewicz logic, 

ŁY , every instance of 7�  is invalid, and in fact ŁY can 

consistently support a naive truth predicate [23]-[24]. 

However, ŁY is plagued with an apparently distinct problem 

– it is 
 -inconsistent. This fact was first shown model 

theoretically by Restall in [25] and demonstrated a proof 

theoretically by Bacon in [24]. 

An classical extension of Peano Arithmetic is said to be 
 

–inconsistent iff 

⊢ .��/$�for each n, but⊢ ∃$¬.�$�            (1.10) 

Note that while an 
 -inconsistent theory is not formally 

inconsistent.However 
  -inconsistency is generally 

considered to be an undesirable property, generally 

considered to be an undesirable property.It is generally 

considered undesirable if the theory becomes inconsistent in 


 –logic. In other words, if it cannot be consistently 

maintained in the presence of the infinitary
-rule: 

{.��/$�|� ∈ 
} ⊢ ∀$.�$�                 (1.11) 

Clearly 
 -inconsistency entails inconsistency with the 
 

–rule (1.11), but the converse does not hold in general.We 

have dubbed any Logic LP#with the
 –rule (1.11)byLP{_}
# . 

Definition 6.1.[23]. Weak 
 –inconsistency means: 

.��/$� ⊢for each �, but ⊢ ∃$.�$�.             (1.12) 

Definition 6.2. [23]. Strong 
 –inconsistency means: 

⊢ .��/$�for each �, but⊢ ∃$(.�$� →⊥)       (1.13) 

Note that without the rule of reduction one cannot derive 

strong 
-inconsistency from weak
 -inconsistency [23]. 

Definition 6.3. [23]. By a classical“naive truth 

theory"(CNTT) we shall mean any set offirst order sentences 

in the language of arithmetic with a truth predicate which,in 

addition to being closed under modus ponens, has the 

following properties: 

(1) Standard syntax: it contains all the arithmetical 

consequences of classical Peano arithmetic. 

(2) Intersubstitutivity: it contains . if and only if it 

contains. a�- 3096 /0b for any sentence.. 

(3) Compositionality: it contains�-($) → �-(c)  if and 

only if it contains �-($ →d c). 
(4) Unrestricted Modus Ponens rule:it closed 

underunrestricted modus ponens rule (1.1). 

If . ⊢ 0then ∃$. ⊢ ∃$0, (. → ∃$0) ⊢ ∃$(. → 0). 
Note that by using the diagonal lemma we can construct a 

sentence 8satisfying 

8 ↔ ∃��- 3e4�, 8956                     (1.14) 
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where the notations °9to mean an fixed Gödel numbering and 

a function eis defined arithmetically by recursion [23]: 

e(0, $) = $ →d ⊥d ande(� + 1, $) = $ →d e(�, $). 

Theorem 6.1.[23]. Anyclassical naive truth theory closed 

under (1),(2),(3), (i) and (ii) can prove 8. 

Theorem 6.2. [23].Any naive truth theory closed under(i) 

and (ii) is weakly 
-inconsistent. 

Proof. By theorem 6.1 one obtain 

CNTT⊢ ∃��- 3e4�, 8956. 

By arithmeticand full intersubstitutivity we obtainthat 

�- 3e4�, 8956 ⊢ 8 →(�)⊥. 

Since we have ⊢ 8 by theorem 2.1,by n applications of 

unrestricted modus ponenswe obtain 

8 →(�)⊥ ⊢ ⊥.                             (1.15) 

So we have in general�- 3e4�, 8956 ⊢forany n, and 

⊢ ∃��- 3e4�, 8956. 

Theorem 6.3. [23]. Any naive truth theory closed under (i) 

and (ii) is strongly 
-inconsistent. 

Theorem 6.4.[25].Infinitely valued Łukasiewicz logic, ŁY, 

is strongly 
-inconistent. 

Definition 6.4. By a non-classical or generalized “naive 

truth theory" (GCNTT) we shall mean any set of first order 

sentences in the language of arithmetic with a truth predicate 

which, in addition to being closed under modus ponens, has 

the following properties: 

Standard syntax: it contains all the arithmetical 

consequences of classical Peano arithmetic.  

Intersubstitutivity: it contains.if and only if it contains 

. a�- 3096 /0b for any sentence.. 
Compositionality: it contains �-($) → �-(c) if and only if 

it contains �-($ →d c). 
Infinitary
-rule: {.��/$�|� ∈ 
} ⊢ ∀$.�$�.  

Restricted Modus Ponens rules: it closed under restricted 

modus ponens rule (1.3) or (1.4)  

Definition 6.5. Weak 
 –consistency means: 

⊢ .��/$�for each �, but ⊬ ∃$(.�$� →⊥)     (1.16) 

Definition 6.6.[23].Strong 
 –consistency means: 

⊢ .��/$�for each�, but⊬ ∃$¬(.�$�)        (1.17) 

Theorem 6.5. Any consistent GCNTTclosed under 

restricted modus ponens rule (1.3) is strongly
 –consistent. 

 

 

7. Applications 
to da Costa’s Paraconsistent 
Set Theories 

da Costa [27] introduced a Family of paraconsistent logics 

��, 1 ≤ � ≤ 
,  with unrestricted modus ponens rule (1.3) 

[28], designed to be able to support set theories �
�
� , 

respectively, 1 ≤ � ≤ 
, incorporating  unrestricted 

Comprehension Schema: 

⊢ ∃$∀c�$ ∈ c ↔ 
($)�,                                             (1.18) 

where
($) is any formula in which y is not free but x may 

be, and 
($) does not contain  any sub formula of the form   

� → � 

Axiom of Extensionality: 

⊢ ∀$∀c�∀f(f ∈ $ ↔ f ∈ c) → $ = c�                     (1.19) 

Since Russell’s paradox could be reproduced in these set 

theories, their underlying logics in the absence classical rule  

�, ¬� ⊬ �had to be capable of tolerating such theorems as 

⊢ ℛ ∈ ℛ ↔ ¬ℛ ∈ ℛ without collapse into triviality [29] but 

which is hardly less disastrous ⊢ ∀$∀c�($ ∈ c) ∧ ($ = c)�. 
Definition 7.1.[29].~�iff� → ∀$∀c�($ ∈ c) ∧ ($ = c)�. 
Theorem 7.1. [29]  In �
�

� , negation ~  is a minimal 

intuitionistic negation. 

Theorem 7.2.[29]. (Cantor’sTheorem)  

⊢ ∀Mo~4M = �(M)5p. 
Definition 7.2.[29].The universal set J  is defined as:  

∀$�$ ∈ J ↔ ($ = $)� 
Theorem 7.3.[29]. (Cantor’sParadox)  

⊢ 4J = �(J)5 ∧ ~4J = �(J)5. 
Theorem 7.4.[29].  

(i) ∀$∀c�($ = c) ∧ ~($ = c)�, 
(ii) ∀$∀c�($ ∈ c) ∧ ~($ ∈ c)�, 
(iii) ∀$∀c�($ ∈ $) ∧ ~($ ∈ $)�. 

Proof. (i). By theorem 7.3 one obtain  

⊢ (J = J) ∧ ~(J = J).                       (1.20) 

From (1.20) and definition 7.1 one obtain 

J = J → ∀$∀c�($ ∈ c) ∧ ($ = c)�.        (1.21) 

Therefore, as J = J , then ⊢ ∀$∀c($ = c)  and  

⊢ ∀$∀c($ ∈ c). 
Note that statement (i) of the theorem 7.4 is called      

paradox of identity. 

Definition 7.3. Let us define paraconsistent  da Costa type 

logics ��
#, 1 ≤ � < 
,  with restricted modus ponens rule 

such that  

 �, � →  � ⊢ � iff � ∉  J,                  (1.22)  

�∀$∀c($ = c)� ∧ �∀$∀c($ ∈ c)� ∈ J       (1.23) 

for support set theories �
�
# , respectively,  1 ≤ � <


,  incorporating unrestricted Comprehension Schema (1.18). 

From the proof of the theorem 7.3 it follows directly that 

logics ��
#, 1 ≤ � < 
, in fact, provide an effective way of 

circumventing   paradox of identity. 

Arruda in [29] introduced  a Family of  set theories O
�, 
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1 ≤ � ≤ 
, in which any canonical axiom of O
�:the axiom 

of pairing, axiom of union etc., are postulated  in general and 

in which also postulated the existence of the Russell’s set ℛ.  

Definition 7.4. [29].¬�
∗ �iff¬� ∧ �(�). 

Note that ¬�
∗  is a classical negation. 

Theorem 7.5. [29].Any set theories O
� , 1 ≤ � ≤ 
  are 

trivial. 

Proof. By axiom of separation there exist subset ℛ� of ℛ 

such that  

(1) ∀$o$ ∈ ℛ� ↔ ($ ∈ ℛ) ∧ ($ ∈ $)(�)p . From (1) we 

obtain  

(2)  ℛ� ∈ ℛ� ↔ ¬(ℛ� ∈ ℛ�) ∧ (ℛ� ∈ ℛ�)(�). 
From (2) we obtain 

(ℛ� ∈ ℛ�) ∧ ¬�
∗ (ℛ� ∈ ℛ�).             (1.24)  

But formula (1.24) trivializes the system O
�. 
Definition 7.5. Let us define paraconsistent da Costa type 

logics ���
#, 1 ≤ � < 
,  with restricted modus ponens rule 

such that  

 �, � →  � ⊢ � iff �¬�
∗ � ∉  J� .                (1.25)  

(ℛ� ∈ ℛ�) ∧ ¬�
∗ (ℛ� ∈ ℛ�) ∈ J�         (1.26) 

for support set theories O
r�
# , respectively,  1 ≤ � <


,incorporating  unrestricted Comprehension Schema  (1.18).  

From the proof of the theorem 7.5 it follows directly that 

logic ���
#, 1 ≤ � < 
, in fact, provide an effective way of 

circumventing Russell’s paradox. 

Arruda and da Costa [30] introduced a Family of sentential 

logics, s2 to st , designed to be able to support set theories, 

respectively O
2  to O
t  ,incorporating an unrestricted 

Comprehension Schema (1.18). These s logics are interesting 

in that they do not have modus ponens, but still seem to 

contain a lot of theorems that might be expected if modus 

ponens was included.  

Theorem 7.6. [32]. ⊢ A is a theorem of positive 

intuitionistic logic if and only if → �is a theorem of  s2. 
The basic version of Curry’s paradox shows that any such 

set theory is trivial if its underlying logic contains the rules 

of Unrestricted Modus Ponens (1.1)and Contraction, in 

addition to the usual Instantiation rules for the quantifiers 

and Simplification. Arruda and da Costa instead constructed 

their s-systems without modus ponens. Arruda and da Costa 

[27] announced that � ≡ ¬� ⊢ � ⊃ � is derivable in s? to st 

for all formulas A, B and C. Consequently, by Russell’s 

paradox, the set theories: O
2 to O
t contain  ⊢ � ⊃ � for all 

B and C.In the absence of modus ponens, this does not quite 

amount to triviality. It is rather a variant which can be called 

⊃-triviality, but which is hardly less disastrous: ∀x∀y(x =
y)directly follows by Axiom of Extensionality (1.19).Noting 

only that � ≡ ¬� ⊢ � ⊃ �  is not similarly derivable in 

s2.Arruda and da Costa [31] left open the question whether 

the sole remaining set theory O
2  is acceptably non-trivial, 

and thus whether the strategy ofrestricting modus ponens in 

the manner of the s -systems does in fact provide an 

effectiveway of circumventing Curry's paradox. These 

questions answered in the negative by the following variant 

of the Russell’s paradox [33]: 

ℛ ∈ ℛ ≡ (ℛ ∈ ℛ ⊃ �).                   (1.27) 

Theorem 7.7. [33].O
2is ⊃-trivial. 

In addition to Contraction, Simplification and lnstantiation 

rules, s2  contains the rules of Weakening, � ⊢ � ⊃ � , and 

Transitivity, � ⊃ �, � ⊃ � ⊢ � ⊃ �. 
Definition 7.6. Let us define paraconsistent logics2

#, with 

restricted Weakening rule such that 

� ⊢ � ⊃ �iff� ∉  J,                         (1.28) 

(ℛ ∈ ℛ ⊃ �) ∈ J.                            (1.29) 

For support set theory O
2
#, incorporating unrestricted 

Comprehension Schema (1.18).From the proof of the 

theorem 7.7 it follows directly that logic s2
#in fact, provide an 

effective way of circumventing Curry's paradox. 

8. Conclusions 

We pointed out that appropriate resolution of Curry’s 

Paradox and Shaw-Kwei's paradox resolution can be given 

without rejection any contraction postulate. In 

additionallogic ���
#, 1 ≤ � < 
, in fact,provide an effective 

way of circumventing triviality of da Costa’s Paraconsistent 

Set Theories. 

 

References 

[1] Curry, H. (1942): “The Inconsistency of certain formal logics”, 

Journal of Symbolic Logic 7, 115–17. 

[2] M.Jago, Recent Work in Relevant Logic, Analysis (2013) 73 
(3): 526-541. doi: 10.1093/analys/ant043 

[3] Anderson, A.R. and N.D. Belnap, Jr., 1975, Entailment: The 
Logic of Relevance and Necessity, Princeton, Princeton 
University Press, Volume I. Anderson, A.R. N.D. Belnap, Jr. 
and J.M. Dunn (1992)Entailment, Volume II. [These are both 
collections of slightly modified articles on relevance logic 
together with a lot of material unique to these volumes. 
Excellent work and still the standard books on the subject. But 
they are very technical and quite difficult.]C. Smorynski, 
Handbook of mathematical logic, Edited by J. Barwise.North-
Holland Publishing Company,1977 

[4] Brady, R.T., 2005, Universal Logic, Stanford: CSLI 
Publications, 2005. [A difficult, but extremely important book, 
which gives details of Brady's semantics and his proofs that 
naïve set theory and higher order logic based on his weak 
relevant logic are consistent.]D.Marker,Model theory: an 
introduction.(Graduate Texts in Mathematics,Vol. 217). 
Springer 2002. 

[5] Dunn, J.M., 1986, “Relevance Logic and Entailment” in F. 
Guenthner and D. Gabbay (eds.), Handbook of Philosophical 
Logic, Volume 3, Dordrecht: Reidel, pp. 117–24. [Dunn has 
rewritten this piece together with Greg Restall and the new 
version has appeared in volume 6 of the new edition of the 
Handbook of Philosophical Logic, Dordrecht: Kluwer, 2002,  



12 Jaykov Foukzon:  Relevant First-Order Logic LP# and Curry’s Paradox Resolution  

 

[6] Mares, E.D., Relevant Logic: A Philosophical Interpretation, 
Cambridge: Cambridge University Press. U. R. Schmerl, 
Iterated Reflection Principles and the ω-Rule.The Journal 
ofSymbolic Logic,2004,Vol. 47, No. 4, pp.721-733. 

[7] Mares, E.D. and R.K. Meyer, 2001, “Relevant Logics” in L. 
Goble (ed.), The Blackwell Guide to Philosophical Logic, 
Oxford: Blackwell.S. Feferman,Systems of predicative 
analysis. Journal of Symbolic Logic29:1-30. 

[8] Paoli, F., 2002, Substructural Logics: A Primer, Dordrecht: 
Kluwer. [Excellent and clear introduction to a field of logic 
that includes relevance logic.]S. Feferman, C. Spector, 
Incompleteness along paths in progressionsof theories. Journal 
of Symbolic Logic 27:383--390. 

[9] Priest, G., 2008, An Introduction to Non-Classical Logic: 
From If to Is, Cambridge: University of Cambridge Press. 
P.Lindstrom, "First order predicate logic and generalized 
quantifiers",Theoria, Vol. 32, No.3. pp. 186-195, December 
1966. 

[10] Read, S., 1988, Relevant Logic, Oxford: Blackwell. 

[11] Restall, G., 2000, An Introduction to Substructural Logics, 
London: Routledge.  

[12] [10] Routley, R., R.K. Meyer, V. Plumwood and R. Brady, 
1983,Relevant Logics and its Rivals. Volume I. 

[13] R.Brady (ed.), Relevant Logics and their Rivals. Volume II. 

[14] Anderson, A.R., 1967, “Some Nasty Problems in the Formal 
Logic of Ethics,” Noûs, 1: 354–360. 

[15] Belnap, N.D., 1982, “Display Logic,” Journal of Philosophical 
Logic, 11: 375–417. 

[16] Robles, G., Méndez, J. M., Curry’s Paradox, Generalized 
Modus Ponens Axiom and Depth Relevance, 
StudiaLogicaFebruary 2014, Volume 102, Issue 1, pp. 185-
217. 

[17] G. Robles, J. M. Méndez, Blocking the Routes to Triviality 
with Depth Relevance, Journal of Logic, Language and 
InformationDecember 2014, Volume 23, Issue 4, pp. 493-526. 

[18] Rogerson, S., Restall, G. Routes to Triviality, Journal of 
Philosophical Logic August 2004, Volume 33, Issue 4, pp. 
421-436. 

[19] Foukzon,J.,Relevant First-Order Logic LP# and Curry's 
Paradox. April 2008http://arxiv.org/abs/0804.4818 

[20] Foukzon,J.,Paraconsistent First-Order Logic LP# with infinite 
hierarchy levels of contradiction.May 
2008http://arxiv.org/abs/0805.1481 

[21] Shaw-Kwei, M.,Logical paradoxes for many-valued systems. 
Journal of Symbolic Logic, pages 37-40, 1954. 

[22] Restall. G., How to be really contraction free. StudiaLogica, 
52(3):381{391,1993. 

[23] Bacon,A,Curry’s Paradox and ω-Inconsistency,StudiaLogica 
February 2013, Volume 101, Issue 1, pp. 1-9. 

[24] Hajek, P., Paris, J., and Shepherdson, J., The liar paradox and 
fuzzy logic. Journal of Symbolic Logic, 65(1):339{346, 2000. 

[25] Restall, G., Arithmetic and truth in Lukasiewicz'sinnitely 
valued logic.LogiqueetAnalyse, 140:303{12, 1992. 

[26] Restall,G., An introduction to substructural logics. Routledge, 
2000. 

 


