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Abstract: In the present paper using precise results on the solutions of linear elliptic differential operators with Holder 

continuous coefficient as well as a variant of the Lery - Schauder method and the gal of this paper to find an adequate degree 

theory for the infinite dimensional setting and to extend the theory of homotopy classes of maps form ℝ� to ℝ� to homotopy 

classes of maps on infinite dimensional spaces. 
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1. Introduction 

The infinite dimensional space under consideration in this 

section are normed linear vector spaces are their subsets. 

Extensions will be discussed in the next section. Let	�	be (a 

real) linear vector space. On � we define a norm ‖. ‖�	�		‖. ‖ 

for short which satisfies the following hypotheses: 

	‖
 + �‖ 	≤ 	 ‖
‖ + ‖�‖, ��		���	
, �	 ∈ �     (1) 

	‖�	
‖ 	≤ 	 |�|‖
‖, ��		���	
	 ∈ �, ���	��		���	� ∈ ℝ (2) 

	‖
‖ = 0	��	���	����	��	
	=0                        (3) 

The combination is called a normed linear vector space. If 

an addition is � complete it is called is a Banach space. A 

normed linear space is complete if every Cauchy sequence 

has a limit in �;	�
�� 	⊂ �	���ℎ	‖
�−
"‖ 	→ 0	�$	�,%	 →∞, implies that there exists �	
	 ∈ � such that ‖
� − 
‖ 	→0	�$	�	 → ∞ . Normed vector space and Banach space are 

examples of metric and complete metric spaces respectively, 

where the metric is given by: �'
, �( = 	 |
 − �|. 
Continuity: Definition (1-1): A mapping �: � → *  is 

continuous if 
� → 
  (in �(  implies that �'
�( →�'
('��	*(. A map is uniformly continuous on �, if for any + > 0	 there exists �	-. > 0  such that ‖
 − �‖ < -  implies 

that ‖�'
( − �'�(‖ < +. The latter can also be defined with 

respect to a closed subset 0 ⊂ �. 
A continuous function �: � → * is bounded if �'	Ω2 ( ⊂ � 

is bounded for any bounded subset Ω	2 ⊂ � . Continuous 

mapping on ℝ� are necessarily bounded, i.e. bounded sets in ℝ� are mapped to bounded set under �. This is however not 

the case in general Banach spaces. 

Lemma (1-2): A uniformly continuous map is bounded. 

Proof: We need to show that for any bounded set the image 0 ⊂ �  the image �'0( ⊂ *  is also bounded. Choose 3 > 0 

such that 0 ⊂ 45'0( , and let �	 > 65
7 . Then for any two 

points 
, �	 ∈ 0  it holds that ‖
 − �‖ ≤ 23 , and one can 

define the line segmen t	= 
 + �'� − 
(, �	 ∈ 90,1;, ��	45'0(. 
For �< = <

�  we obtain point 
=> ⊂ 45'0( , with ‖
=> −
=>?@	‖ 	< - , by the choice of � . Since �  is uniformly 

continuous it follows that ‖�'
=>( − �'
=>?@	(‖ 	< +, for all �. 
Form the triangle inequality we then get: ‖�'
( − �'�(‖ 	≤	∑ ‖�'
=>( − �'
=>?@	(‖ 	< �< +. 

Which prove the boundedness of �	# 

Differentiability: Definition (1-3): A mapping �	C'�, *( is 

called Gateaux differentiable in the direction ℎ	 ∈ � , at a 

point 
D , if there exists a �	 ∈ *  such that ��%=⟵	D‖�'
D + �ℎ( − �'
D( − ��‖ = 0	, 
With 
D + �ℎ defined in a neighborhood F	��	
D 

Compact and finite rank maps: An important subspace of 

continuous mappings are the compact mappings from �:	� → �.  A mapping �:	� → �  is compact if �'	Ω2 (GGGGGGG  is 

compact for any bounded subset Ω2 ⊂ �. Compact mapping 

are bounded since �'	Ω2 (GGGGGGG  is bounded for any bounded set Ω2 ⊂ �. The space of compact mappings on � is denoted by 
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H'�(. 
Definition (1-4): A continuous map 	K:	Ω2 ⊂ � → �  is 

called compact if �'	ΩJK(GGGGGGG
 is compact. 

Lemma (1-5): Let k	 ∈ K'ΩK(, then for any, there exists a 

finite rank map  k. ∈ F'ΩK(  such that ‖	k − 	k.‖NOP 	< +	�. Q. k. ∈ F'ΩK( ∩
CSD'ΩK(	 

Proof: Let T'	ΩJK(GGGGGGG
 is compact it can be covered by finitely 

many balls 4.'
U( , with 
U 	 ∈ T'	ΩJK(GGGGGGG
. Define V U'
( =

	 W>'X(
∑ WY'X(Y 	 

Where �<'
( = %�
	Z0, + −	 [	k'x( − 	x<[] . This 

maximum is zero whenever k'x( ∉ 4'
_(GGGGGGG  and therefore V<'
( = 0, unless [	T'
( − 	
<[ < +. 
Set 	k.'
( = 	∑ V<'
(. 
<< .  Now k.'Ω( 	⊂ $`��	'
<( . As 

for the approximation we obtain: ‖	k − 	k.‖NOP	 =[T − ∑ V<'
(. 	
<< [NOP	 = [∑ V<'
(. 'T − 
<(	< [NOP	 
	‖	k − 	k.‖NOP = $a`X∈bK 	 	cdV U'
(	'T'
( − 
U(	

<
c	 

	≤ 	$a`X∈bK 	 cdV U'
(	'T'
( − 
U(
<

c < dV<'
(	+ = +
<

	 
Which complete the proof # 

2. Preliminaries 

Definition of the Leray – Schauder degree (2-1): Let	�	be a 

continuous map of the form �	∈ efgD	 '	ΩK(, and let `	� ∉ 'hΩ(. 
Let T. be a finite rank perturbation with ‖	T − T.‖NOP < +	���	+	 < - 2	⁄  (-  as given above ) and 

with T.'	ΩK( 	⊂ *. ⊂ �  (subspaces). Then for any finite 

dimensional subspace �.  containing both *. 	���	` , define 

the Leray Schauder degree as  

�Qj'	�, Ω, `( ≔ �Qj		'�., Ω ∩ �. , `( 
Where �. = l� − T. . If there is no ambiguity about the 

context we mostly omit the subscript for the notation. 

Lemma (2-2): Let 	�.m ⊂ �	 be any finite dimensional 

subspace such that *. ⊂ �.m  and 	` ∈ �.. Then �Qj'	�. , Ω	 ∩�.m,`( ≔ �Qj		'�., Ω ∩ �. , `( 
Proof: Step (i): Consider mappings of the from j = l� −ℎ: nK ⊂ ℝ� ⊕	ℝ" → ℝ� ⊕	ℝ", with ℎ	'nK	( ⊂ ℝ�. Suppose ` ∈ ℝ�  and ` ∉ j'h	n( . Then deg'j,n, s( = deg	'j� , n ∩ℝ�, `(, where j� = j|t∩ℝ	 
We prove the above statement in the case that ℎ	�$	Cu , 

since the degree is defined via Cu approximations and with s = 0 . Let vu	���	v6	 be top forms on ℝ�  and ℝ" 

respectively with w vuℝx =	w v6 = 1ℝy  and their supports 

contained in a sufficiently small neighborhood of the origin. 

In terms of coordinates we write 
 = 
u + 
6, 
u ∈ℝ�	���	
6 ∈ ℝ". For the degree this yields  

deg'j, n, s( = 

w j∗t 	'vu ⊕v6(	=	w vu'
u − ℎ't 
u +
6((v6	'
6(	{|'
u + 
6(�
u	�
6 

By the specific from of we have that {|'
u + 
6( =
�Q�	 }l� −	 ~�~	X@ '
(� since the expression for the degree is 

independent of vu	���	v6 we can choose v6 to approximate 

a density function that peaks at 0 and has integral equal to 1 

approximating a delta distribution. Due to the independence 

on v6 this give  

	�Qj'j, n, s( = 

=	w vu'
u − ℎ't∩ℝx 
u + 
6((	�Q�	 ��� − ~�
~X@ '
u	(� �
u =deg	'j�, n ∩ ℝ�, `( 

Step (ii): Since *. ⊂ �. ∩	��.  and ` ∈ �. ∩ ��.  we may 

assume without loss of generality that �. ∩ ��. . By 

construction it holds that �.:	ΩK ∩ 	�. → �. and  �.:	ΩK ∩	��. 	→ ��. . By construction it holds that �.:	ΩK ∩	�. → �. and �.:	ΩK ∩	��. 	→ ��.. Consider the linear change of variables � = �'
( such that �'�.( = ℝ� ⊕0 and Z�.m] = ℝ� ⊕ℝ". 
From Step (i) it follows that ion  �Qj'j, n, s( = 	deg	'j� , n ∩ ℝ�, `(. It remains to prove 

that the degree is invariant under the change of coordinates. 

Using differential characterization of the degree we obtain: 

� j∗	v = 	� '��tt �.	���u(∗	v
= � '��u(∗t Z'	�. 	(∗'�∗v(] 

=	$�j�	'	{��@'
((	w '	�. 	(∗'j∗	vbK∩	��m	 ( 
=	$�j�	 �	{��@'
(� �QjZ	�., Ω ∩ ��., `] w j∗	vℝx?y	  

=	$�j�	 �	{��@'
(� ��QjZ	�., Ω ∩
��., `]�	$�j�	'{�'�(( w 	vℝx?y	  

=	�Qj	Z�. , Ω ∩ ��., `] w 	vℝx?y	  

Since w j∗	v = �Qj'j, n, �'`( w 	vℝx?y	 	t  it follows that: 

�Qj'j, n, �'`( = 	�Qj	Z�. , Ω ∩ ��. , `]	 
Which proves that the degree is invariant under coordinate 

changes. 

By restricting to the subspace +	we obtain �Qj'j�, n ∩ℝ�, �'`(( = 	�Qj	Z�., Ω ∩ ��., `]	 . The proof follows now 

from Step (i).  

Lemma (2-3): Let T. 	���	T�.  both be finite rank 

approximations for with ‖T − T.‖NOP < +	‖T − T.‖NOP 	< + 
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and + < - 2⁄ . Then  

deg'l� − T., Ω ∩ �., `( = degZl� − T�. , Ω ∩ ��., `] 

For any subspace �.	���	��.  containing both 	`	 and the 

ranges of T.	���	T�. 

Respectively. 

Proof:  

Let �. ⊂ �  be a finite dimensional linear subspace 

containing both �.	���	��. 

From Lemma (2-3) it follows that  

�Qj'l� − T., Ω ∩ �., `( = �Qj'l� − T. , Ω ∩	�. , `( 
�QjZl� − T� ., Ω ∩ ��., `] = �QjZl� − T� ., Ω ∩ �. , `] 

Consider the compact homotopy T=. = '1 − �(T. + �	T� . . 

which yields a homotopy �=. = l� − T=.  and is a proper 

homotopy. 

Then �Qj'l� − T. , Ω ∩ �. , `( = �QjZl� − T�. , Ω ∩	�. , `] 
which then prove that �Qj'l� − T., Ω ∩ �., `( = �QjZl� −T�. , Ω ∩	��. , `] 

The Leray –Schauder degree is well defined.  

Theorem (2-4): Let F  be C� −  function ΩK × 3"  which 

defined a strongly elliptic nonlinear partial differential 

operator �'a(  of order 2%	on	Ω.  Let 0	 < � < 1  and for 0	 ≤ � ≤ 1 , let �'
, `, �( = �	�'
, `( + '1 − �(∑ |`�|6|�| , �='a( the corresponding  

The corresponding partial differential operator of order. 

Suppose that all of the following conditions are satisfied: 

For each > 0, there exists constant V with 0	 < V < � < 1 

and a differential operator �  of order ≤ 2% − 1  "possibly 

nonlinear" on Ω  such that for each u ∈ CD6"�u,W	'Ω(, v ∈CD6",� 	'Ω( with ‖u‖��y�@,� 	≤ 	3 and  

�`X'a, �(�� = �n� 	a'
(, |�| < %n� 	�'
(, |�| = %	 the linear equation 

d �=�'
,|�| 6"
`X'a, �(((n� 	¡ + 	 d ���'
,|�| 6"�u

`X'a(((n� 	¡ = 0 

Has only ¡ = 0 as a solution in CD6",� 	'Ω(, 0	 ≤ � ≤ 1. 

For given 3 > 0  and the corresponding function 	�	 of 

condition (1), there exists a function 3u'$(  such that for a	��	CD6"�u,W	'Ω( with ‖u‖��y�@,�'b( 	≤ 	3 and any  

�	��	CD6",W	'Ω( such that `X'a, �( +	���'`X'a(( 	= �, for 

some �	��	90,1;  and 	�	 ∈ CD,W	'Ω(  with ‖�‖�P,�'¢( 	≤ $ , we 

have ‖�‖�P,�'¢( 	≤ 3u'$( 
There exists a constant 3D > 0 such that for any �	��	90,1; 

and in � ∈ CD6",� 	'Ω(, if  
�='�( = 0 we have ‖�‖�P�y�@,�'¢( 	≤ 3D. 

Then the equation �'a( = 0 has a solution a ∈ CD6",� 	'Ω(. 
Proof of Theorem: Let 3 = 3D. 4 = £a¤a ∈ CD6",� 	'Ω(, ‖a‖ ≤ 3¥ . Let �  be the 

function corresponding to 3  by condition (1) of the 

hypothesis of Theorem (2-1). 

For each a	��	35, we consider the equation: 

	'�(		�='`'a, �(( + 	��`'�(( 	= ��`'a(( 
For �	��	 ∈ CD6",� 	'Ω( . The linearized form of 

equation	'�(	is 

'��( 	 d �=,�'a,
|�| 6"

� ((n� 	¡ +	 d ���'`,
|�| 6"�u

� ((n� 	¡
= 0 

Which by condition (1) has only ¡ = 0 as a solution in ∈ CD6",� 	'Ω( for a fixed V with 0	 < V < � < 1. Moreover by 

condition '��(  of the hypothesis, the solution 	�	 of the 

equation  

	'���(�='`'a, �(( + 	��`'a, �(( 	= � 

For ‖a‖�P�y�@,�'¢( 	≤ 3  for �	��	 ∈ CDD,W	'Ω(  with 

‖�‖�¦,� 	≤ $ , where �  lies in CD6",W	'Ω( , must satisfy the 

inequality ‖�‖� �y�@,�'¢( 	≤ 3u'$(. Hence the hypotheses of 

Theorem (2-1) are satisfied for the family of equations '���( 
and in particular, equation '�( has one and only one solution �= 	��		Q�§ℎ	�	��	90,1;. 

We set C='a( = �=. Then C= is a well-defined mapping on 45  whose range we consider as a subset of CD6"�u,W	'Ω( . 

Since the map a → �'`'a((	 carries bounded sets of CD6"�u,W	'Ω( into bounded sets of CDD,W	'Ω( it follows from the 

argument of the preceding paragraph that ‖C=u‖��y�@,�'b( 	≤	36  for all 	a	 in 45  and all �	��	90,1;  with a fixed constant 36 > 0 . Since CD6",W	'Ω(  has a compact injection into CD6"�u,W	'Ω(, it follows that ∪D©=©u C='45( is precompact in CD6"�u,W	'Ω( 
We wish now to verify that mapping 9�, a; → C= 	'a( is a 

continuous mapping of  90,1; × 45 	����	CD6"�u,W	'Ω(. Let �D  be a fixed number in 90,1;, aD, we have  

		�='`'a, �(( + 	��=`'�(( − ��=`'a(( 
	= 	 	�=PZ`'aD, �(] − 	�D�=P`'�(( +	£	�=PZ`'a, �(]−	�=PZ`'aD, �(]¥ 

+	£��=`'�(( − �D�=P`'�((¥ − 	�D�=PZ`'aD(] + £��=`'�(( − �D�=P`'a((¥ 
Furthermore  

	�=PZ`'aD, �(] = 	�=PZ`'aD, �(] + 	�2=PZ`'aD, �(]'a − �D( + 3'aD, �D, �( 
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Where 

�D = C=¦'�D(	and		‖3u'aD, �D, �D, �(‖�P,� = 	0	'‖a − �D‖(	as	‖a − �D‖��y,� → 0 

The norm of a − �D will be taken in CD6",W	'Ω( throughout this argument. 

Similarly 

�D�=PZ`'�(] = 	 �D�=PZ`'�D(] +	�D�2 =PZ`'�D(]'a − �D( + 3u'aD, �D, �D, �( 
Where 3u'aD, �D, �D, �( = 	0	'‖a − �D‖( as ‖a − �D‖��y,� → 0 

It follows that for � near �D in 	CD6",W	'Ω( we have  

	�=Z`'a, �(] + 	��=`'�(( − ��=`'a(( 	= �	�=PZ`'aD, �D(]+�D�=PZ`'aD(] − �D�=PZ`'�D(]	9�2 =PZ`'aD, �D(] 
+�D�2 =PZ`'aD(];'a − �D( + 36'aD, �D, �D, �, a, �( 

Where 	‖36'aD, �D, �D, �, a, �(‖��y�@,�'b(	 
≤ ª'a − �D(	‖a − �D‖��y,� + ª«'aD, �D, �D, �, a, �( 

And ª«'aD, �D, �D, �, a, �( → 0 as ‖a − �D‖��y,� + |� − �D| 	→ 0	 
The condition that '�(	`'a, �(( + 	��=`'�(( 	=��=`'a(( = 0	 
Can therefore be satisfied if 

��2 '`'aD, �D(( + 	�D�2 =P`'�D((� 	= −36'aD, �D, �D, �, a, �( 
The operator in square brackets is an isomorphism of 	CD6",W	'Ω( with 	CD,W	'Ω( by 

Condition (1) of the hypothesis. Hence for ‖a − �D‖ +|� − �D|  sufficiently small, we may find a solution �  of 

equation '�( in a prescribed neighborhood of �D	��		CD6",W	'Ω( 
with ‖a − �D‖��y,� 	≤ ¬	'‖a − �D‖ +	|� − �D|(	 

Where '$( → 0	�$	$ → 0.  Since the solution of '�(  is 

unique, � = C='a(. Hence C=  maps 90,1; × 	45  continuously 

into 	CD6",W	'Ω( and a fortiori into 	CD6"�u,W	'Ω(. 
We now apply the theory of the Leray – Schauder degree 

to the family of mappings  l − C= , 0 ≤ � ≤ 1 . For � = 1, C= = 0  since then 	�	 is a 

solution of  

d n� 	n�� = 0
|�| "

 

Hence the degree of ­D over 45  with respect to 0 is equal 

to +1. For each �	��	90,1;, C= 	 
Is a compact map and the degree of ­=  over 45  with 

respect to 0 is well – defined since  

For a	��	45  with ‖a‖��y,�'¢( = 3, ­=a = 0 implies that  

�='`'a(( + 	��`'�(( 	= ��`'a((	i.e	�='`'a(( = 0 

And for solutions of the latter equation. condition (3) of 

the hypothesis assures that ‖a‖��y,�'®( ≤ 3D = 3 . The degree of ­=  over 45  with 

respect to 0  is constant in �  by the continuity and 

compactness of C= in the pair 9�, a;. Hence the degree of ­u 

over 4¯  with respect t 0 ois equal to +1 and there exists a 

solution a	��	45 of ­ua = 0. 

This is equivalent, however to �	'`'a(( = 0	#  

The problem with degree theory in infinite dimensional 

spaces is that homotopy  

Invariance, a basic property of the degree, prevents the 

existence of a nontrivial  

Degree theory. We can alter the notion of homotopy 

invariance in order to a degree theory, or limit the types of 

maps for which a degree is well defined the Leray Schauder 

degree does both by considering specific types of mappings. 

Namely mappings of the form � = l� − T, where l�  is the 

identity map on �	���	 k	 ∈ K'ΩK(. Homotopies are considered in the same class, 

denote the function class by 	efgD	 '	ΩK( = �	� = l� −T|T	 ∈ H	� and by efgD	 '	ΩK( for mapping defined on	� 

Properties of the Leray – Schauder degree: 

Theorem (2-5): For Leray –Schauder degree we have the 

following properties: 

(A1) if ` ∈ Ω, then �Qj°±'l�, Ω, `( = 1 

(A2) for Ωu, Ω6 ⊂ Ω, disjoint open subsets of Ω, and then p ∉ Ωu ∪ Ω6, it holds that  

�Qj°±'�, Ω, `( = �Qj°±'�, Ωu, `( + �Qj°±'�, Ω6, `(; 
(A3) for any continuous path �	 → �= = l� − T= , T= ∈ H'ΩK) 

and �	 → `= , ���ℎ	`= ∉ 	�='hΩ(  it holds that �Qj°±'�= , Ω, `=( 
is independent of ∈ 90,1;; 	�Qj°±  and is called a degree 

theory. 

As in the case of the Brouwer degree the essential 

properties of the Leray –Schauder degree follow from (A1) – 

(A2). 

Property (Validity of the degree) (2-6): If ` ∉ Ω , the �Qj°±'�, Ω, `( = 0. Conversely, if then �Qj°±'�, Ω, `( ≠ 0, 

then there exists a 
 ∈ Ω such that �'
( = `. 
Property (Continuity of the degree) (2-7): The degree �Qj°±'�, Ω, `( is continuous in � = l� − T,	i.e there exists a - = -'`, �( > 0 , such that for all j = l� − T�  satisfying [T − T�[NOP 	< - , it holds that `	 ∉ j'hΩ(  and 

�Qj°±'j, Ω, `( =�Qj°±'�, Ω, `(. 
Property (Dependence on path components) (2-8): The 

degree only depends on the path components n ⊂ � ∖ �'hΩ( 
i.e for any two points `, �	 ∈ n ⊂ � ∖ �'hΩ(  it holds that �Qj°±'�, Ω, `( =�Qj°±'�, Ω, n(  this justifies the notation �Qj°±'�, Ω, n(. 

Property (Translation invariance) (2-9): The degree is 
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invariant under translation, i.e. for any �	 ∈ �  it holds that �Qj°±'� − �, Ω, ` − �( =�Qj°±'�, Ω, `( 
Property (Excision) (2-10): Let ∧⊂ Ω be a closed subset in Ω and ` ∉ �'∧(. Then 	�Qj°±'�, Ω, `( =�Qj°±'�, Ω,∖ ⋀, `( 
Property (Additivity) (2-11): Suppose tha Ω< ⊂ Ω, � =1,… , T  are disjoint open subsets of Ω , and `	 ∉ f'Ω	K ∖	'∪< Ω<((, then 	�Qj°±'�, Ω, `( =∑ �Qj°±'�, Ω< , `(<  

Definition of the Compact homotopies (2-12): Two 

mappings �, j: Ω	K ⊂ � → *  are said to be compactly homotopic 

relative of �  is there exists a family of compact 

mappings: T'�, . (: Ω	K ⊂ � → *, �	 ∈ 90,1;, such that 

	ℎ'�, 
( = �'
( + T'�, 
(                          (4) 

	ℎ'0, 
( = �'
( + T'0, 
( = �'
(            (5) 

ℎ'1, 
( = �'
( + T'1, 
( = j'
(            (6) 

The associated compact homotopy classes are denoted  

by 9�;¹ . 
3. Main Result: Semi Linear Elliptic 

Equations and a Priori Estimates 

In this section we will give Application of the Leray - 

Schauder degree in the context of nonlinear elliptic 

equations. We follow the notes by L. Nirenberg. 

The methods that we discuss apply in general for elliptic 

differential operator of any order. Let n ⊂ ℝ� be a bounded 

domain with smooth boundary hn. 

Consider the problem −∆a = j'
, a, ∇a(, a = 0, 
 ∈ hn 

For the nonlinearity 	j	we assume that 	C� −	function of 

arguments, i.e j ∈ 	C�'nK × ℝ × ℝ�(,  and |	j'
, a, ∇a(	| ≤C + C	|∇a|¼, ½	 < 1	 
Uniformly in 
 ∈ nK and a ∈ ℝ. Under these conditions we 

can prove the following result.  

Theorem (3-1): Under the assumptions on j  the above 

elliptic equations has a solution a ∈ C�'nK( . Moreover, if j'
, 0,0( 	≢ 	0, then the solution	a	is not identically zero. 

Proof: The idea behind the proof is the formulate the 

above elliptic equation as a problem of finding zeroes of an 

appropriate function �  on (infinite dimensional ) Banach 

space. 

Let start with choosing an appropriate space in which to 

work. Define � = �6 	∩ �Du'n( to be the intersection of two 

Soblev space. 

The space �6 	∩ �Du'n(  is a Hilbert space with norm 

‖a‖X = w |∆a|t 	�
	 
Due to the Dirichlet boundary conditions the Laplace 

operator −	∆:�6 ∩ �Du'n( ⊂ ¿6'n( → ¿6'n(  has a compact 

inverse '−	∆(�u: ¿6'n( → ¿6'n(	 
We rewrite the elliptic equation as:  

	a − '−	∆(�u	j'
, a, ∇a( = 0 

The above equation can be regarded as a seeking zeroes of 

the (Nemytskii) 

Mapping �'a( = 	a − '−	∆(�uj'
, a, ∇a(  on �6 	∩�Du'n(. By the estimate on	j	we have that  

� |j'
, a'
(, ∇a'
((|6	�
	 ≤ C	� 91 +	|∇a'
(|6¼;	�
tt  

≤ 	C2 }� 91 +	 |∇a'
(|6¼;	�
t �¼ 

≤ C	 �1 + ‖a‖ÀP@6 �¼ 

Which prove that for a ∈ �, j'
, a, ∇a('
( . Is an ¿6  - 

function. Consequently, t he 

Composition '−	∆(�u9j'
, a, ∇a(; ∈ � , proving that �: � → � is well defined. The latter follows from the fact that 3''−	∆(��u = �6 	∩ �Du'n( . As a map from ¿6  to �6 	∩�Du'n(, the inverse Laplacian is an isometry. Concerning the 

continuity of this substitution map. If we define * = �Du'Ω( 
then � is a map from *	��	*, and � = �� − T, where T:	* →*  is a compact map. Indeed, T  is a composition of the 

Nemytskii map a	 ⟼ j'
, a, ∇a( (from *	��	¿6), the inverse 

Laplacian '−	∆(�u  (from ¿6	��	� ), and the compact 

embedding � ↪ *, which proves the compactness of	T. This 

brings us into the realm of the Leray - Schauder degree. 

Suppose a ∈ � is a solution of the equation (3-1-1), then 

the estimate on j'
, a, ∇a( can be used now to obtain an a 

priori estimate on the solutions. 

	‖a‖Ã6 	≤ C	‖a‖�6 = C	‖j'
, a, ∇a(‖°�6  

≤ '1 + ‖a‖Ã6(¼ 

Which, since ½ < 1, implies that ‖
‖	Ä ≤ 3 

Define the domain Ω = 465'0( ⊂ � . Clearly, �  is a 

continuous map from Ω	K 	����	�, which is of the from identity 

minus compact. Due to the above a priori estimate ��u'0( 	⊂45'0(  and 0	 ∉ �='∂Ω(  and therefore the Leary –Schauder 

degree d°±'f, Ω, 0( is well defined. 

In order to compute this degree we consider the following 

homotopy: 

�='a( = a − �'−	∆(�u	9j'
, a, Æa(;, �	 ∈ 90,1; 
Notice, for 	�	 ∈ 90,1;	 we have via the same a priori 

estimates, that 	��u'0( 	⊂ 45'0( , and therefore 	0	 ∉�='∂Ω(	for all	�	 ∈ 90,1;. Homotopy invariance of the Leary –

Schauder degree then yields 

�'�, Ç, 0( = �'��, Ç, 0( = 1 

Which implies, by validity property of the Leary –

Schauder degree, that ��u'0( ≠ 0. Equation (3-1-1) thus 

has a solution a	 ∈ * . The equation yields a ='−	∆(�u	9j'
, a, Æa(; ∈ �, which that the solution also lies 

in �. To prove regularity we use a bootsrappind argument. 

The integral estimates on j  can be adjusted to ¿È	 
estimates. This gives, by the Sobolev embeddings that: 

a ∈ �u,É ⟹ j'
, a, Æa( ∈ ¿È	 ⟹ a ∈ �6,É ⟹ a ∈ �u,É̀ 
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Where 
u
É̀ = u

É − u
� , provide � > ` . This yields the 

recurrence relation  

1`ÌÍu = 1̀
Ì − 1� 

We can repeat these recurrent steps until 	T	 time until 2'T + 1( > � > 2T 

And then ∈ �6,ÉÌ , where `Ì = 6�
��6Ì.  A gain by the 

Sobolev embeddings, we have that �6,ÉÌ	'n( 	↪ 	Cu,�	'nK(. 
Where � = 1 − �

ÉÎ , since 
�
ÉÎ = �

6 , and T + 1 > �
6 > T , it 

holds 0 < � < 1  We now repeat the bootsrappind in the 

Holder space: 

a ∈ Cu,� ⟹ j'
, a, Æa(a ∈ CD,¼� ⇒ a ∈ C6,�̀ 

Where �̀ = ½� . The idea now is the use the elliptic 

regularity theory for the Laplacian be differentiation the 

equation. Let �< = ~	Ð
~X> then  

−∆�< = hX>j + 'hÐj(�< +dhÑYj h	�Uh
<U
 

Singe j	�$	C� function of its arguments, and a ∈ C6,�̀, the 

right hand side is in CD,�̀, implying that �< ∈ C6,�̀, and thus a ∈ C«,�̀ . We can repeat this process indefinitely, which 

proves that a ∈ C�'nK(	 
If j'
, 0,0( ≢ 	0 , then a = 0  cannot be a solution, and 

thus a ≢ 	0	# 
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