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Abstract: The deterministic model for co-infection of cervical cancer and HIV (Human Immunodeficiency Virus) diseases 

is formulated and rigorously analyzed. The optimal control theory is employed to the model to study the level of effort is 

needed to control the transmission of co-infection of cervical cancer and HIV diseases using three controls; prevention, 

screening and treatment control strategies. Numerical solutions show a remarkable decrease of infected individuals with HPV 

(Human Papilloma Virus) infection, cervical cancer, cervical cancer and HIV, cervical cancer and AIDS (Acquire 

Immunodeficiency Syndrome), HIV infection and AIDS after applying the combination of the optimal prevention, screening 

and treatment control strategies. However, Incremental Cost-Effective Ratio (ICER) shows that the best control strategy of 

minimizing cervical cancer among HIV-infected individuals with low cost is to use the combination of prevention and 

treatment control strategies. 
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1. Introduction 

Cervical cancer is a major cause of morbidity and 

mortality among women in sub-Saharan countries and about 

70% of cervical cancers are caused by Human 

Papillomavirus (HPV) types 16 and 18 which are transmitted 

sexually through body contact. Some studies have shown that 

HIV-infected women after being infected with HPV infection 

have a high risk to progress to HPV-related cervical diseases 

and invasive cervical cancer than women without having 

HIV infection [1, 2, 3]. 

The aim of this work is to study the effect of incorporating 

three optimal control strategies to the co-infection model of 

cervical cancer and HIV diseases. In [15] formulated co-

infection model of cervical cancer and HIV diseases but the 

findings of this paper differ from the work presented in [15] 

because the co-infection model incorporates three optimal 

control strategies; prevention, screening, and treatment. 

2. Optimal Control Analysis 

Here, we introduce optimal control strategies to the co-
infection model of cervical cancer and HIV disease as 
presented in [15]. The co-infection model in [15] is 
developed as follows: 

The total population of individuals at any time t , denoted 

as N is categorized into ten compartments according to the 

individual’s status of infection as follows: Susceptible 

individuals ( )S , HIV-infected individuals no HPV infection

( )hI , AIDS individuals no HPV infection ( )hlD , Unscreened 

HPV infected individuals no HIV infection ( )puI , Screened 
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infectious individuals showing the impact of HPV infection 

without HIV infection ( )psI , Individuals with cervical cancer 

no HIV infection, Unscreened HPV infected individuals with 

HIV infection ( )hpuI , Screened infectious individuals 

showing the impact of HPV infection with HIV infection 

( )hpsI , HIV-infected individuals with cervical cancer ( )hcI  

and AIDS individuals with cervical cancer ( )hlcD . Thus, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h hpu hps pu ps hc c hl hlcN t S t I t I t I t I t I t I t I t D t D t= + + + + + + + + +  

The rates of transferring between different compartments are as described in Table 1. 

Table 1. Description of parameters and their values for the model of co-infection HIV and cervical cancer diseases. 

Parameter Description Value Reference 
µ  Natural mortality rate 0.01584yr-1 [11] 

1ω  Natural recovered rate for HIV-infected individuals with HPV infection 0.7yr-1 [12] 

2ω  Natural recovered rate for HPV unscreened infected individuals 0.366yr-1

 

Estimated 

2σ  Treatment rate for HPV screened infected individuals with only HPV infection. 0.2000yr-1 Estimated 

1σ  Treatment rate for HPV screened infected individuals with HPV and HIV infections. 0.2200yr-1 Estimated 

1α  
Progression rate from HPV unscreened infected individuals with HIV infection to 
HPV screened infected individuals with HIV infection. 

0.1000yr-1

 

Estimated 

2α  
Progression rate from HPV screened infected individuals with HIV infection to 
cervical cancer individuals with HIV infection. 

0.1286yr-1

 

Estimated 

3α  
Progression rate from cervical cancer individuals with HIV infection to AIDS 
individuals with cervical cancer. 

0.1640yr-1

 

Estimated 

4α  
Progression rate from HPV unscreened infected individuals to HPV screened 
infected individuals. 

0.1100yr-1

 

Estimated 

5α  
Progression rate from HPV screened infected individuals to cervical cancer 
individuals. 

0.127100yr-1 [12] 

6α  
Progression rate from HPV unscreened infected individuals with HIV infection to 
cervical cancer individuals with HIV infection. 

0.1300yr-1 Estimated 

7α  Progression rate from HIV infected individuals to AIDS individuals. 0.1160yr-1 [4] 

 
Progression rate from HPV unscreened infected individuals to cervical cancer 
individuals. 

0.1200yr-1 Estimated 

pud  The death rate due to HPV infection for HPV unscreened infected individuals. Close to zero [12] 

psd
 

The death rate due to impact of HPV infection for HPV screened infected 
individuals. 

0.0002
 

Estimated 

cd
 

Death rate due to cervical cancer 0.037yr-1 [13] 

hpud
 

The death rate due to HIV and impact of HPV infection for HPV unscreened infected 
individuals with HIV infection. 

0.0003yr-1

 

Estimated 

hpsd
 

The death rate due to HIV and impact of HPV infection for HPV screened infected 
individuals with HIV infection. 

0.0005yr-1

 

Estimated 

hcd
 

Death rate due to cervical cancer and HIV 0.0493yr-1

 

Estimated 

hlcd
 

Death rate due to cervical cancer and AIDS 0.1848yr-1

 

Estimated 

hd
 

Death rate due to HIV 0.0070yr-1

 

Estimated 

hld
 

Death rate due to AIDS 0.1584yr-1 [14] 

1η
 

Infectivity rate of HIV infection 1.0000
 

Estimated 

2η
 

Infectivity rate of AIDS 1.0029
 Estimated 

 

3η
 

Infectivity rate for HPV unscreened infected individuals with HIV infection. 1.0054
 

Estimated 

4η
 

Infectivity rate for HPV screened infected individuals with HIV infection. 1.0040
 

Estimated 

5η
 

Infectivity rate for cervical cancer individuals with HIV infection 1.1152
 

Estimated 

6η
 

Infectivity rate for cervical cancer individuals with AIDS 1.1240
 

Estimated 

7η
 

Infectivity rate for HPV unscreened infected individuals 1.016
 

Estimated 

8η
 

Infectivity rate for HPV screened infected individuals 1.0130
 

Estimated 

9η
 

Infectivity rate for cervical cancer individuals 1.0510
 

Estimated 

Hβ  Probability of transmission HIV infection   

HCβ  Probability of transmission both HIV and HPV infections 0 1HCβ< <
 

 

Cβ  Probability of transmission HPV infection 0 1Cβ< <
 

 

q  Mean number of contacts 1-3 Estimated 
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The mathematical model is defined by the following system of ordinary differential equations: 

( )2 2pu ps H HC C

dS
I I S

dt
π ω σ µ λ λ λ= + + − + + +  

( )1 1 7
h

H hpu hps h C h

dI
S I I d I

dt
λ ω σ µ α λ= + + − + + +  

( )1 6 1
hpu

HC C h H pu hpu hpu

dI
S I I d I

dt
λ λ λ α α ω µ= + + − + + + +  

( )2 4 8
pu

C H pu pu pu

dI
S I d I

dt
λ λ ω µ α α= − − + + + +  

( )4 2 5
ps

pu H ps ps

dI
I d I

dt
α λ σ α µ= − + + + + (1) 

( )1 2 1
hps

hpu H ps hps hps

dI
I I d I

dt
α λ µ α σ= + − + + +  

( )2 6 3
hc

hps hpu hc hc

dI
I I d I

dt
α α µ α= + − + +  

( )8 5
c

pu ps c c

dI
I I d I

dt
α α µ= + − +  

( )7
hl

h hl hl

dD
I d D

dt
α µ= − +  

( )3
hlc

hc hlc hlc

dD
I d D

dt
α µ= − +  

where 

( )1 2
H

H h hl

q
I D

N

βλ η η= +
 
with 2 1η η>  

( )3 4 5 6
HC

HC hpu hps hc hlc

q
I I I D

N

βλ η η η η= + + +
 
with 6 5 3 4η η η η> > >

 

( )7 8 9
C

C pu ps c

q
I I I

N

βλ η η η= + +
 
with 9 7 8η η η> > . 

Hence, the system (1) is modified by introducing time-dependent control; ( )1u t represents prevention control strategy 

(Education campaign and health hygiene practice), ( )2u t  represents the treatment of early stages of cervical cancer and ( )3u t  

represents screening individuals showing an impact of HPV infection leads to cervical cancer. The following system of 
equations is obtained 

( ) ( )( )2 2 2 11ps pu H HC C

dS
u I I u S S

dt
π σ ω λ λ λ µ= + + + − − + + −

 

( )( ) ( ) ( )1 2 1 1 71h
H C h hps hpu h h

dI
u S I u I I d I

dt
λ λ σ ω α µ= − − + + + − + +

 

( ) ( ) ( ) ( )1 3 1 6 11
hpu

HC H pu C h hpu hpu hpu

dI
u S I I u I d I

dt
λ λ λ α α ω µ= − + + − + − + + +
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( )( ) ( ) ( )1 3 4 8 21
pu

C H hpu hpu pu hpu

dI
u S I u I d I

dt
λ λ α α ω µ= − − − + − + + +

 

( ) ( ) ( ) ( )3 1 1 2 1 21
hps

hpu H ps hps hps hps

dI
u I u I u I d I

dt
α λ σ α µ= + + − − + − + +

 

( ) ( ) ( ) ( )3 4 1 2 2 51
ps

pu H ps ps ps ps

dI
u I u I u I d I

dt
α λ σ α µ= + − − − + − + +

 

( )2 6 3
hc

hps hpu hc hc

dI
I I d I

dt
α α µ α= + − + +

 

( )5 8
c

ps pu c c

dI
I I d I

dt
α α µ= + − +

 

( )7
hl

h hl hl

dD
I d D

dt
α µ= − +

 

( )3
hlc

hc hlc hlc

dD
I d D

dt
α µ= − +                                                                           (2) 

The objective functional is defined as follows 

1 2 3

22 2
31 2

1 2 3 1 2 3 4 1 2 3
, ,

0

( , , ) lim  
2 2 2

ft

hpu pu hps ps
u u u

uu u
J u u u A I A I A I A I B B B dt

 
= + + + + + +  

 
∫                     (3) 

where iA  and jB  for 1, 2,3, 4i =  and 1, 2,3j = are positive 

weights. The term 

2
1 1

2

B u
 represents the cost of control effort 

on prevention strategy against HPV infection, 

2
2 2

2

B u
 

represents the cost of control effort on screening individuals 
with or without HIV infection having HPV infection and 

2
3 3

2

B u
represents the cost of control effort on treating 

individuals having cervical cancer with or without HIV 
infection. The main goal of introducing time-dependent 

controls in the co-infection model is to prevent women not to 

acquire HPV infection which leads to cervical cancer and to 

minimize infected women showing the impact of HPV 

infection lead to cervical cancer while minimizing the cost of 

controls ( )1u t , ( )2u t  and ( )3u t
 
as in [5, 6, 7]. The goal is 

to seek an optimal control 
*
1u , 

*
2u and 

*
3u  numerically such 

that 

( ) ( ){ }* * *
1 2 3 1 2 3 1 2 3, , min , , | , ,J u u u J u u u u u u= ∈ Ω       (4) 

where ( ){ 1 2 3, ,  u u uΩ = 1 2 3such that , ,u u u  measurable with 

1 2 10 1,0 1 and 0 1u u u≤ ≤ ≤ ≤ ≤ ≤ }for  0, ft t ∈    is the control 

set. The necessary conditions that an optimal must satisfy 
come from the Pontryagin’s maximum principle [8]. This 

principle converts ( )2 and ( )3  into theproblem of 

minimizing point-wise Hamiltonian, H , with respect to 1u , 

2u
 
and 3u . 

22 2
31 2

1 2 3 4 1 2 3
2 2 2

hpu pu hps ps

uu u
H A I A I A I A I B B B= + + + + + +

 

( ) ( )( )( )2 2 2 11S ps pu H HC CM u I I u S Sπ σ ω λ λ λ µ+ + + + − − + + −
 

( )( ) ( ) ( )( )1 2 1 1 71
hI H C h hps hpu h hM u S I u I I d Iλ λ σ ω α µ+ − − + + + − + +

 

( )( ) ( ) ( )( )1 3 1 6 11
hpuI HC H pu C h hpu hpu hpuM u S I I u I d Iλ λ λ α α ω µ+ − + + − + − + + +  

( )( ) ( ) ( )( )1 3 4 8 21
puI C H hpu hpu pu hpuM u S I u I d Iλ λ α α ω µ+ − − − + − + + +  
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( ) ( ) ( ) ( )( )3 1 1 2 1 21
hpsI hpu H ps hps hps hpsM u I u I u I d Iα λ σ α µ+ + + − − + − + +  

( ) ( ) ( ) ( )( )3 4 1 2 2 51
psI pu H ps ps ps psM u I u I u I d Iα λ σ α µ+ + − − − + − + +  

( )( )2 6 3hcI hps hpu ch hcM I I d Iα α µ α+ + − + +
 

( )( )5 8cI ps pu c cM I I d Iα α µ+ + − +
 

( )( )7hlD h hl hlM I d Dα µ+ − +  

( )( )3hlcD hc hlc hlcM I d Dα µ+ − +                                                                                 (5) 

where, SM , 
hIM , 

hpuIM , 
puIM , 

hpsIM , 
psIM ,

hcIM , 
cIM , 

hlDM  and 
hlcDM

 
are the co-state variables or the adjoint variables. 

Theorem: For the optimal control triples 
*

1u , 
*

2u  and 
*

3u  that minimize ( )1 2 3, ,J u u u  over Ω , there exist adjoint variables 

SM , 
hIM , hpuIM , puIM , hpsIM , 

psIM ,
hcIM , 

cIM , 
hlDM  and 

hlcDM
 
satisfying 

jdM H

dt j

− ∂=
∂

                                                                                 (6) 

where j = S , hI , hpuI , puI , hpsI , hcI , cI , hlD , hlcD and with transversality condition

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
h hpu pu hps ps hc c hlS I I I I I I I D fM t M t M t M t M t M t M t M t M t= = = = = = = = ( ) 0

hlcD fM t= =  

and, 

( ) ( ) ( )
( ) ( ) ( )

*
1

1

1,

max 0,min 1 hps ps H hpu pu

hpu pu hpu h

ps H I I H I S pu H I I

HC I S C I S C H I I

I M M S M M I M Mu

B S M M S M M I M M

λ λ λ

λ λ λ

  
  

   − + − + −=    
   + − + − + −     

                    (7) 

( ) ( )( )*
2

2

1
max 0,min 1,

hps h pshps I I ps I Su I M M I M M
B

   = − + −  
   

                                           (8)
 

( ) ( )( )*
3

3

1
max 0, min 1,

hpu hps pu pshpu I I pu I Iu I M M I M M
B

   = − + −  
   

                                         (9) 

Proof. Corollary 4.1 of Freming and Riches [9] gives the 
existence of an optimal control due to the convexity of the 

integrand J with respect to 1u , 2u and 3u a priori 

boundedness of the state solutions and the Lipchitz property 

of the state system with respect to the state variables. 
Differentiating Hamiltonian functions with respect to state 
variables gives differential equations governing the adjoint 
variables as follows; 

( )( ) ( )( )11
11

hpu Ihps ps pu
pu H Ips H I I

S
S

I u M MI u M MdM
M

dt N N

λλ
µ

− −− −
− = + +

 

( ) ( ) ( )( )
( )( )1

1 1

1
1 1

hpu h

hpu h

h C I I

HC S I H S I

I u M M
u M M u M M

N

λ
λ λ

− −
+ − − + + − −
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( )( ) ( ) ( ) ( ) ( )11

1

11
1

hpuh

hps

HC I SH I S

C S I

S u M MS u M M
u M M

N N

λλ
λ

− −− −
+ − − + + . 

( )
( ) ( ) ( )( )1 1 1

7

1 1
ps hps hps psh

hl h

ps H I I ps H I II

D I h

I q u M M I u M MdM
M M d

dt N N

β η λ
α µ

− − − −
− = + + + +  

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 11 1 1
ps pu hpu hpuH S I pu H I I HC I SS q u M M I q u M M S u M M

N N N

β η β η λ− − − − − −
+ + +  

( )( ) ( )( ) ( )( )1 1 1
1 1 1

hpu hps hpu h h
pu H I I h C I I H I S

I u M M I u M M S u M M

N N N

λ λ λ− − − − − −
+ + +  

( )( ) ( )( )1

1

1
1

pu

h hpu

C I S

C I I

S u M M
u M M

N

λ
λ

− −
+ − − +  

( ) ( ) ( )( ) ( )1 6 3 1 1
hpu

hc hpu hps hpu hhpu hpu

I

I I I hpu I I I I

dM
A M M M d u M M M M

dt
α µ α ω− = − + − + + + + − + −  

( ) ( ) ( )( ) ( ) ( )1 1 31
1 11

hps ps hpuh
ps H I I HC S IH I S

I u M M Sq u M MS u M M

N N N

λ β ηλ− − − −− −
+ + +  

( ) ( ) ( ) ( ) ( )( )1 1 11 1 1
hpu pu hpu h hpupu H I I C h I I HC I SI u M M I u M M S u M M

N N N

λ λ λ− − − − − −
+ + +  

( )( )11
puC I SS u M M

N

λ − −
+ . 

( ) ( )( ) ( )( )1 1

2 8

1 1
hps ps hpu pupu

pu c

ps H I I pu H I II

I I

I u M M I u M MdM
A M M

dt N N

λ λ
α

− − − −
− = − + − + +  

( ) ( ) ( ) ( )( ) ( )1 7

1 2

1
1

h hpu

pu pu hpu pu

h C I I

I pu H I I I S

I u q M M
M d u M M M M

N

β η
µ λ ω

− −
+ + + + − − + −  

( )( )
( )( ) ( ) ( )1 1

3 4

1 1
hpu h hpu

pspu

h C I I HC I S

I I

I u M M S u M M
u M M

N N

λ λ
α

− − − −
+ + + − +  

( ) ( ) ( ) ( ) ( ) ( )1 1 71
1 11

pu puh
C I S C S IH I S

S u M M Sq u M MS u M M

N N N

λ β ηλ− − − −− −
+ + +  

( ) ( ) ( ) ( )( )1 1

3 2

1 1
ps hhps h

hps hc

ps H I II h I S

I I

I u M MdM S u M M
A M M

dt N N

λ λ
α

− − − −
− = − + − + +  

( ) ( )
( )( ) ( )

( )( )1 1

3 1

1 1
hpu h hpu pu

hps h hps

h C I I pu H I I

I I I hps

I u M M I u M M
u M M M d

N N

λ λ
σ µ

− − − −
+ + + − + + +  
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( ) ( ) ( )( ) ( ) ( )1 4 1 1
1 1 1

pu hpuhpu
HC S I C I S HC I S

Sq u M M S u M M S u M M

N N N

β η λ λ− − − − − −
+ + +  

( ) ( ) ( )( )4 5 2 1
ps

ps hc ps ps

I

I I I ps I S

dM
A M M M d u M M

N
α µ σ− = − + − + + + + −  

( ) ( ) ( )1

1 1

(1 )
(1 ) (1 )

hps ps

ps hps hpu pu

ps H I I

H I I pu H I I

I u M M
u M M u I M M

N

λ
λ λ

− −
+ + − − + − −  

( ) ( ) ( )1 8 1 1(1 ) (1 ) (1 )
pu pu hpu hC S I C I S h C I IS u q M M S u M M I u M M

N N N

β η λ λ− − − − − −
+ + +  

( ) ( ) ( )1 8 11
(1 ) (1 )(1 )

h hpu hpuh
h C I I HC I SH I S

I u q M M S u M MS u M M

N N N

β η λλ− − − −− −
+ + +  

( ) ( ) ( ) ( ) ( )( )1 1

3

1 1
hps ps hhc

hc hc hlc

ps H I I H I SI

I ch I D

I u M M S u M MdM
M d M M

dt N N

λ λ
µ α

− − − −
− = + + − + +  

( ) ( ) ( ) ( )( )5 1 11 1
hpu hpu hpuHC S I HC I S C I SSq M M S u M M S u M M

N N N

β η λ λ− − − − −
+ + +  

( )( ) ( ) ( )1 11 1
hpu pu hpu hpu H I I h C I II u M M I u M M

N N

λ λ− − − −
+ +  

 

( )( ) ( )( ) ( )( )9 1 1 1
1 1 1

hpu pu pupu
C S I pu H I I C I S

S q u M M I u M M S u M M

N N N

β η λ λ− − − − − −
+ + +  

( )( ) ( ) ( )9 1 11 1
h hpu hpu hh C I I h C I II q u M M I u M M

N N

β η λ− − − −
+ +  

( )
( )( ) ( ) ( )2 1 11 1

ps hps hps pshl

hl

ps h I I ps H I ID

hl D

I q u M M I u M MdM
d M

dt N N

β η λ
µ

− − − −
− = + + +  

( )( ) ( )( ) ( )( )12 1 1
11 1

hpuh h
HC I SH S I H I S

S u M MS q u M M S u M M

N N N

λβ η λ − −− − − −
+ + +  

( )( ) ( ) ( ) ( )( )1 1 2 11 1 1
hpu h hpu pu pu hpuh C I I pu H I I pu H I II u M M I u M M I q u M M

N N N

λ λ β η− − − − − −
+ + +

( )( )11
puC I SS u M M

N

λ − −
+  

( )
( ) ( ) ( ) ( )1 1
1 1

hps ps hhlc

hlc

ps H I I H I SD

hlc D

u I M M S u M MdM
d M

dt N N

λ λ
µ

− − − −
− = + + +                             (10) 

Optimality equations ( )7 - ( )9
 
are obtained by computing partial derivative of the Hamiltonian equation ( )5 with 

( ) ( ) ( )( ) ( ) ( )11
11

hps ps hpuhc

c

ps H I I HC I SH I SI

I c

I M M S u M MS u M MdM
M d

dt N N N

λ λλ
µ

− − −− −
− = + + + +
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respect to each control variables as follows 

0
i

H

u

∂=
∂

 for 1,2,3i =  

Solving for 
*
1u , 

*
2u  and 

*
3u , subject to the constraints, 

provides the characterization equations ( )7 - ( )9 . In the next 

part, the numerical solutions of optimality system are 
discussed. 

3. Numerical Solutions 

In order to obtain optimal control solutions, the optimality 

system which consists of two systems namely; the state 

system and the adjoint system is solved. In solving state 

equations using forward fourth order Runge-Kutta, an initial 

guess of all controls over time are made and the initial value 

of state variables are introduced. Having the solution of state 

functions and the value of optimal controls, the adjoint 

equations are solved using backward fourth order Runge-

Kutta by using transversality condition. In this simulation, 

the weights are chosen be 1 80A = , 2 75A = , 3 50A = ,

4 45A = , 1 100B = , 2 110B = and 3 120B = . Other parameter 

descriptions and values used in getting numerical results of 

the co-infection model of cervical cancer and HIV diseases 

are presented in Table 1. Control strategies are formed and 

studied numerically as follows 

3.1. Strategy I: Combination of Prevention and Treatment 

Control Strategies 

The combination of prevention control strategy 1u and 

treatment control 2u  are used to optimize objective 

functional while setting screening control 3u  equal to zero. 

The results show that applying optimal prevention and 
treatment control strategies; the population of susceptible 
individuals increases whereas thepopulation of all infected 
compartments decreases as illustrated in Figure1: A and 
Figure1: B-J respectively. 
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Figure 1. The use of prevention and treatment control strategies. Figure 1: A - J are time series plot of different population where 1 1 2 30, 0, 0Q u u u= ≠ ≠ =

with control and ( )2 1 2 30, 0, 0Q u u u= = = = without control. 

3.2. Strategy II: Combination of Prevention Control 

Strategy and Screening Strategy 

The combination of prevention control strategy, 1u , and 

screening control strategy, 3u , are used to optimize objective 

functional while setting treatment control strategy, 2u , equal 

to zero. Results illustrate that the population of susceptible 
individuals increases (see Figure 2: A) while the population 
of infected individuals decreases (see Figure 2: B-J). 
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Figure 2. The useprevention and screening control strategies. Figure 2: A - J are time series plot of different population where 1 1 2 30, 0, 0Q u u u= ≠ = ≠ with 

control and ( )2 1 2 30, 0, 0Q u u u= = = = without control. 

3.3. Strategy III: Combination of Screening and Treatment 

Control Strategies 

The combination of treatment control 2u and screening 

control 3u  are used to optimize objective functional while 

setting vaccination control 1u  to zero. Results indicate that 

there is unremarkable increase of susceptible individuals and 
the population of infected individuals declines not much 
compared with other combination control strategies as 
illustrated in Figure 3: A and Figure 3: B - J respectively. 
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Figure 3. The use of screening and treatment control strategies. Figure 3: A - J are time series plot of different population where 1 1 2 30, 0, 0Q u u u= = ≠ ≠ with 

control and ( )2 1 2 30, 0, 0Q u u u= = = = without control. 

3.4. Strategy IV: Combination of Prevention, Treatment and 

Screening Control Strategies 

The combination of prevention control strategy, treatment 

control strategy 2u , and screening control strategy 3u  are 

used to optimize objective functional. Results illustrates that 

the population of susceptible individuals increases as shown 
in Figure 4: A while the population of infected individuals 
decrease compared with other combination of control 
strategies as shown in Figure 4: B - J. 
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Figure 4. Showing impact of using all control strategies. Figure 4: A - J are time series plot of different population where 1 1 2 30, 0, 0Q u u u= ≠ ≠ ≠ with 

control and ( )2 1 2 30, 0, 0Q u u u= = = = without control. 

4. Cost-effectiveness Analysis 

Here, Incremental Cost Effectiveness Ratio (ICER) is used 
to quantify the cost-effectiveness of different strategies. This 
approach is useful to understand which strategy saves a lot of 
averted species while spending low cost. This technique is 
needed to compare more than one competing interventions 
strategies incrementally, one intervention should be 
compared with the next less effective alternative [10]. The 
ICER formula is given by 

Difference in intervention cost
ICER=

Difference in the total number of infection averted
 

The total number of infection averted is obtained by 

calculating the difference between the total number of new 

cases of individuals having HPV infection without control 

and the total number of new cases of individuals having HPV 

infection with control. 

 

Table 2. Calculation of ICER after arranging the number of total infections 

averted in ascending order. 

Strategy Total Cost ($) 
Total infections 

Averted 
ICER 

Strategy III  $2,480.00 64,637.00 0.0384 

Strategy II  $2,770.20 75,510.00 0.0266 

Strategy I $3,090.00 91,109.00 0.0205 

Strategy  IV  $4,383.30 93,870.00 0.4684 

2,480.50
ICER(Strategy III) 0.0384

64,637.00
= = , 

2,770.20 2,480.50
ICER(Strategy II) 0.0266

75,510.00 64,637.00

−= =
−

, 

3,090.00 2,770.20
ICER(Strategy I) 0.0205

91,109.00 75,510.00

−= =
−

and

4,383.30 3,090.00
ICER(Strategy IV) 0.4684

93,870.00 91,109.00

−= =
−

. 

Comparing strategy III and strategy II, ICER of strategy II 
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is less than ICER of strategy III. Hence strategy III is more 
costly and less effective than strategy II. Thus, strategy III is 
omitted and ICER is recalculated. 

Table 3. Computation of ICER after dropping strategy III. 

Strategy Total Cost($) TotalInfections Averted ICER 

Strategy II
 

$2,770.20 75,510.00 0.0367 
Strategy I

 
$ 3,090.00 91,109.00 0.0205 

Strategy IV $4,383.30 93,870.00 0.4684 

Comparing strategy II and strategy I, ICER of strategy I is 

less than ICER of strategy II. Thus, strategy II is omitted and 

the ICER is recalculated. 

Table 4. Computation of ICER after dropping strategy II. 

Strategy Total Cost($) TotalInfections Averted ICER 

Strategy I
 

$ 3,090.00 91,109.00 0.0339 

Strategy IV $4,383.30 93,870.00 0.4684 

By comparing strategy I and strategy IV, ICER of strategy 
I is less than ICER of strategy IV. Therefore, strategy IV is 
dropped and strategy I is considered. 

Thus, according to Incremental Cost Effectiveness Ratio 
analysis, the combination of optimal prevention and treatment 
control strategies is the best way of minimizing cervical cancer 
among women with or without HIV infection in our 
community following the combination of all control strategies. 

5. Conclusion 

This paper designed and analyzed a deterministic model 

for co-infection of cervical cancer and HIV diseases. The 

optimal control theory was employed to the main model and 

analyzed using Potrayagin’s Maximum Principle. The 

different combination of three optimal control strategies; 

prevention, screening, and treatment were studied 

numerically. Also, cost-effectiveness analysis was performed 

and the following results were obtained 

(a) The combination of optimal screening and treatment 

strategies is not much powerful way of controlling 

HPV infection and cervical cancer in the community 

compared with other combination of optimal control 

strategies as shown in Figure 3. Also, applying the 

combination of all control strategies (prevention, 

screening, and treatment) is the best way of minimizing 

co-infection of cervical cancer and HIV diseases in a 

community as shown in Figure 4. 

(b) In the case of Incremental Cost Effectiveness Ratio 

analysis, the combination of optimal prevention and 

treatment strategies is the most cost-effective control to 

minimize cervical cancer among women with or 

without HIV infection. The second is the combination 

of all optimal control strategies; prevention, screening, 

and treatment. The third is the combination of optimal 

prevention and screening control strategies. 
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