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Abstract: Transitivity and Primitivity of the action of the direct product of the symmetric group on Cartesian product of 

three sets are investigated in this paper. We prove that this action is both transitive and imprimitive for all 2n ≥ . In addition, 

we establish that the rank associated with the action is a constant 32 .
 
Further; we calculate the subdegrees associated with the 

action and arrange them according to their increasing magnitude.  
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1. Introduction 

Group Action of 
n n n

S S S× ×
 
on X Y Z× ×  is defined as 

( )( ) ( )1 2 3 1 2 3, , , , , ,g g g x y z g x g y g y=  
n 

 g 1 , g 2 , g 3 S  ∀ ∈  

,x X y Y and z Z∈ ∈ ∈ . This paper explores the action 

n n n
S S S× ×  on .X Y Z× ×   

2. Notation and Preliminary Results 

Let X  be a set, a group G  acts on the left of X if for each 

and x X∈  there corresponds a unique element gx X∈  such 

that ( ) ( )1 2 1 2
g g x g g x=

1 2
,g g G∀ ∈ , and x X∈ and1x x= , 

x X∀ ∈ , where 1  is the identity in G . 

The action of G  on X  from the right can be defined in a 

similar way. 

Let G  act on a set X . Then X  is partitioned into disjoint 

equivalence classes called orbits or transitivity classes of the 

action. For each x X∈  the orbit containing x is called the 

orbit of x  and is denoted by ( )GOrb x  Thus 

( ) }{ |GOrb x gx g G= ∈ . 

The action of a group G  on the set X  is said to be 

transitive if for each pair of points ,x y X∈ , there exists g ∈ 

G such that gx=y ; in other words, if the action has only one 

orbit. 

Suppose that G  acts transitively on X. Then a subset Y of 

X , where |Y| is a factor of |X|, is called a block or set of 

imprimitivity for the action if for each g ∈ G, either gY=Y or 

gY∩Y= ∅; in other words gY and Y do not overlap partially. 

In particular, ∅, X and all 1- element subsets of X  are 

obviously blocks. These are called the trivial blocks. If these 

are the only blocks, then we say that G acts primitively on 

X . Otherwise, G acts imprimitively. 

Theorem 2.1 Orbit-Stabilizer Theorem [10] 

Let G  be a group acting on a finite set X and x ∈ X. Then 

( ) ( )| | : |GG
Orb x G Stab x=

 
Theorem 2.2 Cauchy-Frobenius lemma [4] 

Let G be finite group acting on a set X. The number of 

orbits of G is ( )1

g G

Fix g
G ∈
∑ . 

Let ( )1 1
,G X  and ( )2 2

,G X  be permutation groups. The 

direct product 
1 2

G G×  acts on Cartesian product 
1 2

X X×  by 
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rule ( )( ) ( )1 2 1 2 1 1 2 2, , ,g g x x g x g x= . 

3. Main Results 

3.1. Transitivity of × ×
n n n

S S S
 
Acting on × ×X Y Z  

Theorem 3.1 If n ≥ 2, then G = n n n
S S S× ×  acts 

transitively on X Y Z× × , where { }1,2,3,...,X n= ,

{ }1, 2,..., 2Y n n n= + +  and { }2 1,2 2,...,3Z n n n= + + . 

Proof. Let G  act on X Y Z× × . It is enough to show that 

the cardinality of 

( ), ,GOrb x y z  is equal to X Y Z× × . We determine

( )| | | , ,GH Stab x y z= . 

Now ( )1 2 3, , n n ng g g S S S∈ × ×  fixes ( ), ,x y z X Y Z∈ × ×  

If and only if ( )( ) ( )1 2 3, , , , , ,g g g x y z x y z= so that
1

g x x= ,

2
g y y= , 

3
g z z= . Thus , ,x y z  comes from a 1- cycle of

( )1,2,3ig i = . 

Hence H  is isomorphic to
1 1 1n n nS S S− − −× ×  and so 

( )( )3

| | 1 !H n= −  

By the use Theorem 2.1 

( ) ( )| , , | | : , , |G GOrb x y z G Stab x y z=
 

= 
| |

| |

G

H
 

=

3 

3 

(n! )   

(( n-1 )! )  
 

=
( )

( )

3

!

1 !

n

n

 
 
 − 

 

( )
( )

3

1 !

1 !

n n

n

 −
=   − 

 

( )3
n=  

X Y Z= × ×  

3.2. Primitivity of × ×
n n n

S S S
 
on × ×X Y Z  

Theorem 3.2 The action of n n nS S S× ×  on X Y Z× × is 

imprimitive for 2n ≥ . 

Proof. This action is transitive by theorem 3.1 Consider 

K X Y Z= × ×  where 

}{1, 2,...,X n= , { }1, 2,..., 2Y n n n= + +  and 

{ }2 1,2 2,...,3Z n n n= + +  therefore G  acts on K and 

| |K n n n= × × . Let L  be any non trivial subset of K  such 

that | |L  divides | |K  by .
n n n

n

× ×

( ) ( )
( ) ( )
1, 1, 2 2 , 1, 1,2 3 ,...,

1, 1,3 , 1, 2,2 1

n n n n
L

n n n n

 + + + +
 =
 + + + 

 therefore | |L n=
 

for 2n ≥ . For each element of L  there exist ( )1 2 3
, ,g g g G∈  

with n −  cycles permutation

( ) ( )
( )
1,2,3,..., , 1, 2, 3,..., 2 ,

2 1,2 2,2 3,...,3

n n n n n

n n n n

 + + +
 
 + + + 

 for 2n ≥  such that

( )1 2 3
, ,g g g G∈  moves an element of L to an element not in 

L  so that gY Y ϕ∩ = . This argument shows that L  is a 

block for the action and the conclusion follows. 

3.3. Ranks and Subdegrees of 2 2 2
× ×S S S  on × ×X Y Z  

In this section { }1,2X = , { }3,4Y =  and { }5,6Z =  

Theorem 3.3 The rank of 2 2 2
G S S S= × ×  acting on 

X Y Z× ×  is 32 . 

Proof. Let 
2 2 2

G S S S= × ×  act on X Y Z× × .  

( )(1,3,5) 1,1,1GStab = , the identity. By use of Theorem 2.5 

to get the number of orbits of ( )1,3,5
G  on X Y Z× ×  

Let K X Y Z= × × , then  

K={( 1,3,5 ),( 1,3,6 ),( 2,3,5 ),( 2,3,6 ),( 1,4,5 ),( 1,4,6 ),

( 2,4,5 ),( 2,4,6 )} .
 

A permutation in ( )1,3,5
G  is of the form (1,1,1 ) since it is 

the identity. The number of elements in X Y Z× ×  fixed by 

each ( )1 2 3, ,g g g G∈  is 8 since identity fixes all the elements 

in X Y Z× × . 

Hence by Cauchy Frobenius Lemma, the number of orbits 

of ( )1,3,5
G  acting on X Y Z× × is 

( )
( )

( ) ( )

( )
1 2 3 1,3,5

3

1 2 3

, ,1,3,5

1 1
| , , | 1 8 8 2

| | 1g g g G

Fix g g g
G ∈

= × = =∑  

Let { }1,3,3A =  

The 32  orbits of ( )1,3,5
G  on X Y Z× ×  are: 

a) The Suborbit whose every element contains exactly 3 

elements from A  ( ) ( ) ( ){ }0 1,3,5
1,3,5 1,3,5

G
Orb∆ = = -the 

trivial orbit. 

b) Suborbits each of whose every element contains exactly 

2 elements from A  

( ) ( ) ( ){ }1 1,3,5
1,3,6 1,3,6

G
Orb∆ = =  

( ) ( ) ( ){ }2 1,3,5
1, 4,5 1, 4,5

G
Orb∆ = =  

( ) ( ) ( ){ }3 1,3,5
2,3,5 2,3,5

G
Orb∆ = =  
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c) Suborbits each of whose every element contains exactly 

1 element from A  

( ) ( ) ( ){ }4 1,3,5
1,4,6 1,4,6

G
Orb∆ = =  

( ) ( ) ( ){ }5 1,3,5
2,3,6 2,3,6

G
Orb∆ = =  

( ) ( ) ( ){ }6 1,3,5
2,4,5 2, 4,5

G
Orb∆ = =  

d) Suborbit whose elements contain no element from A  

( ) ( ) ( ){ }7 1,3,5
2,4,6 2,4,6

G
Orb∆ = =  

From the above, the rank of 
2 2 2

G S S S= × ×  acting on 

X Y Z× ×  is 32  and subdegrees are 1,1,...,1. 

3.4. Ranks and Subdegrees of 3 3 3
× ×S S S  on × ×X Y Z  

In this section { }1,2,3X = , { }4,5,6Y =  and { }7,8,9Z =  

Theorem 3.4 The rank of 3 3 3
G S S S= × ×  acting on 

X Y Z× ×  is 32 . 

Proof. Let 3 3 3
G S S S= × ×  act on X Y Z× ×  and 

K X Y Z= × ×  then 

 

K = {( 1,4,7 ),( 1,4,8 ),( 1,4,9 ),( 1,5,7 ),

( 1,5,8 ),( 1,5,9 ),( 1,6,7 ),( 1,6,8 ),( 1,6,9 ),

 ( 2,4,7 ),( 2,4,8 ),( 2,4,9 ),( 2,5,7 ),( 2,5,8 ),

( 2,5,9 ),( 2,6,7 ),( 2,6,8 ),( 2,6,9 ),

 ( 3,4,7 ),( 3,4,8 ),( 3,4,9 ),( 3,5,7 ),( 1,5,8 ),

( 3,5,9 ),( 3,6,7 ),( 3,6,8 ),( 3,6,9 )}. 

 

By Theorem 2.1, 

GSta b  ( 1,4,7 )= {( 1,1,1 ),( 1,1,(89) ),( 1,(56),1 ),

( 1,(56),(89) ),( (23),1,1 ),( (23),(1),(89) ),

( (23),(56),1 ),( (23),(56),(89) )} 

 

By applying Cauchy Frobenius Lemma the number of 

orbits of 
 ( 1,4,7 )

G  acting on X Y Z× ×  are; 

The number of elements in X Y Z× × fixed by each

( ) ( )1 2 3 1,4,7
, ,g g g G∈  is given by Table1  

Table 1. Permutations in  ( 1,4,7 )G  and the number of fixed points. 

Type of ordered triple 

permutations in ( 1,4,7 ) G  

Number of 

ordered triple of 

permutations  

( )1 2 3
| Fix g , , |g g  

( 1,1,1 )  1 27 

( 1,1,( ab ) )  1 9 

( 1,( ab ),1 )  1 9 

( 1,( ab ),( ab ) )  1 3 

( ( ab ),1,1 )  1 9 

( ( ab ),( ab ),1 )  1 3 

 1 3 

( ( ab ),( ab ),( ab ) )  1 1 

Now applying Theorem 2.2, the number of orbits of 

 ( 1,4,7 )
G   acting on X Y Z× ×  is 

( )
( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 1,4,7

1 2 3

, ,1,4,7

3

1
| , , |

| |

1
1 27 1 9 1 9 1 3

8

64
1 9 1 3 1 3 1 1 8 2

8

g g g G

Fix g g g
G ∈

=

× + × + × + × +

× + × + × + × = = =

∑

  

Let A = { 1,4,7 }  

The 32  orbits of  ( 1,4,7 )
G   on X Y Z× ×  are: 

a) Suborbit whose every element contains exactly 3 

elements from A  

0 G( 1,4,7 )
 =Orb  ( 1,4,7 )={(1,4,7)}∆ -the trivial orbit. 

b) Suborbits each of whose every element contains exactly 

2 elements from A  

1 G( 1,4,7 )
 =Orb  ( 1,4,8 )={( 1,4,8 ),( 1,4,9 )} ∆  

2 G( 1,4,7 )
 =Orb  ( 1,5,7 ) {( 1,5,7 ),( 1,6,7 )} ∆ =  

3 G( 1,4,7 )
 =Orb  ( 2,4,7 ) {( 2,4,7 ),( 3,4,7 )}  ∆ =  

c) Suborbits each of whose every element contains exactly 

1 element from A  

4 G( 1,4,7 )
 =Orb  ( 1,5,8 )={( 1,5,8 ),( 1,5,9 ),( 1,6,8 ),( 1,6,9 )}  ∆

5 G( 1,4,7 )
 =Orb  ( 2,4,8 )={( 2,4,8 ),( 2,4,9 ),

( 3,4,8 ),( 3,4,9 )}   

∆
 

6 G( 1,4,7 )
 =Orb  ( 2,5,7 ) {( 2,5,7 ),( 2,6,7 ),

( 3,5,7 ),( 3,6,7 )}   

∆ =

 

d) Suborbit whose elements contain no element from A  

7 G( 1,4,7 )
 =Orb  ( 2,5,8 )={( 2,5,8 ),( 2,5,9 ),( 2,6,8 ),

( 3,5,8 ),( 2,6,9 ),( 3,5,9 ),( 3,6,8 ),( 3,6,9 )}   

∆
 

From the above, the rank of 
3 3 3

G S S S= × ×  acting on 

X Y Z× × is 32  and subdegrees are 1,2,2,2,4,4,4,8  

3.5. Ranks and Subdegrees of × ×
n n n

S S S
 
on × ×X Y Z  

Theorem 3.5 If 2n ≥ , the rank of
n n n

G S S S= × × acting 

on X Y Z× × is 
32 , where  

}{1, 2,...,X n= , { }1, 2,..., 2Y n n n= + +  and

{ }2 1,2 2,...,3Z n n n= + + .  

Proof. The number orbits of 
n n n

G S S S= × × acting on

X Y Z× × are given as follows; 

Let { }1, 1,2 1A n n= + +  
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Table 2. The rank of n n nG S S S= × ×  acting on X Y Z× × . 

Suborbit  Number of suborbits 

Orbit containing no element from A  
3

0
C  1 

Orbits containing exactly 1  element 

from A  

3

1
C  2 

Orbits containing exactly 2 elements 

from A  
3

2
C  2 

Orbit containing exactly 3 elements 

from A  
3

3
C  1 

Hence the rank of the 
n n n

G S S S= × × acting on X Y Z× ×
is 

31 3 3 1 8 2+ + + = =  

The 32  orbits of 
( )1, 1,2 1n n

G + +
 on X Y Z× ×  are: 

a) Suborbit whose every element contains exactly 3 

elements from A  

( ) ( ) ( ){ }0 1, 1,2 1
1, 1, 2 1 1, 1, 2 1

G n n
Orb n n n n+ +∆ = + + = + +  -the 

trivial orbit. 

b) Suborbits each of whose every element contains exactly 

2 elements from A  

( ) ( )
( ) ( ) ( ){ }
1 1, 1,2 1

1, 1,2 2

1, 1,2 2 , 1, 1,2 3 ,..., 1, 1,3

G n n
Orb n n

n n n n n n

+ +∆ = + + =

+ + + + +
 2n ≥ . 

( ) ( )
( ) ( ) ( ){ }

2 1, 1,2 1
1, 2, 2 1

1, 2,2 1 , 1, 3, 2 1 ,..., 1,2 ,2 1

G n n
Orb n n

n n n n n n

+ +∆ = + + =

+ + + + +
 2n ≥ . 

( ) ( )
( ) ( ) ( ){ }
3 1, 1,2 1

2, 1, 2 1

2, 1,2 1 , 3, 1, 2 1 ,..., , 1, 2 1

G n n
Orb n n

n n n n n n n

+ +∆ = + + =

+ + + + + +
 2n ≥ . 

c) Suborbits each of whose every element contains exactly 

1 element from A  

( ) ( )
( ) ( ) ( ){ }

4 1, 1,2 1
1, 2, 2 2

1, 2, 2 2 , 1, 3,2 3 ,..., 1, 2 ,3

G n n
Orb n n

n n n n n n

+ +∆ = + + =

+ + + +  

2n ≥ . 

( ) ( )
( ) ( ) ( ){ }
5 1, 1,2 1

2, 1,2 2

2, 1,2 2 , 3, 1,2 3 ,..., , 1,3

G n n
Orb n n

n n n n n n n

+ +∆ = + + =

+ + + + +
 2n ≥ . 

( ) ( )
( ) ( ) ( ){ }
6 1, 1,2 1

2, 2,2 1

2, 2,2 1 , 3, 2,2 1 ,..., , 2 ,2 1

G n n
Orb n n

n n n n n n n

+ +∆ = + + =

+ + + + +
 2n ≥ . 

d) Suborbit whose elements contain no element from A  

( ) ( )
( ) ( ) ( ){ }
7 1, 1,2 1

2, 2,2 2

2, 2,2 2 , 3, 2,2 2 ,..., , 2 ,3

G n n
Orb n n

n n n n n n n

+ +∆ = + + =

+ + + +
 2n ≥ . 

The subdegrees of G  are as shown in Table 3 below: 

Table 3. Subdegrees of 2 2 2G S S S= × ×  acting on X Y Z× × for n ≥ 2. 

Suborbit length 1 1n −  ( )2
1n −  ( )3

1n −  

number of suborbits 1 3 3 1 

4. Conclusions 

In this study, some properties of the action of n n nS S S× ×  

on X Y Z× ×  were studied. It can be concluded that; 

� 
 n n nS S S× × acts transitively and imprimitely on 

X Y Z× ×  for all n 2 ≥ .  

� The rank of n n nS S S× × on X Y Z× ×  is 
32  for all

n  2 ≥ . 
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