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Abstract: In this paper some necessary and sufficient conditions are obtained to guarantee the oscillation for bounded and 
all solutions of second order nonlinear neutral delay difference equations. In Theorem 5 and Theorem 8, We have studied the 
oscillation criteria as well as the asymptotic behavior, where was established some sufficient conditions to ensure that every 
solution are either oscillates or |��| → ∞ as � → ∞. Examples are given to illustrate the obtained results. 
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1. Introduction 

In this paper the oscillation for bounded and all solutions 
of second order neutral delay difference equation with 
positive and negative coefficients: 

∆	(�� − ����
�) + ���(��
�) − ���(��
�) = ��      (1) 

will be studied, where Δ is the forward difference operator, ��	, ��  are nonnegative infinite sequences of real numbers and ��, ��	, are infinite sequences of real numbers. � ∈ (�, �) is 
function ���(��) > 0 . The purpose of this research is to 
obtain new sufficient conditions for the oscillation of all 
solutions of equation (1). The following assumptions are 
used: 

(H ) ! ! �" < ∞$
 
"%$&�
�

'
$%�(

; 
(H	) ! ! �" < ∞$
 

"%$
�&�
'

$%�(
; 

(H*) There exists a sequence +,�- such that ∆	,� = �� and lim�→' ,� = 0 ; 
(H1)	�(�) ≥ 3 �; 

(H4	 ) �(�) ≤ 3	�. 

2. Main Result 

The next results provide sufficient conditions for the 
oscillation of all bounded solutions of Eq. (1). For a 
simplicity set 

6� 	= 	 �� − ����
�                                (2) 

Let the sequence 7� be defined as 

7� = �� − ����
� + ∑ ∑ �"�(�"
�)$
 "%$&�
�'$%� − ,�, 9 > :	   (3) 

and the sequence ;� be defined as 

;� = �� − ����
� − ∑ ∑ �"�(�"
�)$
 "%$
�&�'$%� − ,� , : > 9    (4) 

The following theorem based on Theorem 7.6.1, [3] pp. 
184: 

Theorem 1. ([3], pp. 184) 

Assume that +��-  is a nonnegative sequence of real 
numbers and let 9 be a positive integer. Suppose that  

lim	inf�→' ! �" > 9�& (9 + 1)�& 
�
 

"%�
�
 

Then  
i. The difference inequality 

��& − �� + ����
� ≤ 0, � = 0,1,2,⋯	 
cannot have eventually positive solutions. 
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ii. The difference inequality  

��& − �� + ����
� ≥ 0, � = 0,1,2,⋯ 

cannot have eventually negative solutions.  
Theorem 2. ([12], pp.10) Let A, � ∈ � then (i)	A < �	 + B for all B > 0	if and only if A ≤ �. (ii)	A > � − B for all B > 0	if and only if A ≥ �. 
Theorem 3. Suppose that �� ≥ 1  is bounded (��&�
� −��) ≤ 0, let (H ), (H*), and (H1) hold, in addition to 

lim inf�→' 	 ! !|�"&�
� − �"|�"
�&� 	$&C
"%$

�
 
$%�
(�
C
�)

> (9 − D − E)�
C
�& 3 	(9 − D − E + 1)�
C
�& , 
9 > D +E                                   (5) 

Then every bounded solution of equation (1) oscillates. 
Proof. Assume for the sake of contradiction that {��} be 

positive bounded solution of eq. (1) for � ≥ �F ≥ 0 , then 
from equations (1), (2) and (3) we obtain 

∆	7� = (��&�
� − ��)�(��
�) ≤ 0                   (6) 

Hence, ∆7� , 7�  are monotone sequences. We claim that ∆7� > 0  for � ≥ � ≥ �F , otherwise, 	∆7� < 0 , � ≥ � , 
thus, 7� < 0 and 7� → −∞ as � → ∞. From (3) we get  

7� ≥ −����
� 	− ,�			 	≥ −���
� 	− ,�, �� ≤ � 

then �� → ∞ as � → ∞, which is a contradiction. Hence our 
claim is established. We have two cases for � ≥ �	 ≥ � : 

Case 1: 	7� > 0, 	∆7� > 0, ∆	7� ≤ 0 ; Case 2: 	7� <0, 	∆7� > 0, ∆	7� ≤ 0	 
Case 1: 	7� > 0, 	∆7� > 0, ∆	7� ≤ 0 , then there exists G > 0  such that 7� ≥ G > 0  for � ≥ �	 ≥ � . Since ��  is 

bounded, let lim	inf�→' �� = ℎ∗	ℎ∗ ≥ 0 , so there exists a 
subsequence +�$-  of +�-  such that lim$→'�$ = ∞ , lim$→'��J = ℎ∗. From (3) we get 

��J = 7�J + ��J��J
� −! ! �"�(�"
�)K
 
"%K&�
�

'
K%�J + ,�J 

��J ≥ 	G + ��J��J
� 	− L	! ! �"K
 
"%K&�
�

'
K%�J + ,�J , �(��) ≤ L	 

��J > 	G + ��J
� − ε 
Since B  is arbitrary, by Theorem 2, it follows that for 

sufficiently large N we get  

��J ≥ G + ��J
� 

As N → ∞ , it follows that ℎ∗ ≥ G + ℎ∗  which is a 
contradiction. 

Case 2: 	7� < 0, 	∆7� > 0, 	∆	7� ≤ 0 . By taking the 
summation of both sides of (6) from �	 to � + D , 0 < D <

9 − E, we get 

	∆7�& − 	∆7� = !(�"&�
� − �"�&C
"%� )�(�"
�)	 

−	∆7� ≤ 3 !(�"&�
� − �"�&C
"%� )�"
� 	 

	∆7� ≥ 3 ∑ |�"&�
� − �"|�&C"%� �"
�                      (7) 

From (3) we get 

	7� = �� − ����
� +! ! �"�(�"
�)$
 
"%$&�
�

'
$%� 	− ,� 

	≥ −����
� 	− ,�					 7� > −����
� − B, B > 0			 
Since B is arbitrary, it follows that  

7� ≥ −����
� 

��
� ≥	− 1�� 	7�	 
��
�	 ≥ −  OPQRST 	7�
�&�                   (8) 

Substituting (8) in (7) to obtain 

	∆7� ≥ −3 !	|�"&�
� − �"|�"
�&� 7"
�&�
�&C
"%� 	 

	∆7� + 3 ! 	|�"&�
� − �"|�"
�&� 	7�
(�
C
�)�&C
"%� ≥ 0 

By theorem 1-ii and in virtue of (5), it follows that the last 
inequality cannot have eventually negative solution, which is 
a contradiction.  

Example 4. Consider the difference equations 

Δ	 U�� − U1 + V12W
�X ��
 X + 2732 ��
* − 2532 V12W

� ��
	 

= \ 	]�&* \−  	]�                           (E1) 

where m =1, k=3, l= 2, 	D = 1,  �� = 1 + \ 	]� , ��	 = 	^*	, ��	 =	 	4*	 \ 	]�	, �(��) = ��, 3 = 1, �� = \ 	]�&* \−  	]� 

� 	∑ ∑ �"$
 "%$&�
�'$%�( = 	4*	∑ \ 	]"
 = 	4 _ 	< ∞'$%�( 	 
� 	�� = 1 + \ 	]� ≥ 1. 

� ��&�
� − �� = 25 \ 	]�&* − 	^*	 < 0, � ≥ 1. 

� lim	inf�→' 	∑ ∑ |`aSbQR
ca|OaQRST$& "%$�
 $%�
 =
lim�→'∑ ∑ defd
	4\(d]aSf &\(d]aQd

$& 	"%$�
 �
 = 	^ _ >  1	 
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By Theorem 3, it follows that every bounded solution of (g1) oscillates, for instance �� =	\−  	]� is such a solution. 

Theorem 5. Suppose that �� ≤ � < 1, (��&�
� − ��) ≤ 0, 
(H ), (H*) − (H4) hold, in addition to  

∑ �" = ∞'"%�h , �F ≥ 0                             (9) 

lim inf�→' ! !|�"&�
� − �"|	$&C
"%$

�
 
$%�
(�
C
�)

 

> O(�
C
�)RQiQTS(
j(	(�
C
�& )RQiQTS( , 9 > D + E	              (10) 

Then every solution {��} of equation (1) either oscillates 
or |��| → ∞ as � → ∞. 

Proof. For the sake of contradiction, assume that {��} be 
an eventually positive solution of eq. (1), then from equations 
(1), (2) and (3) it follows that (6) hold, that is 

∆	7� = (��&�
� − ��)�(��
�) ≤ 0	 
Hence ∆7� , 7�  are monotone sequences. If 	∆7� < 0 for � ≥ � ≥ �F , thus 7� < 0 and 7� → −∞  as � → ∞ . From 

(3) we obtain 

7� = �� − ����
� +! ! �"�(�"
�)$
 
"%$&�
�

'
$%� −,�, 

7� ≥ −����
� 	− ,� ≥ −���
� 	− ,�	 
which implies that �� → ∞ as � → ∞. 

If 	∆7� > 0  for � ≥ � ≥ �F , we have two cases to 
consider for � ≥ �	 ≥ � : 

Case 1: 7� > 0, 	∆7� > 0, ∆	7� ≤ 0;  Case 2: 7� <0, 	∆7� > 0, ∆	7� ≤ 0	 
Case 1: 	7� > 0, 	∆7� > 0, ∆	7� ≤ 0. Then lim�→'7� =k, where 0 < k ≤ ∞. 
If k = ∞, From (3) we get 

7� = �� − ����
� +! ! �"�(�"
�)$
 
"%$&�
�

'
$%� 	− ,�, 

7� ≤ �� +! ! �"�(�"
�)$
 
"%$&�
�

'
$%� 	− ,� 

which implies that lim�→' �� = ∞ , otherwise if ��  is 
bounded it follows from the last inequality 7� < �� + B , 
which is a contradiction. 

If 0 < k < ∞, then there exists G > 0	such that 7� ≥ G >0, for � ≥ �	. If lim�→' �� < ∞, then from (3) we get 

7� ≤ �� + 3		! ! �"�"
�$
 
"%$&�
�

'
$%� 	− ,� 

≤ �� + 3	L ! ! �"$
 
"%$&�
�

'
$%� 	− ,�, �� ≤ L  

7� < �� + B, B > 0			 

B is arbitrary, so for sufficiently large � we get 

�� ≥ 7� ≥ G > 0	 
By taking the summation of both sides of (6) from �		to � − 1, it follows that 

! ∆7"& − 	∆7"
�
 
"%�d

	= !(�"&�
� − �")�(�"
�)�
 
"%�d

	 
	∆7� − 	∆7�d ≤ 3 !(�"&�
� − �")�
 

"%�d
�"
�

≤ G3 !(�"&�
� − �")�
 
"%�d

 

−7� − ∆7�d ≤ G3 !(�"&�
� − �")�
 
"%�d

	 
In virtue of (9) the last inequality implies that lim�→'7� = ∞. Leads to a contradiction. 
Case 2: 7� < 0, 	∆7� > 0, ∆	7� ≤ 0 . In this case 7�  is 

bounded, we claim that �� is bounded, otherwise there exists 
a subsequence +�$-  of +�-  such that lim$→' �$ = ∞, lim$→' ��J = ∞ and ��J = maxn��: �	 ≤ � ≤ �$p, from (3) 

we get 

7�J ≥ ��J − ��J��J
� 	− ,�J 
7�J ≥ (1 − �)��J 	− ,�J 	 

which implies that lim$→'7�J = ∞, a contradiction. 

By taking the summation of both sides of (6) from �	to	� + D, D < 9 −E, it follows that 

!∆7"& − 	∆7"
�&C
"%� 	= !(�"&�
� − �")�(�"
�)�&C

"%� − 	∆7� ≤ 

3 ∑ (�"&�
� − �")�&C"%� �"
�	                      (11) 

From (3) we get 

7� = �� − ����
� +! ! �"�(�"
�)$
 
"%$&�
�

'
$%� − ,�	 

	≥ −����
� − ,�	 7� > −���
� − B, B > 0				 
Since B is arbitrary, it follows that for sufficiently large �: 

�� ≥ −1� 7�&�				 
Substituting the last inequality in (11) we obtain 

−	∆7� ≤ −3 � !(�"&�
� − �")�&C
"%� 7"&�
�		 
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	≤ 3 � q!|�"&�
� − �"|�&C
"%� r7�&C&�
� 	 

	∆7� + 3 � q!|�"&�
� − �"|�&C
"%� r7�
(�
C
�) ≥ 0 

By theorem 1-ii and in virtue of (10), it follows that the 
last inequality cannot have eventually negative solution, 
which is a contradiction. 

In the next theorem we will use the sequence ;� already 
defined in (4).  

Theorem 6. Suppose that �� ≤ 1,  (�� − ��
�&�) ≥ 0 , 
(H	) − (H*), and (H4) hold, in addition to  

lim inf�→' 	 ! !(�" − �"
�&�$&C
"%$ )�
 

$%�
(�
C) 	> (: − D)�
C& 3 	(: − D + 1)�
C& , 
: > D                                       (12) 

Then every bounded solution of equation (1) oscillates. 
Proof. For the sake of contradiction, assume that {��} be 

an eventually positive bounded solution of eq. (1), then from 
equations (1), (2) and (4) we obtain 

∆	;� = (�� − ��
�&�)�(��
�) ≥ 0                   (13) 

Hence, 	∆;� , ;�  are monotone sequences, we claim that 	∆;� < 0 for � ≥ � ≥ �F , otherwise ∆;� > 0	for � ≥ � , 
hence ;� > 0  and ;� → ∞  as � → ∞ . Let �� ≤ L , then �(��) ≤ 3	L = L	 , where L , L	  are positive constants. 
From (4) we obtain 

;� = �� − ����
� −! ! �"�(�"
�)$
 
"%$
�&�

'
$%� 	− ,� 

	;� ≤ �� 	− ,�		 
which implies that �� → ∞  as � → ∞ , which is a 
contradiction. Our claim has been established, then it remains 
to consider two possible cases for the existence of 
nonoscillatory solution of eq. (1) for � ≥ �	 ≥ � : 

Case 1: ;� < 0, 	∆;� < 0, ∆	;� ≥ 0;  Case 2: ;� >0, 	∆;� < 0, ∆	;� ≥ 0;	 
Case 1: 	;� < 0, 	∆;� < 0, 	∆	;� ≥ 0 . Then there 

exists	G < 0	such that, ;� ≤ G < 0, for � ≥ �	 . Since ��  is 
bounded, let limsup�→' �� = ℎ∗,  ℎ∗ ≥ 0  so there exists a 

sequence +�$-  such that 	lim$→'�$ = ∞ , lim$→'��J = ℎ∗ . 

From (4) we get 

�� = 	;� + ����
� +! ! �"�(�"
�)$
 
"%$&�
�

'
$%� + ,�	 

�� ≤ G + ����
� + L	! ! �"$
 
"%$
�&�

'
$%� + ,�	 

�� < G + ��
� + B, B > 0	 
Since B  is arbitrary, then by theorem 2.2, it follows for 

sufficiently large N that:  

��J ≤ G + ��J
�	 
as N → ∞, we get from the last inequality ℎ∗ ≤ 	G + ℎ∗ which 
is a contradiction. 

Case 2: ;� > 0, 	∆;� < 0, ∆	;� ≥ 0 . By taking the 
summation of both sides of (13) from �	to 	� + D , D < :  it 
follows that 

	∆;�& − 	∆;� = !(�" − �"
�&�)�(��
�)�&C
"%� − 	∆;� 

≥ 3 ∑ (�" − �"
�&�)�&C"%� �"
�                    (14) 

From (4) we get 

�� = ;� + ����
� 	+! ! �"�(�"
�)$
 
"%$
�&�

'
$%� + ,� 

	≥ ;� + ,�		 �� > ;� − B, B > 0	 
Since B is arbitrary, it follows that  

�� ≥ ;�				 
Substituting the last inequality in (14) we obtain 

−	∆;� ≥ 3 !(�" − �"
�&�)�&C
"%� ;"
� 		 

−	∆;� ≥ 3 q!(�" − �"
�&�)�&C
"%� r;�&C
� 	 

	∆;� + 3 q!(�" − �"
�&�)�&C
"%� r;�
(�
C) ≤ 0 

By Theorem 1-i, and in virtue of (12), it follows that the 
last inequality cannot have eventually positive solution, 
which is a contradiction.  

Example 7. Consider the difference equation 

Δ	 U�� − U1 + V1vW
�X ��
�X + V1vW

� V−1vW
�
 

 

−wv
1(1 + 2v + v	)x V−1vW
�
	

 

= (v
* + 2v
 ) y\ z]� \−  z]�{                 (E2) 

where k=1, m=1, l = 2, D = 1, 	3 = 1, �� = 1 + \ z]� , ��	 =\ z]�, ��	 = v
1(1 + 2v + v	), 
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	�� = (v
* + 2v
 ) |V1vW
� V−1vW

�} , �(��) = �� 

� ∑ ∑ �" = ∑ ∑ \ z]"$
 "%$
 '$%�($
 "%$
�&�'$%�( =
∑ \ z]$
 = v∑ \ z]$ <'$%�('$%�( ∞ 

� 	�� = \ z]� < 1, � > 0 

� 	�� − ��
�&� = v
1(1 + 2v + v	) − \ z]�
 =v
1(1 + 2v + v	) − v \ z]� > 0, � ≥ 0. 

� lim	inf�→'	 ∑ ∑ (�" −$&C"%$�
 $%�
(�
C)�"
�&�) = lim	inf	�→' ∑ ∑ v
1(1 + 2v + v	)$& "%$�
 $%�
 −
\ z]"
 = 2v
1(1 + 2v + v	) >  1 

By theorem 5, every bounded solution of (g2) oscillates, 

for instance �� =	\−  z]� is such a solution. 

Theorem 8. Suppose that �� ≤ �, (�� − ��
�&�) ≥ 0, (H	) −(H4) hold, in addition to (12) and  

∑ �" = ∞'"%�( , �F ≥ 0	                           (15) 

Then every solution {��} of equation (1) either oscillates 
or |��| → ∞ as � → ∞. 

proof. For the sake of contradiction, assume that {��} be 
an eventually positive solution of eq. (1), then from equations 
(1), (2) and (4) it follows that (13) hold, that is 

∆	;� = (�� − ��
�&�)�(��
�) ≥ 0	 
Hence, 	∆;�, ;� are monotone sequences. If 	∆;� > 0 for � ≥ � ≥ �F, thus ;� > 0 and ;� → ∞ as � → ∞. From (4) 

we obtain 

	;� = �� − ����
� 	−! ! �"�(�"
�)$
 
"%$
�&�

'
$%� 	− ,� 

	;� ≤ �� 	− ,�					 
which implies that �� → ∞ as � → ∞. 

If 	∆;� < 0  for � ≥ � ≥ �F  we have two cases to 
consider for � ≥ �	 ≥ � : 

Case 1: ;� < 0, 	∆;� < 0, ∆	;� ≥ 0;  Case 2: ;� >0, 	∆;� < 0, ∆	;� ≥ 0.	 
Case 1: 	;� < 0, 	∆;� < 0, ∆	;� ≥ 0 . Then lim�→';� = k, where −∞ ≤ k < 0. 
If k = −∞, From (4) we get 

;� = �� − ����
� −! ! �"�(�"
�)$
 
"%$
�&�

'
$%� 	− ,� 

;� ≥ −���
� − 3		! ! �" 	�"
�$
 
"%$
�&�

'
$%� 	− ,� 

which implies that lim�→' �� = ∞. 
If −∞ < k < 0 , then there exists G < 0	such that ;� ≤G < 0, for � ≥ �	. If lim�→' �� < ∞. From (4) we get 

;� ≥ −����
� − 3		! ! �" 	�"
�$
 
"%$
�&�

'
$%� 	− ,� 

;� > −����
� − B, B > 0 

G ≥ ;� ≥ −����
� 

��
� ≥ −G�	 
By taking summation to both sides of (13) from �		 to � − 1, it follows that 

! ∆;"& − 	∆;"
�
 
"%�d

	= !(�" − �"
�&�)�(�"
�)�
 
"%�d

 

	∆;� − 	∆;�d ≥ 3 !(�" − �"
�&�)�
 
"%�d

�"
� 	 
≥ −G3 � !(�" − �"
�&�)�
 

"%�d
 

−;� − ∆;�d ≥ 3 !(�" − �"
�&�)�
 
"%�d

�"
� 	 
≥ −G3 � !(�" − �"
�&�)�
 

"%�d
	 

In virtue of (12) the last inequality implies that lim�→';� = −∞. Leads to a contradiction. 
Case 2: ;� > 0, 	∆;� < 0, ∆	;� ≥ 0 . By taking the 

summation of both sides of (13) from �	to	� + D, D < : , it 
follows that 

!∆;"& − 	∆;"
�&C
"%� = !(�" − �"
�&�)�(�"
�)�&C

"%� − 	∆;� 

≥ 3 ∑ (�" − �"
�&�)�&C"%� �"
�                 (16) 

From (4) we get 

�� = ;� + ����
� 	+! ! �"�(�"
�)$
 
"%$
�&�

'
$%� + ,� 

	≥ ;� + ,�						 �� > ;� − B, B > 0				 
Since B is arbitrary, it follows that  

�� ≥ ;�					 
Substituting the last inequality in (16) we obtain 

−	∆;� ≥ 3 !(�" − �"
�&�)�&C
"%� ;"
� 			 
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−	∆;� ≥ 3 q!(�" − �"
�&�)�&C
"%� r;�&C
� 		 

	∆;� + 3 q!(�" − �"
�&�)�&C
"%� r;�
(�
C) ≤ 0 

By Theorem 1-i and in virtue of (12), it follows that the 
last inequality cannot have eventually positive solution, 
which is a contradiction. 

3. Conclusion 

1. In this paper we used two series 	7�  and 	;� , and 
obtained necessary and sufficient conditions for every 
solution of neutral difference equation of second order 
with positive and negative coefficients, to be oscillates 
or tends to infinity as � → ∞.  

2. In condition (H*) we can use lim�→' ,� = a, where a is 
constant and the results remain true. 

3. The conditions (H1)  and (H4)  can be improved, and 
established new conditions. 
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