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Abstract: In this paper, a combined form of the Laplace transforms method with the homotopy perturbation method is 

proposed to solve Korteweg-DeVries (KDV) Equation. This method is called the homotopy perturbation transform method 

(HPTM). The (HPTM) finds the solution without any discretization or restrictive assumptions and avoids the round-off errors. 

The results reveal that the proposed method is very efficient, simple and can be applied to other nonlinear problems. 
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1. Introduction 

In the recent years, the idea of homotopy was coupled with 

perturbation. The fundamental work was done by He. In 

1992. He [5–18] developed the homotopy perturbation 

method (HPM) by merging the standard homotopy and 

perturbation for solving various physical problems. The 

authors have applied this method successfully to problems 

arising in mathematics engineering. The KDV equation plays 

an important role in diverse areas of engineering and 

scientific applications, and therefore, the enormous amount 

of research work has been invested in the study of KDV 

equations [29–33]. The Laplace transform is totally 

incapable of handling nonlinear equations because of the 

difficulties that are caused by the nonlinear terms. Various 

ways have been proposed recently to deal with these 

nonlinearities such as the Adomian decomposition method 

[21] and the Laplace decomposition algorithm [24–28]. 

Furthermore, the homotopy perturbation method is also 

combined with the well-known Laplace transform method 

[22] and the variational iteration method [23] to produce a 

highly effective technique for handling many nonlinear 

problems. In this paper, we shall deal with the KDV equation 

in different forms by the homotopy perturbation transform 

method (HPTM). The KDV equation can be presented in the 

following form, 

u� − 6uu� + u��� = 0                (1) 

where	 (�, �) is the displacement. 

The purpose of this paper is to extend the (HPTM) for the 

solution of Korteweg-DeVries (KDV) Equation. The method 

has been successfully applied for obtaining exact solutions for 

nonlinear equations.. In this paper considers the effectiveness 

of the homotopy perturbation transform method in solving 

Korteweg-DeVries (KDV) Equation. 

2. Basic Idea 

To illustrate the basic idea of this method, we consider a 

general nonlinear non homogeneous partial differential 

equation with initial conditions of the form: 

�	(�, �) +  �	(�, �) +  �	(�, �) =  �(�, �),      (2) 

	(�, 0) =  ℎ(�), 	�(�, 0) =  � (�)    
Where �  is the second order linear differential 

operator� =  ��/���, is the linear differential operator of less 

order than �, � represents the general non-linear differential 

operator and g(�, �) is the source term. 

Taking Laplace transform (denoted throughout this paper 

by L) on both sides of Eq. (2), to get: 

���	(�, �)� + ���	(�, �)� + � ��	(�, �)� = � ��(�, �)� (3) 

Using the differentiation property of the Laplace transform, 

we have: 
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 L�u(x, t)� =  h(x)
 s + f(x)

s� − 1
s� L�Ru(x, t)�           

+ %
&' L�g(x, t)� − %

&' L�Nu(x, t)�.     (4) 

Operating with the Laplace inverse on both sides of Eq. (4) 

gives: 

u(x, t) =  G(x, t) − L,% - %
&'  L�Ru(x, t) +  Nu(x, t)�.,    (5) 

where/(�, �) represents the term arising from the source term 

and the prescribed initial conditions. Now, we apply the 

homotopy perturbation method, 

u(x, t) =  ∑ p2u2(x, t)3456                (6) 

and the nonlinear term can be decomposed as: 

Nu(x, t) =  ∑ p2H2(x, t)3456              (7) 

for some He’s polynomials 82(see [19,20] that are given by: 

H2(u6, . . . , u2) =  %
2!

:;
<=;  N >∑ ?@uA3@56 B=56 , n =  0, 1, 2, 3. ..   (8) 

Substituting Eqs. (7) and (6) in Eq. (5) we get: 

F p2u2(x, t)
3

256
=  G(x, t)                                                             

−p GL,% - %
&'  L�∑ p2u2(x, t)3256 + + ∑ p2H2(u)3256 �.H  (9)     

Which is the coupling of the Laplace transform and the 

homotopy perturbation method using He’s polynomials. 

Comparing the coefficient of like powers of p, the following 

approximations are obtained: 

p6: u6(x, t) =  G(x, t),                                       
p%: u%(x, t)  =  − 1

s�  L�Ru6(x, t)  + H6(u)�, 
p�: u�(x, t)  =  − 1

s�  L�Ru%(x, t)  +  H%(u)�, 
pJ: uJ(x, t) =  − 1

s�  L�Ru�(x, t) +  H�(u)�, 
Then the solution is: 

u(x, t) =  limN→% u2 (x, t) = u6(x, t) + u%(x, t) + u�(x, t) + ⋯  (10) 

3. Applications 

In this section, the effectiveness and the usefulness 

ofhomotopyperturbationtransform method (HPTM) are 

demonstrated by finding exact solutions of Korteweg-DeVries 

(KDV) Equation. 

Example 3.1. Consider the following homogeneous KDV 

equation; 

u� − 6uu� + u��� = 0                   (11) 

With the initial condition; 

	(�, 0) = 6�                       (12) 

Taking the Laplace transform on both sides of Eq. (11) 

subject to the initial 

condition Eq.(12), we get; 

	(�, Q) = RS
T + %

T  ��6uu� − u����            (13) 

The inverse of Laplace transformimplies that 

	(�, �) = 6� − �,% -%
T  ��u��� − 6uu��.       (14) 

Now, we apply the homotopy perturbation method, we get: 

F p2u2(x, t)
3

456
= 6�                                                               

−U�,% V%
T  �((∑ p2u2(x, t)3456 )SSS − ∑ p2H2(u)3456 )W  (15) 

Where H2(u)  are He’s polynomials that represents the 

nonlinear terms. 

The first few components of He’s polynomials, are given 

by; 

86(	) = 	6	6S                                   
 8%(	) = 	6	%S + 	%	6S                       (16) 

 8�(	) = 	6	�S + 	%	%S + 	�	6S 

Comparing the coefficient of like powers of p, the following 

approximations are obtained; 

p6: u6(�, t) = 6�                                                                                
p%: u%(�, t) = −�,% X1

Q  ��(u6)SSS − 6H6(u)�Y = 6J��,            

p�: u�(�, t) =  −�,% -%
T  ��(u%)SSS − 6H%(u)�. = 6Z���, (17) 

pJ: uJ(�, t) =  −�,% X1
Q  ��(u�)SSS − 6H�(u)�Y = 6[��J,       

Therefore the solution u(x, t) is given by: 

u(�, t) = 6�(1 + (36�) + (36�)� + (36�)J + (36�)\ + ⋯ ) (18) 

In series form, and, 

u(�, t) = RS
%,JR�  , |36�| < 1         (19) 

In closed form. 

Example 3.2. Consider the following homogeneous KDV 

equation; 

u� + 6uu� + u��� = 0            (20) 
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With the initial condition; 

	(�, 0) = �                    (21) 

Taking the Laplace transform on both sides of Eq. (20) 

subject to the initial 

Condition Eq.(21), we get; 

	(�, Q) = S
T − %

T  ��6uu� + u����           (22) 

The inverse of Laplace transformimplies that: 

	(�, �) = � − �,% -%
T  ��6uu� + u����.      (23) 

Now, we apply the homotopy perturbation method, we get: 

F p2u2(x, t)
3

456
= �                                                                      

−U�,% V%
T  �((∑ p2u2(x, t)3456 )SSS + ∑ p2H2(u)3456 )W  (24)       

Comparing the coefficient of like powers of p, the following 

approximations are obtained; 

p6: u6(�, t) = �                                                                            
p%: u%(�, t) = −�,% X1

Q  ��(u6)SSS − 6H6(u)�Y = −�(6�), 
p�: u�(�, t) =  −�,% -%

T  ��(u%)SSS − 6H%(u)�. = �(6�)�,    (25) 

 pJ: uJ(�, t) =  −�,% X1
Q  ��(u�)SSS − 6H�(u)�Y = −�(6�)J, 

Therefore the solution u(x, t) is given by: 

u(�, t) = �(1 − (6�) + (6�)� − (6�)J + (6�)\ − (6�)Z + ⋯ ) (26) 

In series form, and, 

u(�, t) = S
%_R�                 (27) 

In closed form. 

Example 3.3. Consider the following homogeneous KDV 

equation; 

u� − 6uu� + u��� = 0               (28) 

With the initial condition; 

	(�, 0) = −2 `'abc
>%_abcB'               (29) 

Taking the Laplace transform of both sides of Eq. (28) 

subject to the initial 

Condition Eq. (29), we get; 

	(�, Q) =
,� b'dbc

>efdbcB'
T + %

T  ��6uu� − u����       (30) 

The inverse of Laplace transform implies that: 

	(�, �) = −2 `'abc
>%_abcB' + �,% -%

T  ��6uu� − u����.     (31) 

Now, we apply the homotopy perturbation method, we get: 

F p2u2(x, t)
3

456
= −2 g�h`S

(1 + h`S)�                                                

−U�,% V%
T  �((∑ p2u2(x, t)3456 )SSS − ∑ p2H2(u)3456 )W   (32) 

Comparing the coefficient of like powers of p, the following 

approximations are obtained; 

p6: u6(�, t) = −2 g�h`S
(1 + h`S)�                                      

p%: u%(�, t) = −�,% X1
Q  ��(u6)SSS − 6H6(u)�Y =   

−2 `iabc>abc,%B
>%_abcBj �,                  (33) 

 

 p�: u�(�, t) =  −�,% X1
Q  ��(u%)SSS − 6H%(u)�Y = 

− gkh`S(h�`S − 4h`S + 1)
(1 + h`S)\ ��, 

Therefore, the solution of Eq. (8), when ? → 1 will be as: 

u(�, t) = −2 g�h`S
(1 + h`S)� − 2 gZh`S(h`S − 1)

(1 + h`S)J � 

− `mabc>a'bc,\abc_%B
>%_abcBn �� + ⋯     (34) 

Using Taylor series, the closed form solution will be as 

follows: 

u(�, t) = −2 `'ab>cob'pB
G%_ab>cob'pBH'            (35) 

4. Conclusions 

In this paper, we have applied thehomotopy perturbation 

transform method toKorteweg-DeVries (KDV) Equation. It 

can be concluded that the HPTM is a very powerful and 

efficient technique in findingexact and approximatesolutions 

for nonlinear problems.Byusing this method we obtain a new 

efficient recurrent relation to solve (KDV) Equation. In 

conclusion, HPTM provide highly accurate numerical 

solutions for nonlinear problems in comparison with other 

method.The results show that the HPTM is a powerful 

mathematical tool for solving the KDV having wide 

applications in engineering and applied mathematics. 
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