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Abstract: In this paper, the exact solution of the fourth - order parabolic equations with variable coefficients is obtained by
using a new homotopy perturbation method (NHPM), theoretical consideration are discussed. Finally, three examples are
illustrated to show the validity and applicability of the proposed method.
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1. Introduction

In this paper, we consider the fourth — order parabolic
partial differential equations with the variable coefficients of
the form;
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a<x,y,z<b ,t>0

Where, H(x,y,z) , A(x,y,z) and 77(x,y,z) are positive,
Subject to the initial conditions;
u(x,,2,0) = fo(x,3,2), u,(x,9,2,0) = f1(x,,2) (2)
And the boundary conditions;
u(a,y,z,0) = gg(y,2,0), u (b,y,z,1) = g (y,2,1)
u(x,a,z,t) = ky(x,z,t), u (x,b,z,t) =k/(x,z,t)

u(x,y,a,t) = hy(x,y,1), u(x,y,b,t) = h(x,z,1)
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Where the functions f;, g;, &k, &, &, IEI-, l;i, i=0,1
are continuous functions.it is worth mentioning that the
problem equation (1 - 3) arise in the study of the transverse
vibrations problem [1]. numerical computations of the
transverse vibrations have been carried out by a number of
authors for one dimensional space. the main focus of
researchers was to obtain numerical solution by using several
techniques, such as explicit and implicit finite - difference
schemes [2, 3, 4, 5], Evans [6] who expressed the fourth
order equation in two space variables as system of two
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second - order equations to be solved by finite difference
method in [7] Khaliq and Twizell solved the variable fourth
order parabolic equations by using a family of second order
method, Evants etc all [8] investigated the fourth order
parabolic equation with constant coefficient by using the
AGE method, recently Wazwaz [9, 10] Approached the
variable coefficient fourth - order parabolic Equation directly
by application Adomian decomposition method. Biazer and
Ghazrini [11] applied He’s variational iteration method and
Deniz Agirseven and Turgut Ozis [12] obtained the exact
solution of the problem by using homotopy perturbation
method. He’s homotopy perturbation method [13 - 17] has
been used by many researcher in physics and engineering to
solve various problem [18 - 22]. In this paper we extend the
modification of homotopy perturbation method (NHPM) [23
- 26] to obtain the exact solution of variables coefficients
fourth order parabolic equations.

2. Basic Ideas of the (HPM)

To solve equation (1) with initial condition (2) by NHPM,
we construct the following homotopy:
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Where, v(x,,2,0) = fo(x,,2) and

v, (x%,9,2,0) = fi(x,1,2) .
Assume the solution of Eq. (4) has the form:

v=yv,+py +p2v2 +... (6)

Suppose the initial approximation to the solution
uy(x,y,z,t) has the form:
Uy (%,3,2,) = D a,(x,,2) 0, (t) (7)

n=0

Where, a,,q,,a,,... are unknown coefficients and are

specific functions depending on problem. Substituting Eq.
(6) into Eq (5) and equating terms of like power p, and

equating each coefficients of p to zero we get:
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By solving these equation in such a way that
v (x,9,2)=0 then Eq. ) result in
v (%,3,2,0)=0,j=123,.., therefore the exact solution

may be obtained as follows:
u(xayazzt) :v()(xayzzat) :fo(an/aZ) +lfi(‘x5y’Z)

+ 3,002 [ o, exiud

n=0

It is worth mentioning that if g(x,y,z,?) and uy(x,y,z,t)

are analytic at ¢ = ¢, then their Taylor series written as;

1y (%, 3,2,) = D, (%, 3,2)(t ~1,)"

n=0
g(x5y’Zst) = ZaE(X,y,Z)(l‘—to)"
n=0

Can be used in Eq. (8), where aq,q,,a,,... are unknown

coefficients and ag,ar,a5,...are known ones, which must be
computed.

3. Application

In this section, we present three examples to illustrate our
shames for variable coefficient parabolic equation.
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Example 1.
Consider the one dimensional, variable coefficients fourth
order parabolic equation [1];

02u 04u 4 3 6
—+(1+x)—=| x +x —— |cost,0<x<1 ,t>0 (9
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With the initial conditions;

u(x,0) ——x (x 0)=0 (10)

And the boundary conditions;

u(0,0)=0 wu(L,t)= %;ﬂ cost

2 2
Z_(o =0 a—(1 t)=—Ocost an

To solve Eq. (9) by (NHPM), we construct the following
homotopy:
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By integration of Eq. (12) we have:
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Assume the solution of Eq. (13) has the following form:
v:v0+pv1+p2v2 +... (14)
Substituting Eq. (14) in to Eq. (13) and equating the

coefficients of like powers of p, results are:
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Assuming  u,(x,t) = Zan ™", v(x,0) =u(x,0) ,
n=0
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Then we have:
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It can be easily to shown that:
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Therefore we obtain the solution of Eq. (9);

6x /2 3
u(x,t) = T"‘ao(x)? +a (x)z
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This is an exact solution.

Example 2.

We next consider the fourth - order parabolic equation in
two variables;

2 4 A4 4,
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ot X I')ox y ay* (15)
1
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5 Y
With the initial conditions:
6 6
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And the boundary conditions:
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To solve Eq. (15) by (NHPM), we construct the following

homotopy:
64
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Suppose the solution of Eq. (18) have the form Eq. (14)
substituting Eq. (14) into Eq. (19) equating the coefficients
of like powers of p we get:
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v, (x, »,t) leads to;

By taking v, (x,y,t) =0, coefficients a,,

be determined as the following:
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Therefore, an exact solution of the Eq. (15) can be
expressed as:
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Example 3.

We finally consider the following three - dimensional
fourth - order parabolic Equation;
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With the initial conditions:
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6_u l z,t | = l—42 cost %(1 zt): l—z cost
ax 27y7 b y b ax 5y5 b y
Ou [ j {—4x+—jcost
ay
xlzt [—x+ jcost
a”( (
5 7t
5)
1
(x »l, t) [ jcost
X

To solve Eq. (20) by (NHPM), Eq. (5), in this equation
will be in conical form as the following:
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Suppose the solution of Eq. (23) has the following form:
v=v,+py +p2v2 +... (24)

Substituting Eq. (24) into Eq. (23) and equating the
coefficients of like powers of p, to obtain:
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to the following result:
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By taking v, (x, y,z,t) =0, coefficients a,,n =1,2,3,... can
be determined as the following:
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Therefore, the exact solution of the Eq. (20) can be
expressed as:
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4. Conclusions

In this article, NHPM, has been introduced for solving
variable coefficients fourth - order parabolic partial
differential equations, this method give the exact solution of
the problems. This result reveals the method explicit,
effective and easy to use.
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