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1. Introduction

Let 0 <T <oo.Let QC RYbe an open, bounded and connected set, with boundary 9Q € C"".

For N=1, the condition “ 9 € C*' ”means that € is a bounded open interval.
Let us set

Q = 0x[0.7] ands = 92 |0.7];

P, (Q X R) = the class of the real functions v (Lt) defined a.e. in 2 x R, measurable and T-periodic with respect to t; with
ve P, (QxR)and t €[0,T] 3(t) = v(-,t).

We denote by F the linear map v € P, (Q X R) — 0.

Let 1<p <o00,1<p, <oo and V be a closed subspace of W"" (Q) (n =1, 2,...) such that C* (Q) C V. We do not

exclude V. =Ww"" (Q) . Let H . “v be a norm equivalent to the one of W"™" (Q) onV.

N a‘a‘ .
Set D" = —————, we consider the normed spaces:
oz ...0x Y

1 N

W, = {v el (Q X R) NI (Q) cas0 < |a| < n there exists the weak derivative

dt vU ew;

D*vwith D%v € L™ (Q),v(-,t) eV foraete R},"v" [f“ t

W, = {v € W : there exists the weak demvatwe%wzth%e r (Q) },

T
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1\p,

ov" dedt| NveW,; (1.1)

=l + S|

hy

W= (01:v) v, = " ae|  vwe W

St

1\p,
W = {w € WU rw'e L (0’ T;Lpz (Q)) } ’ ”w"W - "w wo T j.‘ wl(t) i; (@) di Vw € W
0
Remark 1.1. When p = p, = p we assume
, ) 1\p T 1\p
W =| o] o+ f]22 astd] o, and]ul, - { Jlololf 2+ [t | e
0 Q 0

We recall ([16], Chap.23) W' and W are reflexive and separable Banach spaces. It is not difficult to prove that W; and W,
are Banach spaces; the restriction of F to W, [ TeSp.WT} is a norm-preserving linear transformation into |}/ ° [7‘6817. W] .
Consequently WTU and W, are reflexive and separable spaces.

Remark 1.2. These conclusions hold even if V =1I1" (Q) In this case W, = P, (QxR)ﬂ L"1 (Q) and

= [

Let us denote by <,* > the duality between W, (dualspaceof W, )and W, ,andby "9" Fréchet differential operator. Let

1\p,

A™0, Dj. ~0 (=1,...,m; m = 1) and B be real functionals defined in W, satisfying the conditions

Ais weakly lower semicontinuous inW, and c' (WT),

T/

dp>1: A(rv) = r”A(v) and B(rv) = r"B(v) Vr >0 and Vv eW,;

(z‘n) Bisweakly continuous in W, and c' (W

| D) s weakly continuous in W, and Cl( ) Elq >1:
(212) Dj (rv) =r D].( ) Vr>0andVveW,,q <..<gq_ ifm>1

Let us consider the following problem.
Problem (PT) Find w e W, \ {0} such that

< aA(u),v >=A< 3B(u),v > +Zm:< aDj (u),v > VYveW,
j=1
where ) is areal parameter, ]

Problem (PT) is a particular case of Problem(P) studied in ([10], [12]) by using the Lagrange multipliers and the “algebraic”

approach which is based on the fibering method [14]. In ([11], [12]) many applications of the results connected to Problem (P)
related to nonlinear elliptic systems are present.

In section 2 we considered convenient about Problem (PT) to state existence theorems (Theorems 2.1-2.3) included in the
results of ([4], [7] [8], [10], [12]) whose validity, by the way, depends on A. Furthermore we added Propositions 2.1 and 2.2

useful in some concrete cases in order to establish the nonstationarity of the found solutions.
In section 3 we study some evolution PDEs in the cylinder Q, with also nonlocal nonlinearities and with different conditions on
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> . About these problems, whose variational formulation is included in Problem (PT) , we find the existence of one or more

weak periodic solutions, giving also some sufficient conditions to their nonstationarity.
It is known that the search for periodic solutions of nonlinear problems has attracted the attention of many researchers. In
particular Pohozaev in ([13], [15]) introduced “the separation variables method” for nonlinear equations in which it is possible to

find weak periodic solutions in the form (z, t) =, (:c) u, (t) As far as we know, the methods developed in literature are not
applicable in this article.

2. Existence Theorems Preliminary Results
As AeR weW, r>0j¢e{l...m}and {j....5} C {1,...,m}(jl <.<jif s> 1) we set:

m

H, (v) = A(v)—)\B(v),E(v) =H, (v)—jzm;Dj (v),E’(r,v) = E(Tv) =r"H, (v)—quij (v),

p=
w(r,0) :g—E(r,v) S ={vew, b (v)=1}v; ={vew, . H (v)<0},
$(p,)={vew, D (v)=-1}v* (DJI,...7DL) - {v EW,:D, (v)+..+D, (v)> o}.
We find the solvability of Problem (PT) in the cases based on the following assumptions
(i) Fe(A) > 0: o] < ¢(A) &, (v) Yo e W,;
() 3¢ > 0: o <efa), () voe v (0
(i) Fe(\) > 0: | < ()&, (v) P eV (D,);

(z’m) dm € {1 ..... m} VNS (Dml) is nonempty and bounded in W, .

At first we consider the cases in which one of the assumptions (im) — (i23) is present:

(¢,) m=1q =pV"(D,)=(i,)holds;

(¢,) m>1q <pV'(D)=2.D, <0Vj>2 (i,)holds;

(¢,) m>1q,>pV"(D,)=2,D, <0Vj<m-1 i,)holds;

(c,) m>13m, e{2,...m}: g, <pD,>0Yj<m and D, <0Yj>m, ifm, < m,(iy, | holds;
() m>13m, ef1,...m— 1} g, >p.D, >0Vj>m and D <0 Yj<m if m > 1,(i,, ) holds;
() m>1q, <p.D, >0Vj<m, D, changessign, V*(D,,... D, ) =W, "\ {o},(i,)holds;
(c.) m>1,q, > p, D, changes sign, D, >0 Yj >1V" (D,,..., D, ) =W, \{0},(i, ) holds.

Let us introduce the open set @ of the space W, :

1

@=V* (D) infe) and (¢,), @ =V*(D,) in(c,).& = V* (D, D, ) in[c,),

e=V" (Dml,...7Dm) in(05)7@ =W, \{O}m(cb) and (67).

Theorem 2.1 ( [10], Section 2 ). Under assumptions (z'n) and (z’lz) , in case (Cl) we have:



192 Luisa Toscano and Speranza Toscano: Existence of Time Periodic Solutions of New Classes of Nonlinear Problems

Ju, €5, Na@: D, (vo) = sup{Dl (v) wes, ﬂ(ﬁ?};

1

with 1, = (qlp’lD1 (v‘)))”’ql , U

0

=10, is solution of Problem(PT)

When W, is a vector lattice, if H ( (| |) and D, ( < D, (|v|) [ﬁesp.Dl (U) =D, (|v|)] VveW, , then rﬂ|vﬂ|

[resp. T |v0| and — 7, |v0” is solution [resp. are solutzons} of Problem (PT) . Consequently we can assume v, > 0 ie.u, > 0.

When m>1, for any v € @the equation ¥ (r, v) = 0 has only one positive root r(v) and we have g—lp(r(v),v) = 0.
T

Evidently

functionals r(v)and & (v) = B(r(v).0) = (r(v)) #, (v) - 3 (r(v))" D, (v)

j=1

belong to C" (@). 2.1)

Theorem 2.2 ([10],Section 2;[12],Section 2).Under assumptions (z'n) and (in) , in cases (c2) — (67) we have:

Jv, €5, ﬁ@:é(vo):inf{E(v):veSA ﬂ@};
with 1, = r(vo) ; u, = 10, 18 solution of Problem (PT)

When W, is a vector lattice, if H ( (| |) and D. ( D]. (|v|) VveW, cdejE{l ..... m}, then r |vo|
and — 1, |’UU| are solutions of Problem (PT) . Consequently we can assume v, >0 dieu; >0.

Proposition 2.1. In cases (cl) ( )let u,,v,,7, beasinTheorems2.1and2.2.If v € W, issuchthat < 0H, ( ) 0>=0,
then

Zm:[< aDj (uo),uO > —p(< 8HA (vo),@ >)71 < aDj (uo),roﬁ > =0asm >1. (2.2)

j=1

Proof. Let us set f(S,T):H)\(SUO—i-Tﬁ) Vs> 0andVT € R . We note that feCl(]0,+oo[><R) ,—f( ):
S

<8HA(S’UO+T1~})7UO> and %(S,T):<8HA(SUO+T1~}),@>V(S,T)E ]O,—i—oo[xR. Since f(l,()):l and —i( ):
<0H, (vﬂ),f; >= 0, there exist 6 € ]0,1[ and only one function T(S) e (]1—6,1+6[) such that 7-( ): 0 and
f(S,T(S))Zl Vs€]1—6,1+6[ ;  moreover T'(l): — < O0H, (’UU),’UU >(< OH, (UU),f) >)_ :—pHA(vO)

)= —p(<oH,(v,).5>) .

(< 0H, (v,).5 >
Let 6, € ]0,6] such that v(s) = 80, +T(5)17 €Q Vse ]1—60,1+60[;then

v(s)e S, Na@ Vsefl—5,1+6,]. (2.3)

diD1 (U(s))

S

I () (2.3)= D, (v(s)) < D, (v,) = D, (v(1)) Vs € JL=5,,1+¢,[. Then — 0, from which (2.2) since

s=1

:<6Dl(vo),vo>—p(<6HA(vU),17 >) <6D( )v>:
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,ql
T <8D1(u0 u, >

)
o (¢)=(c)  (2Vand(23)= E(v(s) ec'(i-s.1+8]) . (23)= E(o(1))=E(y)< B(v(s))
Vs el—5,1+6).
=0, i.e. (2.2). In fact, since

a0

H, (v(s)) =1 and p(r(v(s)))

—p(< 08, (y,).5>) <D, (u).ni>

Consequently

-1

“SSa el

Dj (v(s)): 0Vs 6]1—50,14-50 ,

we have

Xm;[< aDj (uo),u0 > —p(< OH, (vo),ﬁ >)71 < aDj. (uo),roﬁ >\

o
Let us pass to the cases in which (i, ) is present:
() m=1q =p (i )holds(wzthm - 1)
(¢,) m>1,(i, ) holds either p < q, orq, <p,D <0 asj=m,.
In (c,) forany veV; ﬂS(Dml) the equation W (r,v) = 0 has only one positive root r(v) with g—\f(r(v),v) = 0. Let
usset B(v) = B(r(v),0) voe v, NS(D, ).
Theorem 2.3 ([10], Section 4 ).Let (i, Jand (i, | hold. In case (c, )
eV, NS(D,): H, (v)=nt{H (v):vev, NS(D)}
with v = (~pg; 'H, (g))ﬁ , w=ruis solution of Problem P"|
In case (c,
3ueV; N$(D, ) B(v)=int{E():vev, Ns(D, |k
with v = r(v), u = rvis solution of Problem(PT)
When W, is a vector lattice, if H, (v) = (| |)and D (v)= (| |) Yo € W, and¥j € {1,...,m}, thenin (¢ )and (c,)

| | and — 7“| |are solutions of Problem (PT) Consequently we can assume v >0 ieu >0.

Proposition 2.2. Let u,v,r be asin Theor. 2.3. In case (cs) if v € W, issuchthat <D, (y),@ >= (0, then
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<0H, (u).u> +q,(< 0D, (v),5>) <0H, (u),ri >=0. 2.4)

In case (cg) if v €W, issuchthat <dD (g),f) >= 0, then

[< OH, (u),u>+q, (< oD, (v).s >)7l < 0H, (u),r7 >

2

J=my

< (9D]. (y),y > +q,, (< 8Dml (y),f) >)71 < aDj (g),f@ >=0, (2.5)

Proof. As j € {1, ml} let us consider the function of (' (]0,—1—00[ XR) f(S,T) = D].n (sy + 7'17) . Since
f(l, 0) = DJU (g) =—-1 and %(L 0) = < 6Dj0 (g),f/ >=0 , there exist € ]O, 1[ and only one function
T(S) e (]1—6,14— 6[) such that f(s,r(s)) =—-1Vse€ ]1—6,1+6[, T(l) =0 and we have

-1

(1) =~<0D, (u)u>(<0D, (v).5>) =-q,D, (v)(<dD, (v).5>) =g, (<oD, (0)7>) .

In (c,), where j, =1, with § € 0,6]such that v(s)=su+7(s)o €V, Vs€[l—6,1+6[wehave

H, (U(s)) > H, (2) =H, (U(l)) Vs € ]1—50,1+50[;

then
0=|-- #, (vs) = <on,(s)a> +a (<on,(g).5>] <o [v).5 >
7| < 0H, (u).u> +q,(< 0D, (v).5>) " <0H, (u).ri>
from which (2.4) follows.
In (cg), where j, = m, , we note that relations \I/(f,y) = Oanda—\p(z,g) = ( imply that there exist an open ball B”

r

centered in v included in V, and only one functional 7 v) e (B*) such that \I/(r* (v),v) =0 for any v € B". Since
=3

v+7(s)17 € B Vs 6]1—60,1+(50[,Wehave

r (v)zr(v)‘v’veB*ﬂS(Dml),set 5, 6]0,6] such that v(s)
v (v(s)) = r(v(s)) ¥s € J1—6,,1+6,].

Then functional

o) 2, 6)

1

(o) = o) 2,0 1)-

=
belongs to C' (]1 — 8,1+ 50[) )
Taking into account that
Dml (v (s)) =—landp (7" (v (s)))pil H, (v (s)) — Xm: q, (7" (v (s)))qﬁl Dj (v (s)) =0 Vsel-4,1+4,],

=1

we have
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= 7’ <(9HA(Q),Q>+QWI (< (’9Dml (y),f; >)7 <0H, ( ) >

<o, (1),u> +q, (<D, (1).5>] <D (v).5>

2t

J=my

[< OH, (u),u > +q, (< oD, ()5 >)_1 < OH, (u),ri >| -

2

Jj=m,

< 3Dj (y),y > +q,, (< aDm (g),f) >) < 0D. ( ) U >

1

n

from which (2.5) since E(v(s)) > B(v) = E(v(l)) vsell-6,1+¢8[. o

3. Some Applications

In this section we suppose N > 2 and set

‘ . ‘ the Lebesgue measure on R;
1

v ) = the outward orthogonal unitary vector to 02 ;

V= (Vl,...7 .

P, (R) = the class of the real functions defined a.e.in R, measurable and T-periodic;

VoeP, (JR) ne’ (R) suppy = the support of the restriction of ¢ to [0, T] .
o]

We warn that the weak continuity in W, of the functionals B and Dj present in the applications can be easily proved by

using embedding Sobolev theorems [1],a compactness lemma ([6], Theor.5.1 page 58) and the isomorphism F (section 1).
We add the following clarification:

Witht, € ]O,T[and g, > O[Tesp.with g, > 0] we suppose 0<f, —¢ andt +¢ < T[resp.so <T-— 50].
Additionally as 0 < e < ¢, /2we denote by w_a nonnegative function belonging to P, (R) nc~ (R)
(C*) such thatsupp w_C ] -2t + 25[ andw_=1lin [to —&t, + 5]

[o.7]

resp.supp w. C [O, 25[ U ]T — 2¢, T] andw_ =1 m[O,e] U [T — €,T] .

o]

Application 3.1 (connected to Theor.2.1). Let us assume in the definition (1.1) of W, n =1 andV = W;" (Q) , then

1/p, 1/p,
o] = f L A [V dudt|  wvew,
Q
and let us setas any v € W,
A(”) =p' f@ dmdt fa xt |VU dxdt}) ,
Q Q
i .
B(v) =p [fb(:v,t)|v|p' d:vdt]ll , D (v) =q" fdl (:E,t) vdzdt| |
< Q

where
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1<p1§p,1<p2§p,1<q1,q1¢p;a,b€(PT(Q><R)ﬂL°°( ))\{0} ( )>a and 0<b(mt)<b0
a.e.inQ(aU,bO = const. > 0), d, € (JPT (Qx R)ﬂL”f (Q))\{O} (pl’ =p /(p1 —1)), (3.1

Problem (PT ) becomes:

Find u € W, \ {0} such that

P

1 L
oul” 2 du|”  du dv ] n-2
—|  dzdt — ——d dt+| | a :ct Vu dzdt alz,t)|Vu VuVoudrdt=
1l ]{at o I R
¢ -2
A [b(z 1)) dxdt] f b(at)|o" " wdadt + | [ (1) udzdt| | [ d, (I’t)“dl’dt] {  mt)vdedt Yo EW,. (55
) Q Q

Each solution u of (3.2) is for definition a weak solution of the problem:

2 %71 2’2 %71
— f%p dmdt]p 9 @” Qui_ fa(az,;t)|Vu|p1 dzdt ' dz'v[a(az:,75)|Vu|pli2 Vu]:
0 ot ot|| ot ot 0
171’71 42
)\[ f b(:v,t)|u|"1 dmdt]l (s, t)| | f d, (2,t) udzdt f d (:v,t)ud:vdt]dl (1) inQ,
Q Q
u=0on %, u(LO) = u(m,T) and %(1,0) = %(:ﬂ,T) on €. 3.3)
Evidently
Vi(D)=a. (3.4)

Let A" and 2" be the first eigenvalue and the first eigenfunction of the problem:
cew(q): - aodw[|w|’”"2 VZ] = |2 e

We remember that [3] 2° > 0 in ) and

-1 -1

X = f]v] df’f][bof(Z*)pl dz| <|a, [|V4" d:f:] [bof|z|p‘ dr| vzew,™ (Q)\{o}. (3.5)
Q Q Q Q
(3.5) implies that
bf‘ mt‘dm< f‘VUmt‘dwaem[OT]VUEW

P

thenas 0 < A < (X‘)Pl
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z 2 z
[ao [Iv" dmdt]pl —)\[bo [ o[ dudt Tahe A(A*)ﬁ][ao [V dudt U veew, (3.6)
Q Q Q
from which
H, (v): A(v) — /\B(v) >p ! min!l,a(;] 1—)\()\*)1:]2" v|p VoeW,.
Then, since
as A< 0 ”v"p < ;02"’15’A (v) Vove VVT7
we have
(i21), in particular (izz),holds if A€ —oo,()\*); . (3.7)

Relations (3.4),(3.7) and Theor.2.1 let us to state the following proposition.

Proposition 3.1. Under conditions (3.1), with A as in (3.7) problem (3.3) has at least two weak solutions u, and —u,
(u, =7, ,n, =const.>0,v, €S NV" (Dl) ).

Remark 3.1. If d >0, we have D, (v) <D, (|v|)Vv € W, . Then, since H, (v) =H, (|v|)Vv € W, , it results in u, >0.

p

Additionally, when a(:r, t) =a, andb(az, t) =b, inQ,since z* €V’ (Dl)and H, (z*) <0asA> ()\* )PT , (z’zz) holds if and

P

only if \ € foo,(X‘)E .

Proposition 3.2. Let p, < Np, /(N — pl) if N > p, . If there exist a measurable set [ C [O,T] with ‘ I‘ > 0, a limit point
1

t,of I andg e L (Q) (po = min {pf, pg},pf =p, /(pl - 1)) such that limd, (m,t) =0 ae. in  and

t—t,

te

d (ac,t)‘ < g(z) a.e.

inQ)x I, then wis nonstationary.

Proof. The additional assumption on p, implies that

0

W,™ () € I* () with continuous embedding. (3.8)

8u0

Reasoning by contradiction, let . =0inQ.Set w (t) = f d, (a:,t) u,dz a.e. in[O,T] , a Lebesgue theorem assures that
QO

limw(t) =0. 3.9)

t—t

te
Let ¢ € P, (R)NC™ (R)with > Oandsuppyp C |0,T]. Since by (3.8) u, € W, , from (3.2) withu = u,and v = pu,
joz]
we get

Py Ly
[fa(z,t)|Vu0|p1 dxdt}p1 fa(a:,zf)|Vu0|p1 pdxdt — )\[fb(a:,t)|u0|p1 dxdt}p1 fb(x,t)|u0|p1 pdrdt =
Q

Q Q Q
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0,2
[ d (w.t)u,duat [ [ (=) uodmdt] [ [ d (w.t)u pdadt . (3.10)
Q Q Q
Let us add that
the left side of (3.10) is > (T)’1 5]<pdt (3.11)
0
where
¥
§= [fao V| dudt TS 0ifa<o,
Q
P P
1 1 P
5= [fao |V, | dzdt]p —)\[fb0|u0|p' dvdt| > 0(fom (3.6)) if 0<A < (A" ).
Q Q
Since u, € V" (D,) = jwdt = 0, from (3.10),(3.11) we get
0
w(t) > const. > 0 if}wdt > O,w(t) < const. <0 if}wdt <0 a.e.in[O,T]. (3.12)
0 0

Then (3.12) contradicts (3.9). ]
Application 3.2 (connected to Theor.2.1 and Theor.2.3 (case (cg))). Let us assume in the definition (1.1) of

W, p=p,=pn=1andV =Ww" (Q),then

T

1/p

0
H-|f[2

p dzdt + f lof dudt + f Vol dudt
Q Q

VveW,

and let us setas any v € W,

b

A(v) =p! I{‘%‘p dzdt + {a(m,t)|Vv|p dxdt

B(v) = p_lfb(z,t)|v|p dzdt, D, (v) = ql_lfd1 (1:,15)|v|ql dzdt,
Q Q

where

1<q <p; abd € (PT (QxR)ﬂ L (Q))\{O}, a(:c,t) >a,and 0 < b(x,t) <b,
a.e. inQ(aO,bO = const. > 0). (3.13)

Problem (PT ) becomes:

Find u € W, \ {0} such that
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2 ~
ouf 8“@dmdt+f“($vt)|vu|%2 Vv dadt =\ [b(a1)|uf " wodrdt + S (wt)l" " wodsdt voeW,.3.12
Q @ ¢

ot

J

0 ot 0t

Each solution u of (3.14) is for definition a weak solution of the problem:

o ||ou] " ou| - b2 we
_E E E — dw[a(m,t)|Vu| Vu]: )\b(m,t)|u| u+d (:v,t)|u| u in Q,
a(m7t)|Vu " a—:j =00on%, u(:mO) = U(LT) and%(m, 0) = %(Z’,T)O’HQ. (3.15)
Let us introduce the conditions
d| = max{d,0} 0 in Q, (3.16)
f d, (,t)dudt < 0. (3.17)
Q

Evidently

(3.16) = V(D) = @ ,(3.17) =V, NS(D,) = @ YA> 0.

Proposition 3.3.Under conditions (3.13) (with p>1 and not necessarily >q,),(i,;) holds if A<0.
Proof. Let A<0. Reasoning by contradiction, as any & € N there exists v, € W, such that

H, (vk) <k "Uk"p :
Then with w, = "vk”_1 v, we have
f 8wk
5 ot

moreover there exists w € W, such that (within a subsequence) w, — wweakly in W, .

)
dudt + [ a(,t)|Vu,| dedt = [b(a,t)|w,|" dudt < p&™;
Q Q

Consequently

p

dw w

e

k

0
ot

Koo koo

dedt = lim f ‘
Q

»
dxdt = O,fa(:c,t)|Vw|y dxdt = lim a(:c,t)|Vwk|p dxdt=10
Q

fb(z,t)|w|p dzdt = Llilzic b(m,t)|wk|p dxdt =0,
Q Q
from which w, — 0 strongly inW, and the contradiction 1= klirgc "wk” = 0. |

Proposition 3.4. Under conditions (3.13), (3.16) and (3.17), there exists ¢, > 0 satisfying the condition

vae[0.6]3c(A)>0 :{

r
8: dudt + a, { Vol dadt — X, { lof dwdt > c(A)o]" Vv eV (D).

Consequently (2'22) holds if A € [0, 61*]

Proof. Reasoning by contradiction, as any k € Nthereexistv, € V" (Dl)and A€ [0, kT } such that
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ov
i

—1
Then with w, = "Uk " v, thereexistsw € W, such that (within a subsequence)

. it f|Wk |" dzdt < A, f o, dadt + 57 o[-
0 Q

w, — wweaklyinW, |

p

ow

I 15

P
drdt = lim f ‘ O
0 t

k—+00 6

pdxdt:(), [1vu| dedt = tim [|Vw,|" ddt= o,
Q Q

k—-+o0

d (z,t)|w]" dedt = 1im [ d (2,¢)|w [* dedt> 0,
) 1 Pl 1 k

from which since (3.17) we get w = 0in@. Then w, — 0 strongly inW, and the contradiction 1= lim ”wk " =0.

k—+o00

Proposition 3.5. Under conditions (3.13) and (3.17), there exists ¢, > 0 such that (i2 4) holds if A\ € ]0, 0, ]

Proof. Reasoning by contradiction, as any k € Nthereerist \, € }0, k' ] and (vk ;,,) C W, such that

heN
D, (vk‘h) =-1,
H)\A (vk,h) <0,
i »
e "ngh, = +o00.

Relation (3.20) implies there exists (hk )keN C N strictly increasing such that

p

= 400

lim

v
koo 1<:,hA

-1
v, from(3.18), (3.19) we get

kb,

Set w, = |jv

k.

-q

v

kb >

fdl (:10,75)|wk|q1 dzdt = —q,
Q

ow,
JTa

Q

y dxdt + fa(z, t)|Vwk|p dxdt < /\kfb(a:, t)|wk|p dxdt.
Q Q

Let w € W, such that (within a subsequence) w, — wweaklyin W,.

From (3.21), (3.22) we get

P
dzdt = 0,

fdl (:E,t)|w|ql dzdt = lim | d, (;c,t)|wk|‘11 dxdt = 0,f a;:.
0 Q

k—+o0

duw
ot

p
drdt = lim f ‘
k—+o00
Q
k—+00

alz,t Vu| drdt = lim [ a z,t)|Vw pd:vdtz(),
[alatlv k

from which since (3.17) w, — 0 strongly in W, and the contradiction 1= lim ”wk " =0. O

k—+00

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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Propositions 3.3-3.5, Theorems 2.1 and 2.3 (case cg) allow the following proposition.
Proposition 3.6. Under assumptions (3.13) we have:

when (3.16) and (3.17) hold, with \ € }—oo,éf] problem (3.15) has at least two weak solutions u, > Oand —u, (u, =7y,
r =const.>0,y, €S NV" (D1) );
when (3.17) holds, with X e ]0, o, ] problem (3.15) has at least two weak solutions u >0 and —u (u=rv ,

r = const.>0,v €V, ﬂS(Dl)).

Consequently, when (3.16) and (3.17) hold, with A € ]0, min{él* ,0, H problem (3.15) has at least four different weak
solutions.

Proposition 3.7.Let (3.13), (3.16) and (3.17) hold. Let X € ]—oo, 51*} If there exists a measurable set [ C [O,T] with
|1

> 0 suchthat d, (z, t) <0 ae.in Qx1TI,then ugis nonstationary.
1

Ou,

Proof. Reasoning by contradiction let ’ =0in Q. With w (t) = {dl (ac, t) (uﬂ)ql dr a.e. in[O,T] we have

w(t) <0 aeinl. (3.23)

Let p€ P, (R) nece (R)withcp > 0and SBIT)]pgo C ]0, T[ . Setting in (3.14) v = u, andv = pu, € W, we have

fa (x, t)|VuO|p pdzdt — /\fb (x, t) (u0 )p pdxdt = ]wgodt
Q Q 0

from which
. T T

T) 6| @dt < dt,

(7)o o< [s
where

6 =a, [|Vu,|" dedt> 0 (since u, € V* (D,))if A <0,
Q
o= a0f|Vu0|p dzdt — /\bof(uo)p dzdt > 0(since Prop.3.4) if A € [0, 51}
Q Q
Then w(t) > (T)71 6 a.e.in[O,T] , and this contradicts (3.23). ]

Proposition 3.8. Let (3.13) and (3.17) hold. Let \ € ]o, 5;} . Let one of the following conditions holds:

There exists a measurable set [ Q[O,T} with |I|1 >0 such that d (m,t) >0 ae. in OxI; (3.
24)

There exist a measurable set [ C [O,T] with |I|1 >0,c, >0 and alimit point ¢ of I such that b(:r,t) >c, ac. in Ox1,

%1_1}1 d, (:E,t) =0 aeinf);

te

(3.25)
There exist ¢, € }O, T[ and e, > 0[resp.there exists ¢, > 0] as in (c*), n>0>1 and 0 € P, (R) Aw'r (]O,TD , with

G(t) >0 vVt e [to —Eprly T 60] \ {to} [resp.w € ]O, 50] U [T — EU,TH and H(to) = O[resp.O(O) = 0] , such that
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b(z, t) > 0(2&) and —77(0 (t))h <d, (I,t) <0 ae inQX|t, — €ty + eﬂ] [resp. a.e. ian([O, 50] U[T —SO,TD]. (3.26)

Then wu is nonstationary.
Proof. Under condition (3.24) [resp. (3.25)], reasoning by contradiction let % =0inQ.

Let p€ P, (R) nce (R)with supp p C ]O,T[. Relation (3.14) with u = u andv = ¢ € W, becomes

o]
odt =— /\j:‘[ { b(,t)(w) dx]wdt

[ (w0) (w) ™ do = = [b(w8) (u) o acein]0.7]

T

Tt w

0\ Q

from which

and then the contradiction

0< fdl (1:, t) (y)qﬁl dr <0 aeinl

T@Sp.f d, (:v,t)(y)wl dr < —)\cof(y)%l dz ae.inl and lgirl d, (:v,t) (2)%71 dz = 0|.
Q

Q tel Q

Under condition (3.26), according to Prop.2.2 it is sufficiently to prove that

If % = 0inQ , then there exists v € W, such that < 9D, ( ) v >=0 and

<0H, (u).u> +q,(< 0D, (v).5>) <0H, (u).ri>=0. (3.27)

Let w_ be as in (c*) . Since st S WT , we have

< 0D, (v),0w, >= [ d,(wt)(x)"" 6w, dsdt <0,

<D, (v),0w, > > = [(v)" 0w, dudt = [ [ J [onwar
Q

Q

Then
<0H, (g),y > +q, (< oD, (g),&ws >)_1 <0H, (y),f&wf >=
pHA( ) Argq, (< 8D o9w >) fb It p '9% dzdt| >
-1
pH, (u)+ Arq, n[ f 0w dt] f []9%5&] f (y)”'1 da . (3.28)
0 Q 0 Q
Let us add

[fﬁh“w dt] f&zw dt = (Oh 1 : )_ where ¢ € [to —2e,t, +2€]

-1
resp. j@"“wgdt] fHngdt > (max {HH (tg’),@hil (tg")})il wheret! € [0, 25] andt" e [T —2¢, T] .

0
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Sinceas ¢ — 0
0" (t)— 0" (4,) = O[reSp.O’H (/)= 0" (0) =0 and 0" (1) — 0" (T) = 0],

from (3.28) we get that it is possible to choose ¢ such that (3.27) holds with ¥ =fw_. O

Application 3.3 (connected to Theor.2.2 (case (c,)) and Theor.2.3 (case (co) with m;=1)). We premise some clarifications. Let

N2]I2§p§N2]j2ifN>2,1<p<ooifN:2. (3.29)
We note
(3.29) = WOl (Q) cr (Q) nr' (Q) with continuous embedding (p’ =p/ (p — 1)) (3.30)

Let X = W?** (Q) nw, (Q) .We note the norm on X

1
f|Az|p dw]p

Q

|, =
X

is equivalent to the natural one on X. It is also equivalent to the norm of W?>” (Q) on X . In fact, there exist ¢, c,,c, > 0 such that

forany z € X
”Z"W'“'(Q) < G ["AZ”L"(Q) + ||Z||L"(Q)] ( [2], Theor.8.2 page 444),
”z"U’(sz) < & "vz"ﬁ(sz) < € ||Az||L”(Q) (from (3-30))-

Therefore X is a closed subspace of W?>” (Q) . It is easy to verify that
e X: f‘Vz*r dz =1 and f\Az*\" dz = inf{ﬂmr d:z € X andf|vz|” dr =11;
Q Q Q Q

then, set \* = f‘Az*‘p dz > 0,we have

Q

f|Az|p de >\ f|vz|” dz Vz € X, (3.31)
Q

Q

[lad daw —x [|vef a > [1A(A*)1]f|Az|” dr VA€o [and ¥z € X. (3.32)
Q

Q Q

Let us assume in the definition (1.1) of W, p, = p, = p,n =2 and V=X, then

1/p

dv VoW,

ot

} drdt + f Ao dadt
Q

-/

and let us set for any v € W,

A(v) =p! ”v"p, B(v) = p’1f|Vv|p dzdt,
Q
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D, (v) = ql’lfd1 (m,t)|Vv|ql dxdt | Dj (v) = —q;lfdj (m,t)|v|q’ dxdt as j=2,...,m,
Q Q

where
1<g <...<q,<p; d, € (PT (QxR) nr> (Q))\{O} asj=1..m,
d]. >0ae inQasj=2,...m. (3.33)

Problem (PT ) becomes:

Find u € W, \ {0} such that

J

Q

T N SR T T R
Q ¢ ¢

ot| ot ot

m

Zfdj (m,t)|u|q’72 uvdrdt Vv e W,. (3.34)
Q

Jj=2

Each solution u of (3.34) is for definition a weak solution of the problem:

0

ot

ou

ot

p—2
ou

ot

+ A[|Au

" Au]: —Adiv [|Vu|pi2 Vu] — div [d1 (:v,t)|Vu|qF2 Vu] — id‘ (:r,t)|u|q'_2 u in Q,

J
Jj=2

p—2
u=0 and |Au| Au=0 onX,

0 0
u(z, O) = U(CE,T) and 8—1:(1:, O) = 8—1:(1:,T) on €. (3.35)
Let us introduce the conditions
There exist a compact set K Q]O, T[ with |K|1 >0 and an open
set " CQsuch that d, (z,t) >0 ae.inQ'zK, (3.36)
T
f d, (z,t)dt <0 ace. in Q. (3.37)
0
We note
(3.36)= V™ (D) =2 ,(337)= %m nQ Yve VvV (D,);
besides

(337) =V, NS(D) =2 ¥A> X\,

since as v = ‘Dl (z*) i 2" we have D, (v) =—land H, (v) < 0.

Taking into account from (3.32)

0
I

-1

P >p!

p dwdt + f |Av|p dadt — ) f |W|p dedt
Q Q

0
I

" deds n [1 — A(A*)l]f|Av|p dudt
Q
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VA€ }o,x[and Yo e W,
we have
(in),in particular (iQQ),holds if A e }—oo,)\*[.
Proposition 3.9. Under conditions (3.36) and (3.37), there exists 6 > Osuch that
(i) holds if A € [X", X +6;].
Proof. Reasoning by contradiction, for any & € N there exist v, € V" (Dl)and A € [)\*, X" + k™' such that

| - f Vo, |" dudt < pk~ u,||"-
Q

-1
Then with w, = "vk " v, andw € W, such that (within a subsequence) w, — wweaklyin W, , from the relations

P

dudt + [|Aw,|" dwdt =3, [V, |" dwdt < p™, [ d (2,2)|Vu,|" dudt >0,
Q Q Q

ow
JTar

Q

passing to limitas k£ — 400 we get

p

f aa—t’ dxdt +f|Aw|p dmdt—)\*f|Vw|p dzdt <0 , (3.38)
Q Q Q

[ d, (w,1)|Vu|" dadt > 0. (3.39)
Q

Since from (3.31) f|Aw|p dxdt > /\*f|Vw|p dzdt, according to (3.38) we get % = 0 in Q. Consequently
Q Q

(3.37) and (3.39) = [Vu| =0 in Q. thatisw = 0 inQ,

k—+00 k—+o0

from which the contradiction 1 = lim "wk"p < lim )\kf|Vwk|p dxdt + pk™' | = 0. o
Q
Proposition 3.10. Under conditions (3.37), there exists ¢, > 0 such that
(224) holds with m =1 if X € })\*,)\* —0—52*].

Proof. Reasoning by contradiction, as in Prop.3.5 there exist ()\k)keN ,with )\ € })\*,)\* + k’l} ,and (’UM ) C W,, such

keN
that
H& (vk,h‘v) <0,D, (”k‘,h‘,) =-1, klirflw Vi, “ = +o00.
-1
Then, set w, = vl v, owe have
awk ! » »

Il o] dodt + [|aw]" dudt < 5, [|Vu,[ dedt, (3.40)
Q Q Q
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v - 0 as k — +4o0. (3.41)

f d, (2,1)|Vw,|" dzdt = —q,
Q

Let w € W, such that (within a subsequence) w, — wweakly in W, . Relations (3.40), (3.41) imply

I ‘g—“:‘p dudt + [|Aw|" dedt =" [|Vu| dedt <0, [d, (w,t)|Vu|" dedt =0,
Q Q Q ©

from which, taking into account (3.37), we deduce that w=0 in Q and the contradiction

1= lim "w " < lim A f|Vwk|p dzdt = 0. O

k—+00 k—+00

How established far allows the following result.
Proposition 3.11 (Theor.2.2(case (cz) ); Theor.(2.3) (case (cg) withm, = 1)). Under assumptions (3.29) and (3.33) we have:

when (3.36) and (3.37) hold, with \ € }—oo,)\* +0; ] problem (3.35) has at least two nonstationary weak solutions u, and
—u, (u, =1v,,7, = const. >0,y €S NV" (Dl) );
when (3.37) holds, with X € ])\*,)\* + 62*} problem (3.35) has at least two weak solutions v and —v (u=ruv ,
= const. > 0,v €V, S(DL)).
Consequently, when (3.36) and (3.37) hold, with A € ])\ A" + min {61* ,0, Hproblem (3.35) has at least four different weak
solutions.
Proposition 3.12. Let )\ € }X‘,X‘ + 52] If there exist a measurable set [ C [O7T]With

> 0 and a limit point ¢ of I
1

such that lim d, (:c,t) >0 andasj=2,....m lim dj (:c,t) =0 ae.in €, then u is nonstationary.
t—t, t—t,

te te

Proof. In fact, if % = 0in @ , we get the contradiction
t

fd xt|Vu dr —

Ve = f|Ag|p dr — )\f|Vg|p dx (< 0) a.e.in[QT]7
Q Q

J=2 g

m

}131 fd xt|Vu dm—Zfd xt d:v > 0. O
Let us suppose d, has the following structure (according to (3.36) and (3.37)):

d,(,t) = d, (2)d, (t).d, € I* () andd,, > 0 ac.in,d, € P, (R)NL* (R),

7712
;™0 m OT fd2dt<0;

there exist ¢, € ]O, T[ ande, >0 asin (c) such that d, € c’ ([to — &ty T+ EOD

and d,, (t) <0 Vte[t, —e,t, +5,]. (3.42)
In addition let us suppose:

Vje {2,...,m}d} (I,) e’ ([tO — €ty T EOD and d] (z,to): 0 a.e.in . (3.43)
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Proposition 3.13. Let (3.42) and (3.43) hold. Let X € })\*,)\* +0, ] If T < ( ) fd dt , then wuis nonstationary.

Proof. 1t is sufficient (Prop.2.2) to prove that

If % = 0inQ , then there exists v € W, such that < 9D, (g)i} >= (0 and

<0, () > 44, (< 00, (0).5>) " <0, (1.0 5|

ij[< oD, (u),u > +q, (< D, (v),v >)71 < 0D, (u),rd > = 0. (3.44)

=2

Let W, be asin (c) . We note that

<8D wv>— < 0.

f d.w dt

T
fdn (:v)|Vy|ql dr = —q, [f d,w_dt
Q 0

fddt

Then

i (< ID, (2)7%2 >) <3H WU >= —

f d,w dt

-1 T
[f w_dt
0

T
[ [ dat
0

I|Ay|p dzr — )\I|Vyp dm]
Q Q

and as j=2,...,m

q, (< (9D1 (E),WC_Q >) < aD JTW U >=

fdwdt] [f ]f (2.t w_(¢) dudt.

Q

Let us note that

r —1
[ 1l dmwgdt]
0

besides, set 7 = =l mm |d | we get
e,

Jos] = . fe))" oo
0

[]dmwsdt] [ (t)]u" w, (¢)dedt| =
0

T o

fwfdt f fdj (a:,t)|y|q' dx
0 0 Q

f |wdt] fdja:t” da:dt<
Q

0

-1

w, (t)dt — n’lfdj (m,to)dm =0ase — 0"

Since

< oM, (u).u> —(d,( ) fd dt{{|Ay|”dm_A£|vg|”dx]:
T (d, (1)) fd dt [f|Ag|p dm—)\jQ‘|Vg|p i

>0,
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—fj<aDj(g),g f (8] dadt > 0,
j=2 =2 Q
with a suitable €,0 = w v fulfills (3.44). ]

Remark 3.2. It is not difficult to set functions d, as in (3.42) such that T' < ( ) f d. dt.

Application 3.4 (connected to Theor.2.2 (case (c3)) and Theor.2.3 (case (c9) with m;=m)). Let us assume in the definition (1.1)
of W, py=p,=2,n=2and V :W2(Q),then

1/2

VveW,,

d:cdtJrZ [ (Do) dudt + f videdt

a‘ZQ

M- (5]

and let us setas any v € W,

4;/7;
—q; f|Vv|7, d:vdt] as j=1..,m—1,
)

D, (v)=(2n)" [ f d, (z,t) v2d:vdt]n ,

Q

where
1< 7 <2, n is a positive odd integer,2 < ¢ <..<gq  <gq =2n;

as i=120band d < (PT (QxR) nre (Q)) \ {0}, b, (x, t) >0 ae. in Q. (3.45)

Problem (PT)becomes:
Find u € W, \ {0} such that

f@uavd dt—&—ZfDuD“vdmdt—Af( :vtu v— b(:vt)u’v)dmdt—
la[=2"¢

n—1

[d, (w.t)wdedt Fvew,.  (3.46)

mzl

J=1

4
f|Vu dmdt]

Each solution u of (3.46) is for definition a weak solution of the problem:

f |vu|H VuVodzdt |+
Q

f d (z,t) u’ dedt
Q

9

R}
: — 9 i -
- Z;; + g::? DDy = )\(b1 (I,t) u" —b, (a:,t) u’) —|—]Z;1 £|Vu| ! dal:dt]7 div[|Vu| i Vu] 4
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n—1

fdm (I,t) u’dxdt d (x,t)u n Q,
Q
Ly
OA m—1 7 v 2|0
ayu = ; J |Vu|7 dxdt |Vu|r ’ 8_Z onx,
i ﬂ =0 as h=1...,.N on,
ov |0z,
u(m, 0) = u(m, T) and %(m, 0) = %(m,T) on . (3.47)
Let us introduce the conditions
d; ~0 in Q, (3.48)
T
f d (v,t)dt <0 ae in Q. (3.49)
0

Evidently
(348) =V (D,) =2 ,(3.49) = % 0inQ YoeV* (D, ), (349) =V, NS(D,) =2 YA>0.

Reasoning as in Prop.3.9 and Prop.3.10, we prove that
under conditions (3.48) and (3.49), there exists 6" > 0 such that (i23) holds if |)\| <65

under condition (3.49), there exists &, such that (i2 4) holds with m, = m if e }0, 0, ]

Then
Proposition 3.14. (Theor.2.2 (case (c3)), Theor.2.3 (case (c9) with m;=m)).Under conditions (3.45) we have:

when (3.48) and (3.49) hold, with |)\| <6, problem (3.47) has at least one nonstationary weak solution u, (u, =77, ,
r =const.>0,y, €S NV’ (Dm));
when (3.49) holds, with )& }0, o, } problem (3.47) has at least one weak solution u ( w= Truv,
r =const.> 0,0V, NS (Dm) ).
Consequently, when (3.48) and (3.49) hold, with A € ]O, min {61* ;0 H problem (3.47) has at least two different weak solutions.
Proposition 3.15. Let \ € }0, o, } . Let be true one of the following conditions:

There exist a measurable set [ C [0, T] with‘ I ‘ > O and a limit point ¢ of I such that
1

limd (17, t) =0 and limb, (17, t) >0 aein Qasi=12; (3.50)
t—t, ) Y
tel tel

There exist a measurable set [ C [0, T] with‘ I ‘ > 0,a limit point ¢ ofTand b, > Osuch that
1

limd (17, t) =0 aein Q andb, (I,t) >b, aein QxI asi=12. (3.51)
t—t, ) Y
tel

Then wu is nonstationary.
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n—1
Proof. If %z 0inQ , then with 5:[ f d ) dudt| >0 wehave
Q
6fd z,t udx——/\f( u —b ) )dw a.e.in[O,T]

from which the contradictions

0= %g}lé d (a:,t)gdm =-A &Lntn (b1 (a:,t)y+ =0, (m,t)y_)dm< 0 when (3.50) holds,
tEI Q tel” Q

0=1mé | d (z t)gdx < —)\bof(g+ —y’)dz< 0 when (3.51)hold5.
Q

t—1,

tel’”  Q

Relations (3.48), (3.49) in particular fulfill when

d (zt)=d,(z)d,(t) withd, eL*(Q)d, P, (R)NL*(R),
d >0 aeinQ,d’,~0in [O,T],j“dmdt <0. (3.52)

Proposition 3.16. Let (3.52) holds. Let A\ € ]O, o, ] . Then u is nonstationary.

Proof. Reasoning by contradiction let % =0in@Q. Since v~ 0inQ, setin (3.46) v =u and v =1, we have
t

[ [d,(2)d,, (t)q_ﬁdxdt]”l S, (2)d,, (t)udadt = - [ (b, (3,t) " — b, (s,t)u” ) dudt < 0.

Q Q Q
Then
-1
[ [d,,(2)d,,(t)wdudt] >0 (3.53)
Q
and moreover
[d,.(x)ude>0 (3.54)

T
since f d ,dt <0. Condition d;Q 0 in [O,T ] implies there exists a compact set K Q]O, T[ with |]K|1 >0 and

0

d,>0in K .Let (4,08)0<5<5 cPh, (R)ﬂ c= (R) with 0 <¢_ <1suppy C ]0 T[ and  p_— xstronglyin [’ (]O,TD

[o.7]

as ¢ — 0"Vs e [1,+oo[, where xis thechacteristic functionof K .

T T
Since lim ['d o dt = [d ,dt >0, wechoose ¢ suchthat ['d o dt > 0.Then taking into account (3.53), (3.54), from
-0t ' ' e e
0 K 0

(3.46) with v = u andv = ¢_ we get the contradiction

0<

fd udr = — f( xt)u —b( ) )<p€d:vdt<0.

d u dxdt d . dt
ol (e
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Application 3.5 (connected to Theor2.2 (case (c) with m;=m-1)). Let us assume in the definition (1.1) of
W, p,=p, =p and V = W, (Q) (n - 1,2,...) , then

M- |5

1/p

VveW,,

and let us setas any v € W,

A(v) =p

vl .
—1; dzdt—!—;{a(t)D v

B(v) = p’lfa(t)b(m)(f)p dzdt |

Q

D, (v) = —q;lfdm (z,t)|v|q'" dzdt,
Q

where

I<g <..<q, <gq, <pach, ( )ﬂCO( ) with a( tG[O,T](aO = const. > 0and < 1),

ﬂ

)>a
b el (Q)\ {o}with b >0 ae. in Q.d, e( (@xR)NL¥(Q )) \{o}withd, >0 ae. in Q
asj=1....m. (3.55)

Problem (PT)becomes:
Find u € W, \ {0} such that

@

p—2
ou

{ Y %%dwdt + ;n{a(t) D " D*uD"vdzdt = A{a(t)b(z) (u*)lH vdxdt +
mi:lfdj (x7t)|u|q72 wo dzdt — fdm (m,t)|u|q"'72 uwvdzdt Vv e W,. (3.56)
=17 Q
Each solution u of (3.56) is for definition a weak solution of the problem:
b2 ‘
-2 % %+ S ol e "] = aft)oe) (u)

S d], (z,t)|u|q’_2 u—d, (:v,t)|u|q"'_2 u in @,
=1

D“uzOonEa50§|oz|§n—l7

u(:mO) = u(LT) and %(I,O) gl: (:E T) on . (3.57)

Evidently (in)holds if A€ ]foo, O] . Let us add that set a = ||a||00 o)’ there exists 6" > 0 satisfying the condition:
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wA €08 3e(A)>0:a, o —)\Efb J(v*) dadt > c(A) o] v ew,. (3.58)

In fact, otherwise, for each k € N there exist v, € W, and \, € }0, k! } such that

a, ”vk "p - )\ka_fb(x) (v:)p dedt < k7' ”vk g
Q

Then with w, = "vk”_1 v, we have
a, < )\ka_fb(x)(w:)p drdt + k™
from which, passing to limit as k& — +o00, we get a, <0.
(3.58) implies (i, ) holds even if \ € ]o, 5*] .
Proposition 3.17. (Theor.2.2 (case (c4) with m;=m-1)).Under conditions (3.55), with \ € }—oo, 6*]

problem (3.57) has at least one weak solution v, (u, =7y, ,n, = const. >0,v, €S, nv* (Dl,...,DnH)).

070

About the nonstationarity of w,let us introduce the conditions:

There exist a measurable set [ C [0, T ] with‘ I ‘ > (0 and a limit point ¢, of I such that
1

limd, (m t) = (0 for almost any x € {2 and as j=1,...,m-1; (3.59)
ey
. . 0 . ~ a - .
There exist an open interval I Q[QT] ,9€C (I) wzthg(t) >0Vteland 4~ "% in 1 V> 00 g €L (Q) with
>0 ae in
9, a.e. 1n ) such that 4 (m,t) . (x)g(t) as almost every ., < () and as each
J J
tel(j=1..m); (3.60)

There exist ¢, € ]O,T[and g, >0 asin (c*)such that for almost any .. < ) d ( ) C’ ([to — €5ty + EUDasj =1..,m
i

xt fa (a(to))il d] (:r,to)

[l ) el fue) 0 1)

Remark 3.3. Tt is easy to find assumptions on d]. and a such that the inequality in (3.61) holds.

m—1

zf

=1 q

|u0|q’ dxdt —

|| dadt = 0. (3.61)

Proposition 3.18. Let \ € ]—oo, (5*} . If one of the conditions (3.59) - (3.61) holds, then w, is nonstationary.

When (3.59) holds, we have the contradiction

where

6=a,5 [|p"u| dz>0ifr<o0,

M*n Q
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f o | dz —Aa—fb(m)(u;)p dz >0 (from (3.58))if A €]0,8"].
a:n Q Q
When (3.60) holds, we have ( ) ( ) Vt € I with
-1
_/\fb )p dzx ifgj (517)|u0|q’ dxffgm (517)|u0|q dz| >0,
J=l g Q
and this contradicts hypothes1s
When (3.61) holds, it is sufficient(Prop.2.1) to prove that
There exists v € W, such that < 0H, (vﬂ),f} >=0 and
Zm:l< oD, (uﬂ),uo > —p(< OH, (vo),ﬁ >)71 < oD, (uﬂ),rﬂﬁ >[=0. (3.62)
j=1

With w_as in (c*) we have

-1

Then

i[< aDj (UO),UO > —p (< OH, (UO),wC_vU >)_1 < aDj (uo),rowfvo >| =

J=1

-1
gfd] ()| dxdt—[]adt][faw dt] [ d (wt)]u,|” w. (t) dudt|

=1|q 0 0

-1
fdm (a;, t)|u0|q"' dxdt—[]adt][}aw dt] fd x, t | | W, dxdt
Q

0 0

Since as j=1,...,m
-1
adt] [j‘ awsdt] fdj (z,t)|u0|q' w_ (t) dzdt =
[}adt]( ) 1 dj | dzr = fa(t)(a (to))_l d, (m,t0)|un|q' dxdt
0

Q Q
with a suitable ¢, v = w_ v, fulfills (3.62). O
Remark 3.4. 1t is easy to prove that Propositions 3.17 and 3.18 also hold when
P
o[’ - |
Alv)=p ' | || +(alt))? D | dxdt YveW
=2 f|5] +0l0 S :

with 1 <y < p and a as in (3.55).

Application 3.6 (connected to Theor.2.2 (case (cg))). Let us assume in the definition (1.1) of W, p = p, = p, n=2 and
V =W*"(0), then
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1/p

P
v
—| V’UGVVT,

- /5

dudt + 3 [ dwdt + [of dwat
[ol=2"0 Q

and let us setas any v € W,

szpwégg
B(v)=p" f a(t)]e] dudt

Q

dxdt + Zfa(t) D%y

lol=2"0

Q

—qmlfdmla:t " dzdt,

D, (v) = q;llfdm (m,t)|v|qm ! vdxdt,

where

I<g <..<q,<pa eb, (R)ﬂC’” (R)with a(t) >a,Vt € [O,T](ao = const. > 0),

d >0and d >0 ae inQ.

Problem (PT)becomes:
Find u € W, \ {0} such that

J

Q@t

oul”

ot ot

fqu (:U,t)|u|q"'7172 wvdzdt + fdm (3v,15)|u|q7”7l vdzdt Vv e W,.
Q ,

Each solution u of (3. 64) is for definition a weak solution of the problem:
p—2
9 @ _|_Z () " ] )\a || u——Zdw{ zt|Vu| Vu]—|—

oo o
d,(w )l w4 d, ()" in @

“u

0’u
|3x ox | Oz,0z,

=— 2d fvtVu Q%OTLE
Z] i
=1

vl
| o*u B B
Z|6‘x oz, On,01, " =0 onXash=L..,N,

(3.63)

au dv —dxdt + Z f ‘D“’urz D uD®v dxdt = )\fa(t)|u|p72 uvdxdt + miffdj (a:7t)|Vu|q"72 VuVodzdt +
Q =1

(3.64)
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u(:mO) = u(LT) and %(I,O) = %(I,T) on . (3.65)
We note that
Vi (Dy,....D, ) =W, \{0} (i, ) holds if X <.
Then

Proposition 3.19. (Theor.2.2 (case (cg))).Under conditions (3.63), with A < 0 problem (3.65) has at least one weak solution
u, (u, =mnv,,n =const.>0,v €S5).

Proposition 3.20. Let A < 0. Let one of the following conditions be fulfilled:
There exist a measurable set [ C [O, T] with‘ 1 ‘ > 0 and a limit point {, of I such that
1

lim dj (z,t) =0 foralmostany x € () and asj=1,...,m;
t—t,
te

There exist an open interval I C [O,T] ,g€C’ (I)withg(t) >0vVteland ¢ "na inl1 Vp>0, g9, € r= (Q) with
g, > 0 a.e. in§2 such that dj (z, t) =g, (:c)g(t) as almostevery x € ) andaseach t el (j = 1,...,m);

There exist ¢, € ]O,T[and g, >0 as m(c*)such that for almost any z € {2 d, (x,) cC’ ([to —e,t + 50]) asj=.1,...m—1

d,(2t)—a(t)(a(t,)) 4 (z.1,) d,,(w.t)=a(t)(a(t,)) d,_ (=)

d, (:r,t) =g, (:r)a(t) as almost each z € €} and for each t € [O,T] where g € L (Q) and g >0 ae.infd

|u0|q'"’l dzdt = 0,

[V, [* dedt + [
Q

Then wu is nonstationary.

Proof. We reason as in Prop. (3.18). i
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