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Abstract: The principles to use variables and mathematical methodologies in physics are addressed. A set of refined 

definitions with designated variables are used to derive the Velocity and Acceleration Theories in Distance Field and Vector 

Space. Mathematical methodologies such as Linear Algebra and Vector Calculus are used systematically in a step by step 

derivation process. The proof of the theories can be easily achieved by substitution of the designated variables with a set of 

parameters that matches the same assumptions and conditions in every step of the derivation process. 
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1. Variable and Parameter 

A designated variable can be used to represent any 

individual number (element) of a specific domain in 

mathematics, or any individual parameter of a specific 

property of a substance in physics, for the purpose of stating 

a function, operation and correlation between the domains in 

mathematics or the properties of a substance in physics. In 

another word, every definition, principle and theory in 

mathematics and physics can be represented and correlated 

by a group of variables as long as each one of them is 

designated exclusively to a specific domain in mathematics 

or a specific property of a substance in physics. 

2. Mathematical Methodology 

The correlations and theories between a group of physical 

properties with parameters containing numerical quantities 

and directions, at a specific state and under certain 

assumptions and conditions, of the same or different 

substances can be derived by designated variables through 

the operation and calculation processes of mathematical 

methodologies such as Linear Algebra (Ref. 1) (Ref. 2) (Ref. 

3) (Ref. 4), Vector Calculus (Ref. 5) (Ref. 6) (Ref. 7), etc. 

 

3. Derivation of Theories 

A standard procedure to derive a theory in physics involves 

the following processes: 

1. VARIABLES – Each designated variable is assigned to a 

property at a specific state of a substance. 

2. IF – Assumptions and conditions are adapted. 

3. FACT–Definitions, principles and theories in 

mathematics and physics are applied. 

4. DERIVATION–Experience, experiments, logics and 

mathematical methodologies are used in the derivation 

processes. 

5. THEORY – Correlations between the properties of the 

same or different substances are obtained. 

Example 1. For a motion in Distance Field, at any initial 

state (xi, ti) & final state (xf, tf) where xi < xf, 

xf – xi = 
f

i

t

t
vdt∫  

[DERIVATION] 

1. VARIABLES 

Assign “t” to time, “x” to distance and “v” to velocity. Also 

assign ti to the initial time, xi to the initial distance and vi to the 

initial velocity; tf to the final time, xf to the final distance and 

vf to the final velocity, etc. 
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2. IF  

The motion in Distance Field is a continuous function F(t) = 

x, where “x” is distance and “t” is time. At any time “t”, there 

is a corresponding distance “x”, together they form a function 

set (x, t). Similarly at its adjacent time t’, where t’ > t & (t’ – t) 

= ∆t → 0, there	is	a corresponding distance x’, also together 

they form a function set (x’, t’). 

3. FACT 

Appling the following definitions: 

dt = t’ – t 

dx = x’ – x 

v = dx/dt 

for any two time ti and tf, where ti < tf, we can find (xi, ti) and (xf, 

tf) and a group of sequential numbers ti, t1, t2, …, tm, tf in the 

time domain between ti & tf, where (t1 - ti ) = ∆ti→0, (t2 - t1) = 

∆t1→0, (t2 - t1) = ∆t2→0, …, (tf - tm ) = ∆tm→0, and also a group 

of corresponding sequential numbers xi, x1, x2, …, xm, xf in the 

distance domain between xi & xf, to form a group of function 

sets (xi, ti), (x1, t1), (x2, t2), …, (xm, tm), (xf, tf), such that: 

dti = t1 – ti,     dt1= t2 – t1, …,    dtm = tf – tm 

dxi = x1 – xi,    dx1= x2 – x1, …,   dxm= xf – xm 

dxi = vidti,    dx1=v1dt1, …,      dxm= vmdtm 

4. DERIVATION 

f

i

x

x
dx∫ = dxi + dx1 +… + dxm = (x1 – xi) + (x2 – x1) +…

+ (xf – xm) = xf – xi 

f

i

t

t
vdt∫ = vidti + v1dt1 + … + vmdtm 

Therefore, 

xf – xi = 
f

i

t

t
vdt∫  

5. THEORY 

The derivation process is completed and the Theory is 

derived: 

For a motion in Distance Field, at any initial state (xi, ti) & 

final state (xf, tf) where xi < xf, 

xf – xi =
f

i

t

t
vdt∫  

4. Proof of Theory and Solution 

To prove a theory or to verify the solution of a problem, 

“Substitution Principle” is used with the following 

procedures: 

1. Apply SUBSTITUTION to the designated variables in the 

derivation or solution process by a set of parameters of the 

properties at a specific state of the substance that meets the IF 

conditions and assumptions. 

2. Adapt the same FACT and DERIVATION process as that 

in deriving the theory or solving the problem in every steps of 

the proving process.  

3. PROOF of the theory and solution can be achieved by 

obtaining the same answer and result at the end of the proving 

process.  

The proof of the Theory and Solution is quite straight 

forward because the DERIVATION process leads to the same 

answers and results for every set of the parameters of the 

properties, at a specific state of the substance, that can satisfy 

the IF assumptions and conditions.  

Example 2. For a motion in Distance Field, If x = 5 t + 2 t
2
, 

what is the acceleration? 

[SOLVE PROBLEM] 

1. Assign VARIABLE: 

“t” is the time from the starting point 

∆t > 0 & ∆t → 0 

t’ = t + ∆t 

t” = t’ + ∆t 

2. Adapt IF: 

x = 5 t + 2t
2 

x’ = 5 t’ + 2(t’) 
2
 

x” = 5 t” + 2 (t”) 
2 

3. Apply FACT in DERIVATION process: 

dt = t’ – t = ∆t 

dx = x’ – x = 5 (t’ – t) + 2 ((t’)
2
 – t

2
)  

= 5∆t + 2 (t
2
 + 2t∆t + ∆t

2
 – t

2
) = 5∆t + 4t ∆t 

v = dx/dt = dx/∆t = 5 + 4t 

dt’ = t” – t’ = ∆t 

dx’ = x” – x’ = 5 (t” – t’) + 2 ((t”)
2
 – (t’)

2
)  

= 5∆t + 2 (t’
2
 + 2t’∆t + ∆t

2
 – t’

2
)= 5∆t + 4t’ ∆t 

v’ = dx’/dt’ = dx’/∆t = 5 + 4t’ 

dv = v’ – v = 4 (t’ – t) = 4 dt 

a = dv/dt = 4 

4. Obtain SOLUTION:  

The acceleration a = 4. 

[PROVE RESULT] 

1. Apply SUBSTITUTION: 

Taking any time in the time domain, for example t = 3 sec 

from the starting point. With a finite ∆t = 0.01 sec, all of the 

variables at time “t” can thus be substituted as follows: 

t = 3 

∆t = 0.01 

∆t > 0	&	∆t → 0 
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t’ = 3 + 0.01 

t” = t’ + 0.01= (3 + 0.01) + 0.01 

2. Adapt IF: 

x = 5 (3) + 2 (3)
2
 

x’ = 5 (3 + 0.01) + 2(3 + 0.01) 
2
 

x” = 5 ((3 + 0.01) +0.01) + 2 [(3 + 0.01) +0.01] 
2
 

3. Apply FACT in DERIVATION process: 

dt = t’ – t = (3 + 0.01) – 3 = 0.01 

dx = x’ – x = 5 [(3 + 0.01) – 3] + 2 [(3 + 0.01)
2
 – 3

2
] 

= 5(0.01) + 2 [(3)
2
 + 2(3) (0.01) + (0.01)

2
 – 3

2
] 

= 5(0.01) + 4(3) (0.01) 

v = dx/dt = [5(0.01) + 4(3) (0.01)]/ 0.01 = 5 + 4(3) 

dt’ = t” – t’ = [(3 + 0.01) + 0.01] - (3 + 0.01) = 0.01 

dx’ = x” – x’ = 5 {[(3 + 0.01) + 0.01] – (3 + 0.01)} + 2 

{[(3 + 0.01) + 0.01] 
2
 – (3 + 0.01)

2
} 

= 5 (0.01) + 2 [(3 + 0.01)
2
 + 2(3 + 0.01) (0.01) 

+(0.01)
2
– (3 + 0.01)

2
] 

= 5(0.01) + 4(3 + 0.01) (0.01) 

v’ = dx’/dt’ = [5(0.01) + 4(3 + 0.01) (0.01)]/ 0.01 

= 5 + 4(3 + 0.01) 

dv = v’ – v = 4[(3 + 0.01) – 3] = 4(0.01) 

a = dv/dt = 4(0.01)/0.01 = 4 

4. Proof of SOLUTION: 

Because every step in the proving process is true and also 

follows exactly the same steps as that in the derivation process, 

therefore the same results as that of the derivation process can 

be readily achieved. 

All variables can also be replaced by numerical numbers 

through substitutions and calculations (Table 1). However, it 

makes no difference to the final results. 

Table 1. Substitution of variables with numerical numbers. 

t x t' x' dt=t'-t dx=x'-x v=dx/dt t" x" dt'=t"-t' dx'=x"-x' v'=dx'/dt' dv=v'-v a=dv/dt 

t1 x1 t1' x1' dt1=t1'-t1 dx1=x1'-x1 v1=dx1/dt1 t1" x1" dt1'=t1''-t1' dx1'=x1"-x1' v1'=dx1'/dt1' dv1=v1'-v1 a1=dv1/dt1 

3.000 33.000 3.010 33.170 0.010 0.170 17.020 3.020 33.341 0.010 0.171 17.060 0.040 4.000 

 

5. Motion in Distance Field 

The motion of an object in Distance Field (Fig. 1) can be 

expressed by a function x = F(t). At any time “t”, there is a pair 

of real numbers (x, t) where “t” is the time from the origin, and 

“x” is the distance along the motion from the origin. Since the 

starting distance at origin “x0” is 0 and the starting time at 

origin “t0” is 0, therefore (x0, t0) at origin can be designated as 

(0, 0). 

5.1. Definitions 

For a motion in Distance Field x = F(t), at any time “t”, 

there are a corresponding distance “x”, and two randomly 

chosen subsequent times t’ & t”, where t < t’ < t” and t’ = t + ∆t 

(∆t→0) and t” = t’ + ∆t’ (∆t’→0), and their corresponding 

distances x’ & x”. In another word, at any time “t”, we can find 

a position function set (x, t) and two adjacent position function 

sets (x’, t’) and (x”, t”), where t < t’ < t” and t’ = t + ∆t (∆t→0) 

& t” = t’ + ∆t’ (∆t’→0). 

To be more specifically, there is a motion in Distance Field, 

where x = F(t), such that: 

“t” is any time in the time domain of x = F(t) 

∆t > 0 and ∆t →0 & ∆t’ > 0 and ∆t’ →0 

t → x: find x from t and F(x, t) 

t → t’: find t’ from t and ∆t by t’ = t + ∆t 

t’→ x’: find x’ from t’ and F(x, t) 

t’→ t”: find t” from t’ and ∆t’ by t” = t’ + ∆t’ 

t” → x”: find x” from t” and F(x, t) 

Giving the above variables t, x, t’, x’, t”, and x”, we can 

apply the following definitions: 

Differential of Time: 

dt = t’ – t  dt’ = t” – t’ 

Differential of Distance: 

dx = x’ – x  dx’ = x” – x’ 

Velocity: 

v = dx/dt   v’ = dx’/dt’ 

dx = vdt  dx’ = v’dt 

Differential of Velocity: 

dv = v’ – v 

Acceleration: 

a = dv/dt 

dv = adt 
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Fig. 1. Motion in Distance Field. 

5.2. Velocity 

5.2.1. Theory 1 

For a motion in the Distance Field, at any two time ti and tf 

(ti < tf) in the time domain, there are two corresponding 

distances xi and xf such that: 

xf – xi =
f

i

x

x
dx∫ =

f

i

t

t
vdt∫            (1) 

Also, for a motion in the Distance Field with origin (0, 0), at 

any time t in the time domain, there is a corresponding 

distance x such that: 

x = 
0

t

vdt∫                (2) 

[PROOF] 

For a motion in the Distance Field x = F(t), at any time “t”, 

there are (x, t) and (x’, t’), where t’ > t & (t’ – t) = ∆t → 0. 

Also by applying the following definitions: 

dt = t’ – t 

dx = x’ – x 

dx = vdt 

for a motion in Distance Field, at any two times ti and tf that ti < 

tf, we can find (xi, ti) and (xf, tf) and a group of continuous 

sequential numbers ti, t1, t2, …, tm, tf in the time domain 

between ti & tf, where (t1 – ti ) = ∆ti→0, (t2 – t1) = ∆t1→0, (t2 – t1) 

= ∆t2→0, …, (tf –tm ) = ∆tm→0, and also a group of 

corresponding continuous sequential numbers xi, x1, x2, …, xm, 

xf in the distance domain between xi & xf, to form position 

function sets (xi, ti), (x1, t1), (x2, t2), …, (xm, tm), (xf, tf), such 

that: 

dti = t1– ti,    dt1= t2 – t1, …,   dtm = tf – tm 

dxi = x1 – xi,   dx1= x2 – x1, …,   dxm= xf – xm 

dxi = vidti,   dx1= v1dt1, …,   dxm= vmdtm 

f

i

x

x
dx∫ = dxi + dx1 +… + dxm = (x1 – xi) + (x2 – x1) +…

 + (xf – xm) = xf – xi 

f

i

t

t
vdt∫ = vidti + v1dt1 + … + vmdtm 

Therefore, 

For any (xi, ti) & (xf, tf) 

xf – xi =
f

i

x

x
dx∫ =

f

i

t

t
vdt∫  

For any (x, t) with origin (0, 0), where xi = 0 & ti = 0 and xf = 

x & tf = t 

x = 
0

t

vdt∫  

5.2.2. Theory 2 

For a motion in Distance Field, at any two time ti and tf, (ti < 

tf) in the time domain, there are two corresponding distances xi 

and xf such that: 

For a constant velocity v, 

xf – xi = v(tf – ti)               (3) 

Also, for a motion in Distance Field with origin (0, 0), for 

any time t in the time domain, there is a corresponding 

distance x such that: 

For a constant velocity v, 

x = vt                   (4) 

[PROOF] 

Because v is a constant, v = vi = v1 = v2 =… = vm 

f

i

t

t
vdt∫ = vidti + v1dt1 + … + vmdtm = vdti + vdt1 + vdt2 +… 

+vdm = v (dti + dt1 + dt2 + …+ dtm) = v (tf – ti) 

f

i

x

x
dx∫ = dxi + dx1 +… +dxm = xf - xi 

f

i

x

x
dx∫ = 

f

i

t

t
vdt∫  

Therefore, for any (xi, ti) & (xf, tf), and constant v, 

xf – xi = v(tf – ti) 

For any time t with origin (0, 0), and constant v, where xi = 0 

& ti = 0 and xf = x & tf = t 

x= vt 
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5.3. Acceleration 

5.3.1. Theory 1 

For a motion in Distance Field, at any two times ti and tf, (ti 

< tf) in the time domain, there are two corresponding velocities 

vi and vf such that: 

f

i

t

t
adt∫ = vf – vi           (5) 

Also, for a motion in Distance Field with origin (0, 0), at 

any time t in the time domain, there is a corresponding 

velocity v such that: 

0

t

adt∫ = v – v0            (6) 

[PROOF] 

For a motion in Distance Field, at any time t, there are (x, t), 

(x’, t’) and (x”, t”) where t’ > t & (t’ – t) = ∆t → 0	and	t" >
t′	&	(�"	– 	�′) = ∆�	′ → 0. 

Also by applying the following definitions: 

dt = t’ – t, dt’ = t” – t’ 

dx = x’ – x , dx’ = x” – x’ 

v = dx/dt , v’ = dx’/dt’ 

dv = v’ – v 

dv = adt 

for a motion in Distance Field, at any two times ti and tf, that ti 

< tf, we can find (xi, ti) and (xf, tf) and a group of continuous 

sequential numbers ti, t1, t2, …, tm, tf in the time domain 

between ti & tf, where (t1 – ti ) = ∆ti→0, (t2 – t1) = ∆t1→0, (t2 – t1) 

= ∆t2→0, …, (tf– tm ) = ∆tm→0, and also a group of 

corresponding continuous sequential numbers xi, x1, x2, …,xm, 

xf in the distance domain between xi & xf, to form position 

function sets (xi, ti), (x1, t1), (x2, t2), …, (xm, tm), (xf, tf), such 

that: 

dti = t1 – ti, dt1= t2 – t1, …, dtm = tf – tm 

dxi = x1 – xi, dx1= x2 – x1, …, dxm= xf – xm 

vi = dxi/dti, v1= dx1/dt1, …, vm = dxm/dtm 

dvi = v1 – vi, dv1 = v2 – v1, …, dvm = vf – vm 

ai = dvi/dti, a1 = dv1/dt1, …, am = dvm/dtm 

dvi = aidti, dv1 = a1dt1, …, dvm = amdtm 

f

i

v

v
dv∫ = dvi + dv1 +… + dvm = (v1 – vi) + (v2 – v1) +… 

+ (vf – vm) = vf – vi 

f

i

t

t
adt∫ = aidti + a1dt1 + … + amdtm 

Therefore, 

For any (vi, ti) & (vf, tf) 

f

i

t

t
adt∫  = vf – vi 

For any time t with origin (0, 0), where xi = 0, ti = 0, vi = v0 

and xf = x, tf = t, vf = v 

0

t

adt∫ = v – v0 

5.3.2. Theory 2 

For a motion in Distance Field, at any two times ti and tf (ti < 

tf) in the time domain, there are two corresponding velocities 

vi and vf such that: 

For a constant acceleration a, 

vf – vi = a(tf – ti)                (7) 

Also, for a motion in the Distance Field with origin (0, 0), at 

any time t in the time domain, there is a corresponding 

velocity v such that: 

For a constant acceleration a, 

v = v0 + at                  (8) 

[PROOF] 

Because, 

vf – vi = 

f

i

t

t
adt∫  

a = ai = a1 = a2 = … = am 

vf – vi = 

f

i

t

t
adt∫ = aidti + a1dt1 + … + amdtm  

= adti + adt1 + … + adtm = a (tf – ti) 

Therefore, for any (vi, ti) & (vf, tf), and a constant 

acceleration a, 

vf – vi = a(tf – ti) 

Also, for any time t with origin (0, 0), and a constant 

acceleration a, where xi = 0, ti = 0, vi = v0 and xf = x, tf = t, vf = 

v, then 

v = v0 + at 

5.3.3. Theory 3 

For a motion in Distance Field with origin (0, 0), at any time 

t in the time domain, there is a corresponding distance x such 

that: 

For a constant acceleration a, 

x = v0t + ½ at
2
               (9) 

[PROOF] 

Because for a motion in Distance Field with origin (0, 0), at 

any time t in the time domain, for a constant acceleration a, 
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v = v0 + at 

x =
0

t

vdt∫  

x =
0

t

vdt∫ = 0
0
( )

t

v at dt+∫ = 0
0

t

v dt∫ +
0

t

atdt∫ = v0t +
0

t

atdt∫  

[Theory] 

d(x
n
) = nx

n-1
dx 

d(x
n
) = (x’)

n
 – x

n
 = (x + dx)

n
 – x

n  

= (x
n
 + nx

n-1
dx + ?dx

2
 + …) – x

n
 = nx

n-1
dx 

Therefore, 

0

t

atdt∫ =
0

1
(2 )

2

t

a tdt∫ = 2

0

1

2

t

a dt∫ = 21

2
at  

x = v0t + ½ at
2 

5.3.4. Theory 4 

For a motion in Distance Field with origin (0, 0), at any time 

t in the time domain, there is corresponding distance x and 

velocity v such that: 

For a constant acceleration a, 

v
2
 = v0

2 
+ 2 ax             (10) 

[PROOF] 

Because, 

v = v0 + at 

t = (v – v0)/a 

x = v0t + ½ at
2
 

x = v0[(v – v0)/a] + ½ a (v – v0)
2
/a

2
= vv0/a – v0

2
/a + ½ (v

2 
– 2v 

v0+ v0
2
)/a = ½ (v

2
 – v0

2
)/a 

Therefore, 

v
2
 = v0

2
 + 2ax 

5.3.5. Theory 5 

For a motion in Distance Field with origin (0, 0), at any time 

t in the time domain, there is a corresponding distance x and 

velocity v such that: 

For a constant acceleration a, 

x = ½ (v + v0) t               (11) 

[PROOF] 

Because, 

v = v0 + at 

x = v0t + ½ at
2 

x = ½ v0t + (½ v0t + ½ at
2
) = ½ v0t + ½ vt 

Therefore, 

x = ½ (v + v0) t 

6. Motion in Vector Space 

The motion of an object in Vector Space (Fig. 2) (Ref. 8) 

(Ref. 9) (Ref. 10) can be expressed by a continuous function X 

= F(t). At any time “t”, there is a pair of position vector and 

real number (X, t) where “t” is the time from the origin and “X” 

is the position vector from the origin. Since the starting 

position vector at origin “X0” is “0” and the starting time at 

origin “t0” is 0, therefore (X0, t0) at origin can be designated as 

(0, 0). 

6.1. Definitions 

For a motion in Vector Space, at any time “t” , there are a 

corresponding position vector “X”, and two randomly chosen 

subsequent times t’ & t” where t < t’ < t” and t’ = t + ∆t (∆t→0) 

and t” = t’ + ∆t’ (∆t’→0), and their corresponding position 

vectors X’ & X”. In another word, at any time “t”, we can find 

a position function set (X, t) and two adjacent position 

function sets (X’, t’) and (X”, t”), where t < t’ < t” and ∆t & ∆t’ 

→0. 

To be more specifically, there is a motion in Vector Space, 

where X = F(t), such that: 

“t” is any time in the time domain of X = F(t) 

∆t > 0 and ∆t →0 & ∆t’ > 0 and ∆t’ →0 

t → X: find X from t and F(X, t) 

t → t’: find t’ from t and ∆t by t’ = t + ∆t 

t’→ X’: find X’ from t’ and F(X, t) 

t’→ t”: find t” from t’ and ∆t’ by t” = t’ + ∆t’ 

t” → X”: find X” from t” and F(X, t) 

With the above variables t, X, t’, X’, t”, and X”, we can 

apply the following definitions: 

Differential of Time: 

dt = t’ – t  dt’ = t” – t’ 

Differential of Position Vector: 

dX = X’ – X  dX’ = X” – X’ 

Velocity Vector: 

V = dX/dt  V’ = dX’/dt’ 

dX = Vdt  dX’ = V’dt’ 

Differential of Velocity Vector: 

dV = V’ – V 

Acceleration Vector: 

A = dV/dt 

dV = Adt 
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Fig. 2. Motion in Vector Space. 

Replace the real umber variables x, dx, v, dv, a in the motion 

of Distance Field by corresponding vector variables X, dX, V, 

dV, A in the motion of Vector Space as follows: 

x → X 

dx → dX 

v → V 

dv → dV 

a → A 

Then, all the derivation processes and theories in the motion 

of Vector Space will be exactly identical as that in the motion 

of Distance Field. 

6.2. Velocity 

6.2.1. Theory 1 

For a motion in Vector Space, at any two time ti and tf (ti < tf), 

there are two corresponding position vectors Xi and Xf such 

that: 

Xf – Xi =
f

i

t

t∫ Vdt             (12) 

Also, for a motion in Vector Space with origin (0, 0), at any 

time t there is a corresponding position vector X such that: 

X =
0

t

∫ Vdt                (13) 

6.2.2. Theory 2 

For a motion in Vector Space, for any two time ti and tf (ti < 

tf) in the time domain, there are two corresponding position 

vectors Xi and Xf such that: 

For a constant velocity vector V, 

Xf – Xi = V (tf – ti)            (14) 

Also, for a motion in Vector Space with origin (0, 0), at any 

time t in the time domain there is a corresponding position 

vector X such that: 

For a constant velocity vector V, 

X = V t                 (15) 

6.3. Acceleration 

6.3.1. Theory 1 

For a motion in Vector Space, at any two time ti and tf (ti < tf) 

in the time domain, there are two corresponding velocity 

vectors Vi and Vf such that: 

f

i

t

t∫ Adt = Vf – Vi                  (16) 

For a motion in Vector Space with origin (0, 0), at any time t 

in the time domain, there is a corresponding velocity vector V 

such that: 

0

t

∫ Adt = V – V0                (17) 

6.3.2. Theory 2 

For a motion in Vector Space, at any two time ti and tf (ti < tf) 

in the time domain, there are two corresponding velocity 

vectors Vi and Vf such that: 

For a constant acceleration vector A, 

Vf – Vi = A (tf – ti)               (18) 

For a motion in Vector Space with origin (0, 0), at any time t 

in the time domain, there is a corresponding velocity vector V 

such that: 

For a constant acceleration vector A, 

V = V0 + A t                  (19) 

6.3.3. Theory 3 

For a motion in Vector Space with origin (0, 0), at any time t 

in the time domain, there is a corresponding position vector X 

such that: 

For a constant acceleration vector A, 

X = V0 t + ½ A t
2
                (20) 

6.3.4. Theory 4 

For a motion in Vector Space with origin (0, 0), at any time t 

in the time domain, there is a position vector X and velocity 

vector V such that: 

For a constant acceleration vector A, 

V
2
 = V0

2
+ 2 AX                 (21) 

6.3.5. Theory 5 

For a motion in Vector Space with origin (0, 0), at any time t 

in the time domain, there is a position vector X and velocity 

vector V such that: 

For a constant acceleration vector A, 

X = ½ (V + V0) t               (22) 
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