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Abstract: In the paper, we discuss the maximum principle for the forward backward stochastic system. Assume the system
follows a coupled forward backward stochastic differential equation modulated by a Marlcov chain and the control domain is
convex. By convex variable method, we give the necessary and sufficient conditions for the existence of optimal control.
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1. Introduction

By the convex variation method, we give both the
necessary and sufficient condition for the optimal control.

In this chapter, we study the maximum principle system
forward backward conversion system. The control system is
described by forward backward stochastic differential
equations with continuous time Markov chain with finite
state.

This chapter is structured as follows: in Section 1, we give
the preliminary knowledge and problems; in section second,
we obtain the necessary and sufficient conditions.

2. The Introduction of Optimal Control
Problem

(Q’ F, P)be a probability space, T>0 is a fixed time.
{B,,OStS T} is a D dimension Brown, {@,OStS T} isa
finite state Markov chain, The state space is 0 ={1,2,...,k}
the transfer density function is =(i.j) for i# j, where
=(i.j) is bounded

O(i)=-2 0(iJ)  F=(£)

i}

generated by {B,,@;0<s<T} and all P zero sets. {' is

nonnegative function.

is flow field F

0.7]

the counting measure of & . Where {' ( J ) is the number of
times that Markova chain jump to state j. within 0 to t.
' ( J ) is a saddle measure. At this point, the markov chain
can be expressed as

dw =Y Z(w..g)(g-w.)dt+Y (j-w.)dl(g)

g g
1
2
2
:|\J < +o0;
1
2 2
dS:D < +o0;

2
G, (g)|2 Ly g™ (a%_,g)dsD < +00,

We defined the following space:

W,

ol =[]

so,7]

o =(£[;

jl, =[5

Consider the following forward and backward stochastic
system conversion system:

o

s

lo
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dX, =b(t,w, X,

t
-dY, =W (1@, X,.W,,0, G()nt 1),

X, =x,

Where lﬂ(t,i,X,y,Z,q,u) are generators of BSDEs with a

Markov chain.
In this chapter, for the convenience of marking, we only

-dW, =¥ (t,w,X,.W,,0,,Gn,u

"2t

are measurable functions with certainty. D is a nonempty
convex subset of R. b, satisfy Lipschitz Condition as to x.

|g(t,i,x,y,z,q,u)—g(t,i,x,y',z',q',u)| < C(|y—y'| +|z—z'| +|q —q'|).

(G, (2)-G/(2))n ()= ClG, -G.. 23)

E| |u| dt < +oo
0

x(u,):E{jOT (tw.X,., W0, Gn,,u,)dt+h(XT)+r(Wo)},

3. Maximum Principle

In this part, we will get the maximum principle of
stochastic variational method for optimal control problems in
Section 1 of the value by classical convex optimal control.
We will give the necessary and sufficient condition for the
existence.

3.1. Necessary Condition

Let u([)]be an optimal control of the optimal control
system (1.1),whose corresponding trajectory is denoted as

(X (@ (3.0(0.6(D) .

process (not necessarily valued in U) ,which satisfies

Let V(Q] be another adaptation

127t

)dt - 0,dB,

)dt+@(t,w, X, u,)dB,

G, (w)n, (w).u

=o(x,

)t =0,dB, = 3G, (g)d{, (g) @1

consider the situation that the X and Y are one dimension and
change the backward equation into:

_%Gt (g)df, (g)’

G, =(G,(1)n, (1), .G, (w)n, (w)b:[0.T]x0 xRXD ~ R,@:[0,7]x0 xRxD —~ R™and®:R — R)

b (t,i,x,y,z,q,u) satisfy the following Lipschitz Condition:
0 00O

2.2)

In this paper, we make the following assumptions:

(2.4)

u([)]+v(Q]DD Since the control domain D is convex,

00<7<Lu’ (J:=u(J+rv(JOD. For the convenience of
marking,

&=&(tw, X, u,)
§{=bw,b_ b, @, wm,
®=0(t,w,X,.W,0,,Gn,u,)

D=9 4 L|J W, LP()LP 2,202y 225 2,00 2

where LIJw(g) = LI—’G(g)n(g),zw(g) =z

G(g)n(e)

Introduction of variational equations as follows:

dd =(bJ +byv )dt+(w 5, +@,v,)dB,

—dA, = {‘P,ﬂt T AP G+Y W 6 ()n (g)+W,y, |di-¢dB - 6 (g)dd, (g).
g {un|

9, =0,A, =

Obviously, the above linear FBSDE has a unique solution
(8,2,0,1)08*xS*x@* xJ?

Note (XT([)],YT(E)],OT([)],GT(E)]) is the rail line

3.1)

o (X,)F.

corresponding to u” (). 00<¢<T,
Note
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X' -X D A 4 AR/ -, G -G

er: 1_19’Yr:t t_A’Zr: '—J,Gr: t -
t T t t T t t T t t T t
We have a convergence results are as follows: Proof.
Lemma 1. We show that the other three equations. Firstly, we have

hmsupE|X| —>011msupE|W| - 0,

T =% 0g<T T~ 0<<T
lim ,lim )
[ sl ) )
_dW;T: Z[+T(0j+ )(W+ (C +G/ ))n,,u[+Tv[ di - ZdB ZGT( )dZ,(g),

w(e )Cf (g)”r (g)_wuvt

Noted

Afzjolwx(, WX, +=1(8+ X)W +Zr(A, +77),2,+Z1(4 +Z,T),(G,+Er(g+é{))nt,u,+zrv,)d£=j01wx(Az)dz

;
Similarly
j W (A=)d=,Cl = jw (a=)d=, D! (g j W o (8)dz,
Gl =(4 -w )8, +(B - )A +(Cr-w.)g +%( "(g)-w ))Q( ), ( )+j01[wu(Az)—wu]v,dE
This (2.2) could also be written as follows.
-dW = {At’f(f +BW +C/Z +> D] (g)Gl (g)n (g)+ Gf}dt -Z7dB, - G/ (g)d{ (g),
g g™

ir=r[o(x])-o(x,)]-, (xX,)3,

Attention to the measurable variation for ¢ (g) And ‘(Gt ( g) -G, ( g)) n\g ( )‘ <c , we apply

d<i(g),(~(g)>’ =n (g)dt — 1{@7¢g}5(@_’g)d1 (3.3) division integral formula to ad
And we can get the following from (2.3) and (1.3)

+EJ‘tT Z~f ’ g)|2 n, (g)ds

|

= 2Ejf<vﬁzA;fr; +BIY +CIZI+ Y. D! (2) G (g, (g)+G:>ds+E[r* (®(x7)-o(x,)) -, (x,)9; |
g
z

<cef | G (g) n.(e)ds+2,

2ds+lE.[T
2 t

2 1
ds +—
20

where

T~T2

X, =ELT(

We know that lim, X, =0, By Gronwall inequality, we Because. u(.) isan optimal control, we have
can prove the three convergence results.

+ GS’

2)dS+EU01¢*(XT +Z1(X] +z9r))()2; +5,) E—CDx(XT)ﬂT}.
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r! [7& ( u’ ()) —% ( " ())J <0 (3.4) The following variational inequality was established

we prove the following variational inequalities,
Lemma .2. We suppose that theorem (41— 43) are tenable

2858 420+ Zag6 n(e) s [+ £5,(3,)9, 85 (1)8, 20 65)
g

Proof.
The convergence results of lemma 1

' E(y(X7)-y(x,)) = E[ . [ +20(X)+8,)|(XF +8,)a= - Ev.(x,)8,
Similarly, we have

T*IE(r(WOT)—r(WO)) - Er,(WO)AO,
T*IEJ’OT[z(t,a),,XI’,VVIT,O,T,G,Tn[,uI’)—Z(t,ag,X,,W,,O,,G,nt,u, )Jdt 5 EJAOT[ZJ% +z,A, +2.0, +me:Zw(g)Q (g)n (g)+z,v, |dt

Thus (3.5) can be obtained by (3.4)
we introduce the dual equations as follows,
_dPt = (bet - prUt +£ﬂx]t +Zx)dt _ItdBt - zet (g)dZt (g)
g
dU, =(W,U, =z, )di +(W.U, = 2.)dB,+ 3 (W, ) (=) k- =2, (1-)) 44, (2) (3.6)
g
PT :_CDX (XT)UT TV, (XT)’UO =7, (VVO)
The define of éllw(g) (f ‘),Za,(g) (f—) is
J(tix,y, 2w, q,w,k) = (.6 (t,0,x,u)) +(wa (tixu)) = (kW (6 x, v, z,wn,u)) + 2 (60,3, p,2,wn,u)  (3.7)
-dP, =J dt-1dB, - 0,(g)d{,(g) correspondingly. (P(0L7(JLU () is the only solution of
fe{uni

- . D .
dU, =7 di~J.dB, - Z I (t _) aZ g) (3.8) the dual equations(3.6).thus for any vU O, the following can
g

be obtain,
B =9, (XT)UT +yX(XT)’U° = (W") Ju’(V—u,)SO,a.e.,a.s.. 3.9)
Now we can prove stochastic maximum principle Proof.
Theorem 1 (maximum principle). Set u (°) as an optimal We apply division integral formula to &, +A,U,

control, (X(E)],Y(E)J,O(E)],G(E)]) Is the rail line
E(8.B + AU, ~AU,) = E[ 8.7, (X, )+ Ay, ()]

dt

= E.[OT|:_[le9t taA tz.0+ Z Zule)S (g)nt (g) +Fby, +1.@,v, _Utw"v’]
g

According the Lemma .2.

T
E[ J,Ddi<0

{ osOt,t +¢]
v, =

v, —us0 [t,t + é‘]

We suppose that v, is the following form, Where v'(-) 00, Thus we can obtain that
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o ) e J. [év —u ) ds <0 Theorem 2. We suppose that theorem (A1~ 43) are tenable,
h, r, H are concave to (X,y,Z,u,W) and W, :‘D(XT)Can

We suppose that & — 0, Thus we can obtain that be written as W, =1(cw, )X, , where I is the measurable

E[Ju [év[r —u, ﬂ <0.qe. function with certainty. (P(E)LI(E)J,U([)LO([)]) is the solution

of the Dual equations as to the control u ([)] , which will be an

For vOQ and AOF, , We suppose that optimal controlif and on if theorem (3.9) is satisfied.
v, =vl, +u,1,, Thus we can obtain that Proof ] _ )
We suppose that V(D] is arbitrary feasible control, and
E[Ju Qv -, )1A] <0,ae. noted (Xt DAN/ANON ) is rail line correspondingly. In order

to mark the simple, we note:
Thus

E{Ju E@v—u,)|F,}:Ju Ov-u,)<0,ae,as. A _A(’ X ’) whend =b,@

t "t

g’ ::H( X W,0,G'n v) when8 =z, ¥

3.2. Sufficient Conditions g —J(t W, X' W0 G v, P U)

t 27t
In this section, under certain conditions, we obtain
sufficient conditions for the existence of the optimal control. Thus

R(v(0) -1 (u()) = £, (2 - =)+ E(y(x;) - y(x,))+ E(r(w)-r (7,))-
We could know from the concavity of the Y, ,J
E(y(x7)-v(X,)) 2 E(B +1 (@)U, ) (X7 - x, ).
E(r(w)=r(m)) = £ (v, (% -m))
E[ /(2 =z)at=E[ [(7 =) -B(b"=b) -1, (@ -@)+U, (¥ - W) ]ar
EEJ‘OT{JX(Xf—Xf)+Jy(Wf”—Wt) (0r-0,)+ ZJM (G =G,) 4, (v, ~u) =B (b =b) -1, (@ ~@)+U, (W' - W) |at
We apply the division integral formula to £, EQX," -X, ) and U, EQY," -¥, )

(030, = £ [R5 1), (30 -3, (o7 -

U, (W -w)=(w -w,)(¥,U,-z,)-(0/-0,)(w.U,-z,)

t

y _ v _ _ T
EUO (VI/O _VK))_EUT (q)(XT) q)(XT)) E 0 —Z(G; (g)_G[ (g))(tpw(g)e’ —Zw(g))n[ (g) dt
{uni
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