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Abstract: The effects of chemical reaction and thermal radiation on unsteady free convection flow of a micropolar fluid past a 

semi-infinite vertical plate embedded in a porous medium in the presence of heat absorption with Newtonian heating have been 

investigated. Both physically important boundary conditions of uniform wall concentration (UWC) and uniform mass flux (UMF) 

are considered. Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. Numerical 

results of velocity profiles of micropolar fluids are compared with the corresponding flow problems for a Newtonian fluid in 

UWC and UMF cases. Graphical results for velocity, temperature and concentration profiles of both phases based on the 

analytical solutions are presented and discussed. Finally the effects of the pertinent parameters on the skin friction, couple stress 

and the rate of heat transfer coefficient at the plate are discussed. 
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1. Introduction 

The theory of micropolar fluids developed by Eringen [1] 

describes some physical systems which do not satisfy the 

Navier-Stokes equations. This general theory of micropolar 

fluids deviates from that of Newtonian fluids by adding two 

new variables to the velocity. These variables are 

microrotations that are spin and microinertia tensors 

describing the distributions of atoms and molecules inside the 

microscopic fluid particles. This theory may be applied to the 

explanation for the phenomenon of the flow of colloidal fluids, 

liquid crystals, polymeric suspensions, animal blood, etc. An 

excellent review of micropolar fluids and their applications 

was given by Ariman et al. [2]. Gorla [3] discussed the steady 

state heat transfer in a micropolar fluid flow over a 

semi-infinite plate, and the analysis is based on similarity 

variables. Rees and Pop [4] studied the free convection 

boundary layer flow of micropolar fluid from a vertical flat 

plate. Singh [5] has studied the free convection flow of a 

micropolar fluid past an infinite vertical plate using the finite 

difference method. 

The study of flow and heat transfer for an electrically 

conducting micropolar fluid past a porous plate under the 

influence of a magnetic field has attracted the interest of many 

investigators in view of its applications in many engineering 

problems, such as magneto hydrodynamic (MHD) generators, 

plasma studies, nuclear reactors, oil exploration, geothermal 

energy extractions and the boundary layer control in the field 

of aerodynamics. Also, the porous media heat transfer 

problems have several practical engineering applications, such 

as the crude oil extraction, the ground water pollution, and 

many other practical applications, i.e., in biomechanical 

problems (e.g., blood, flow in the pulmonary alveolar sheet) 

and in the filtration transpiration cooling. Hiremath and Patil 

[6] studied the effect of free convection currents on the 

oscillatory flow of the polar fluid through a porous medium, 

which is bounded by the vertical plane surface with a constant 

temperature. Kim [7] investigated the unsteady free 

convection flow of a micropolar fluid past a vertical plate 

embedded in a porous medium. Bakr and Raizah [8] studied 

the unsteady MHD mixed convection flow of a viscous 
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dissipating micropolar fluid in a boundary layer slip flow 

regime with Joule heating. 

At the macroscopic level, it is well accepted that the 

boundary condition for a viscous fluid at a solid wall is one of 

no-slip, i.e., the fluid velocity matches the velocity of the solid 

boundary. While the no-slip condition has been processed 

experimentally to be accurate for a number of macroscopic 

flows, it remains an assumption that is not based on physical 

principles. In many practical applications, the particle 

adjacent to a solid surface no longer takes the velocity of the 

surface. The particle at the surface has a finite tangential 

velocity. It slips along the surface. The flow regime is called a 

slip-flow regime, and this effect cannot be neglected. The 

study of magneto-micropolar fluid flows in the slip-flow 

regimes with heat transfer has important engineering 

applications, e.g., in power generators, refrigeration coils, 

transmission lines, electric transformers, and heating elements. 

Khandelwal et al. [9] studied the effects of permeability 

variation on the MHD unsteady flow of polar fluid through a 

porous medium in a slip-flow regime over an infinite porous 

flat plate. Sharma and Chaudhary [10] studied the effect of 

variable suction on transient free convective viscous 

incompressible flows past a vertical plate in a slip-flow regime. 

Hayat et al. [11] presented the analytical solutions of the 

equations of motion and energy of a second grade fluid for the 

developed flow over a stretching sheet with slip condition. 

Asghar et al. [12] studied the rotating flow of a third grade 

fluid past a porous plate with partial slip effects. Khan [13] 

presented the exact analytical solutions for three basic fluid 

flow problems in a porous medium when the no-slip condition 

is no longer valid. Asghar et al. [14] obtained the exact 

analytical solutions for general periodic flows of a second 

grade fluid in the presence of partial slip and a porous 

medium.  

The combined heat and mass transfer problems with 

chemical reactions are of importance in many processes, and 

therefore have received a considerable amount of attention in 

recent years. In processes, such as drying, evaporation at the 

surface of a water body, energy transfer in a wet cooling tower 

and the flow in a desert cooler, the heat and mass transfer 

occurs simultaneously. Chemical reactions can be codified as 

either homogeneous or heterogeneous processes. A 

homogeneous reaction is one that occurs uniformly through a 

given phase. In contrast, a heterogeneous reaction takes place 

in a restricted region or within the boundary of a phase. A 

reaction is said to be the first order if the rate of reaction is 

directly proportional to the concentration itself. In many 

chemical engineering processes, a chemical reaction between 

a foreign mass and the fluid does occur. These processes take 

place in numerous industrial applications, such as the polymer 

production, the manufacturing of ceramics or glassware, the 

food processing [15] and so on. Muthucumarswamy and 

Ganesan [16] studied the first order homogeneous chemical 

reaction on the flow past an infinite vertical plate. Kandasamy 

et al. [17] discussed the heat and mass transfer effect along a 

wedge with a heat source and concentration in the presence of 

suction/injection taking into account the chemical reaction of 

the first order. Bakr [18, 24] presented an analysis on MHD 

micropolar fluid in presence of heat generation/ absorption 

and a chemical reaction. 

Here we return to the free-convection problem though now 

we consider the case of Newtonian heating where the rate of 

heat transfer from the boundary is proportional to the local 

surface temperature. Heat-transfer characteristics are 

dependent on the thermal boundary conditions. In general, 

there are three common heating processes, namely a 

prescribed surface-temperature distribution, a prescribed 

surface-heat-flux distribution, and conjugate conditions, 

whereby heat transfer through a bounding surface of finite 

thickness and finite heat capacity is specified. The interface 

temperature is not known a priori but depends on the intrinsic 

properties of the system, namely, the thermal conductivities of 

the fluid and solid. In Newtonian heating, the rate of heat 

transfer from the bounding surface with a finite heat capacity 

is proportional to the local surface temperature, and it is 

usually termed conjugate convective flow. This situation 

occurs in many important engineering devices, for examples: 

(a) in heat exchangers, where conduction in the solid tube wall 

is greatly influenced by convection in the fluid flowing past it; 

(b) in conjugate heat transfer around fins, where conduction 

within the fin and convection in the fluid surrounding it must 

be simultaneously analyzed in order to obtain the vital design 

information; (c) in a convective-flow set-up, where the 

bounding surfaces absorb heat from solar radiation. Therefore, 

we can conclude that the conventional assumption of the 

absence of an inter-relation between coupled conduction–

convection effects is not always realistic, and this 

inter-relation must be considered when evaluating conjugate 

heat-transfer processes in many practical engineering 

applications; see [19] for example. Alternatively, this set-up 

can model the heat transfer when there is a weak exothermic 

catalytic reaction taking place on the surface generating heat 

at a rate proportional to the surface temperature. This is a 

reasonable assumption when the difference between the 

surface temperatures arising from the reaction and the ambient 

temperature are small, which is the situation envisaged here. 

The free-convection flow on a vertical surface resulting from 

Newtonian heating has been treated in [20]. Convective 

boundary layer flows in fluid-saturated porous media driven 

by Newtonian heating have also received some attention; see 

[21] for example. 

The aim of our paper is to study the effect of thermal 

radiation on the oscillatory free convective flow of the 

micropolar fluid through a porous medium with Newtonian 

heating and chemical reaction in the presence of slip velocity 

at the surface. Examples of the physical situation presented are: 

(i) heat removal of nuclear fuel debris buried in the deep 

sea-bed and (ii) heat recovery from geothermal systems. The 

flow takes place near a hot vertical plate bounding the porous 

region which is filled with water containing soluble and 

insoluble chemical materials. Such a fluid is modeled as the 

micropolar fluid. The flow is due to the buoyancy forces 

generated by the temperature gradient. It is assumed that the 

plate is embedded in a uniform porous medium and oscillates 
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in time with a constant frequency in the presence of a 

transverse magnetic field. The governing equations are solved 

analytically using perturbation technique. Numerical results 

are reported for various values of the physical parameters of 

interest.  

The paper is organized as follows. The Section 2 deals with 

the mathematical formulation of the problems. Section 3 

contains the closed form solutions of velocity, temperature 

concentration etc. Numerical results and discussion are 

presented in Section 4. The conclusions have been 

summarized in Section 5 

2. Mathematical Analysis 

We consider the two-dimensional flow of a micropolar fluid 

past a semi-infinite vertical plate embedded in a porous 

medium in the slip-flow regime. The x-axis is taken along the 

porous plate in the upward direction and the y-axis normal to it. 

Due to the semi-infinite plane surface assumption, the flow 

variables are the functions of y and t only. It is assumed that 

the free convection is generated by Newtonian heating, i.e. the 

heat transfer from the plate is proportional to the local surface 

temperature. Initially, for time *
0,t ≤  both the plate and 

adjacent fluid are assumed to be at the same temperature 
*T∞  

and concentration
*C∞ . At time *

0t > , the concentration level 

at the plate is raised to ( )* *

wC C∞≠  or a solute is supplied at a 

constant rate (constant mass flux) and the heat transfer from 

the plate is proportional to the local surface temperature.  

To derive the basic equations for the problem under 

consideration, the following assumptions are made: (i) The 

flow is unsteady and laminar, and the magnetic field is applied 

perpendicularly to the plate. (ii) variations in fluid properties 

are limited to density variations which the affect the buoyancy 

term,. (iii) The magnetic Reynolds number is assumed to be 

small enough so that the induced magnetic field can be 

neglected. (iv) The effect of the viscous dissipation is 

negligible in the energy equation. (v) There is a first order 

chemical reaction between the diffusing species and the fluid. 

(vi) It is also assumed that there is no applied voltage, which 

implies the absence of an electric field. 

Under these assumptions, the governing equations of the 

problem become: 
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where *
u is the velocity in the *

x - direction, *
t  the time, υ  

is the kinematics viscosity, rυ  is the microrotation viscosity, 

0g  is the acceleration of gravity, β  and β ∗
 are the 

coefficient of volume expansion and volume expansion with 

concentration, 
*T  and 

*C  the temperature and the mass 

concentration of the fluid near the plate, σ  is the electrical 

conductivity of the fluid, 0B  is the magnetic induction, ρ  is 

the density of the fluid, *K  is the permeability of the porous 

medium, k is the thermal conductivity, 
*ω is the angular 

velocity, γ  is the material property of the fluid, *λ  is the 

micro-inertia density, pC  is the specific heat at constant 

pressure, 
*

rq  is the radiative heat flux, mD  is the molecular 

diffusivity, h is the heat transfer coefficient and rK  the 

chemical reaction. Parameter *L  is defined as 

* 1

1

2 m
L L

m

 −
=  
 

, where L is the molecular mean free bath and 

1m  is the tangential momentum accommodation coefficient. 

The quantity in the right-hand side of Eq. (3) represents the 

radiative heat flux in the 
*y -direction. In order to simplify the 

physical problem, the optically thick radiation limit is 

considered in the present analysis. Thus the radiative heat 

fluxterm is simplified by using the Rosseland diffusion 

approximation (Siegel and Howell [22]) for an optically thick 

fluid according to, 



83 Ahmed A. Bakr et al.:  MHD Micropolar Fluid Near a Vertical Plate with Newtonian Heating and Thermal Radiation in the 

Presence of Mass Diffusion 

*4
* 1

*

4

3
r

R

T
q

K y

σ ∂= −
∂

                (6) 

where 1
σ  is the Stefan- Boltzman constant, R

K  the 

Rosseland mean absorption coefficient. It should be noted that 

by using the Rosseland approximation we limit our analysis to 

optically thick fluids. If the temperature differences within the 

flow are sufficiently small, then Eq. (6) can be linearized by 

expanding *4T  into the Taylor series about 
*T∞  and 

neglecting higher order terms [13], we have, 

*4 *3 * *44 3T T T T∞ ∞≅ −                (7) 

Using Eqs. (6) and (7), Eq. (3) becomes 

*3* 2 *

1

* *2

16

3p p R

TT k T

C C Kt y

σ
ρ ρ

∞
 ∂ ∂
= + ∂ ∂

        (8) 

Introducing the following dimensionless variables 
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Eqs. (1), (2), (4) and (8) become  

2
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The boundary conditions (5) can be written in 

non-dimensional forms as: 
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                 (14) 

3. Method of Solution 

In this section we present the analytical solution for Eqs. (10) and (13) with boundary conditions (14), To solve the nonlinear 

system (10)–(13) with the boundary conditions (14), we assume that 

( , ) ( ) , ( , ) ( ) , ( , ) ( ) , ( , ) ( )nt nt nt ntu y t U y e y t y e T y t y e C y t y eω ω= = = Θ = Φ                       (15) 

Substituting Egs. (15) into the Eqs. (10)-(14) and 

comparing the harmonic and non-harmonic terms, we get: 

1
(1 ) ( ) 2U n M U N

K
ω′′ ′+ ∆ − + + = −Θ − Φ − ∆     (16) 

0nω λω′′ − =                       (17) 

3 Pr
0

3 4

R n

R
′′Θ − Θ =

+
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( ) 0Sc n γΦ − + Φ =                    (19) 

Here primes denote differentiation with respect to y . 

However, this expansion of the solution is meaningful only if 
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the reduced equations are ordinary differential equations of 

the independent variable y . In addition, the corresponding 

boundary conditions can be written as 

1
, , , ( ) 0

0 : 2

, , ,
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                      (20) 

Solving Eqs. (16)-(19) subject to the boundary conditions 

(20) we obtain 
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where the constants are given in Appendix. 

The physical quantities of engineering interest are 

skin-friction coefficient, couple stress coefficient, Nusselt 

number and Sherwood number. The local skin friction 

coefficient Cf is given as 

*
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2
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The couple stress coefficient at the wall w
C  is given by 

'

0

(0)
w

y

C
y

ω ω
=

∂= =
∂                (26) 

In addition, the rate of heat transfer at the surface of wall in 

terms of Nusselt number Nu , can be written as: 

0

( / )
N ; Re (0)

x

w z

T z
u x Nu T

T T∞ =

∂ ∂ ′= = −
−

     (27) 

where Re /
x r

U x υ=  is the Reynolds number. 

4. Results and Discussion 

System of equations (16) to (19) subject to the boundary 

conditions (20) are highly coupled and solved analytically. In 

order to understand the physical solution, the numerical values 

of concentration, transverse velocity, angular velocity and 

temperature are presented. 

4.1. Effect of Viscosity Ratio Parameter 

In Figure 1, the effect of ∆ on the translational velocity u 

and angular velocity ω for a stationary porous plate is shown.  

It is observed that, as the viscosity ratio parameter ∆ is 

increased, u is decreases and ω is increased. Comparison of 

the velocities and angular velocities for the UWC and UMF 

cases show that, in the UMF case a higher velocity and a lower 

angular velocity than that of UWC case and the difference 

increases with increasing the value of ∆.   

  

Fig. 1. Velocity and angular velocity profiles for different. 

4.2. Effect of Slip H 

Figure 2 shows the translational velocity and microrotation 

distribution across the boundary layer for different values of 

the slip parameter h. It can be seen that, the translational 

velocity distribution across the boundary layer is increased 

and the angular velocity is decreased as the slip parameter h is 

increased. Comparison of the velocities and angular velocities 

for the UWC and UMF cases indicates that, the velocity is 

greater and the angular velocity is smaller in case UWC than 

that of UMF at the same value of h. 
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Fig. 2. Velocity and angular velocity profiles for different h. 

   

Fig. 3. Velocity and angular velocity profiles for different N. 

4.3. Effect of the Relative Buoyancy Parameter N 

The effect of the relative buoyancy parameter N on the 

velocity and angular velocity variables is shown in Figure 3. 

In this figure 0N =  corresponds to the situation in which the 

natural convection arises from the thermal buoyancy force 

only and there is no contribution from the species diffusion, 

and 0N > means that the buoyancy force from the species 

diffusion assists the buoyancy force. It is observed that, the 

velocity decreases and the angular velocity increases as N

increases. Comparison of the velocities and angular velocities 

for the UWC and UMF cases show that, in the UWC case, a 

higher velocity and lower angular velocity than that of UMF 

case and the difference increases with increasing values of N. 

    

Fig. 4. Velocity and angular velocity profiles for different M. 
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Fig. 5. Velocity and angular velocity profiles for different K. 

4.4. Effect of Magnetic Field Parameter M 

Figure 4 shows the pattern of the translational velocity and 

angular velocity for different values of the magnetic field 

parameter M. It is observed that, adjacent to the surface of the 

plate, the translational velocity increases as M increases. 

Furthermore, the angular velocity decreases as M increases. 

4.5. Effect of the Permeability Parameter K 

For different values of the permeability parameter K, the 

translational velocity and angular velocity are plotted in 

Figure 5. It is obvious that, as K is increasing, the velocity is 

decreasing and the angular velocity is increasing. This leads to 

enhancement of the momentum boundary layer thickness. 

4.6. Effect of Prandtl Number and the Thermal Radiation 

Parameter Pr and R 

From Figures 6 and 8, we observe that, an increase in 

suction velocity an increase in Prandtl number Pr leads to an 

increase in the velocity, angular velocity and temperature 

profile. For different values of radiation parameter R, the 

velocity, angular velocity and temperature profiles are plotted 

in Fig. 7. Here we find that, as the value of R increases the 

velocity and temperature increases but leads to a decrease in 

the angular velocity profile. 

   

Fig. 6. Velocity and angular velocity profiles for different Pr. 

   

Fig. 7. Temperature profiles for different Pr and R. 
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Fig. 8. Velocity and angular velocity profiles for different R. 

4.7. Effect of Chemical Reaction Parameter γ  and 

Diffusion Parameter Sc 

The influences of chemical reaction parameter γ  and 

diffusion parameter Sc on the velocity, angular velocity and 

concentration profiles across the boundary layer are presented 

in Figures 9, 10 and 11. We see that, the velocity and 

concentration distribution across the boundary layer decrease 

with increasing of γ  and Sc. Also, an increasing in the 

chemical reaction parameter γ  will increase the angular 

velocity profile while, an increase in diffusion parameter Sc 

leads to a decrease in the angular velocity profile. 

   

Fig. 9. Velocity and angular velocity profiles for different . 

   

Fig. 10. Velocity and angular velocity profiles for different Sc. 
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Fig. 11. Concentration profiles for different and Sc. 

5. Conclusions 

The unsteady MHD free convection heat and mass transfer 

flow of an incompressible, micropolar fluid along a 

semi-infinite vertical plate with Newtonian heating in the 

presence of the slip flow regime has been analyzed. The 

governing equations are solved analytically by using 

perturbation technique. The results are discussed through 

graphs. The effects of radiation parameter, viscosity ratio 

parameter, buoyancy ratio, Schmidt number, porous medium, 

magnetic field, Prandtl number, and chemical reaction on the 

velocity, angular velocity, temperature and concentration have 

been studied in detail. The study reveals that these parameters 

have significant influence on the velocity, angular velocity, 

temperature and concentration. It is found that, the velocity in 

the UWC case is slightly higher than the UMF case at the slip 

flow regime, buoyancy ratio, radiation parameter and 

chemical reaction and the velocity is slightly higher in the case 

UMF than that of UWC at an viscosity ratio parameter, 

Schmidt number, porous medium, magnetic field and Prandtl 

number, but an opposite trend is observed at an angular 

velocity. It is expected that the outcomes of the present study 

will serve as foundation for more complex and realistic cases 

of free convection flows resulting from the combined heat and 

mass transfer along a vertical surface with Newtonian heating. 
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