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Abstract: Topology may be considered as an abstract study of the limit point concept. As such, it stems in part from 

recognition of the fact that many important mathematical topics depend entirely upon the properties of limit points. This study 

shows that compactness implies limit point compactness but not conversely and every compact space is locally compact but 

not conversely. This study also shows that compactness, limit point compactness and sequentially compactness are equivalent 

in metrizable spaces and the product of finitely many compact spaces is a locally compact space. This study introduce it here as 

an interesting application of the Tychonoff theorem.  
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1. Introduction 

The theory of topological spaces or, as it is called, point 

set or general topology, has become one of the elementary 

building blocks underlying diver’s branches of mathematics. 

Its concepts and methods have enriched numerous other 

fields of mathematics and given considerable impulse to their 

further development. For these reasons, topology counts 

among those few basic structures, which alone give access to 

modern mathematical research. 

In this work, we have tried to accumulate several types of 

concepts of separation axioms on topological space, obtained 

from different texts. Numerous proofs, examples and solved 

problems are included in this work. Up to now, no work ever 

complete. We only try to discuss the clear concepts of 

compactness on topological spaces, its properties and 

applications, so that one can see these materials concerning 

compactness on topological spaces at one place. 

1.1. Objective 

The advantage in compact spaces is that one may study the 

whole space by studying a finite number of open subsets. We 

shall see this when we prove that a continuous function f: 

X→Y from a compact metric space X to a metric space Y is 

“uniformly continuous.” In conclusion we shall examine 

some compact surfaces that may be formed by “identifying” 

edges of a rectangle.  

1.2. Procedure 

In the proposed study, first, we shall give some necessary 

definitions and states some necessary theorems in order to 

present the paper in a self contained manner. Afterward, we 

shall prove the most important and popular theorem namely 

Heine-Borel Theorem. Then we shall study locally compact 

spaces of a metric space and in general of a topological space. 

Next, we shall discuss σ-compact and finally compact spaces 

and some of their important properties. Finally, we shall 

study completely compact spaces, anti-compact spaces and 

completely dense subsets in a space and some of their 

important properties. 

Definition: 

Let {Gi} be a class of subsets of X such that A⊂ ∪i iG for 

some A⊂X. The class {Gi} is then called a cover of A, and an 

open cover if each Gi is open. Furthermore, if a finite 

subclass of {Gi} is also a cover of A, i.e. if ∃ 

1 2 mi i iG G G, ,..........................., ∈{Gi} such that A⊂ 
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1 m2
i ii

G G G.......................... ,∪ ∪ ∪  then {Gi} is said to be 

reducible to a finite cover, or contains a finite subcover. 

1.3. Compact Sets 

A subset A of a topological space (X, T) is compact if 

every open cover of A is reducible to a finite subcover.  

In other words, if A is compact and A⊂ Gii∪ , where Gi 

are open sets, then one can select a finite number of the open 

sets, say 
1 m2
i ii

G G G, ,..........................., , so that A⊂ 

1 m2
i ii

G G G..........................∪ ∪ ∪ . 

1.4. Compact Spaces 

A topological space X is said to be compact if for each 

open covering (Uα)α∈I of X there is a finite subcovering 

(Vβ)β∈J  

We may alternatively define compactness by the statement, 

“X is compact if for each open covering (Uα)α∈I of X there is 

a finite subset of indices {α1, α2,………,αn} such that the 

collection 
n

UUU ααα ..,,.........,
21

 covers X.” 

Definition: 

A subset C of a topological space X is said to be compact, 

if C is a compact topological space in the relative topology. 

Example : 

The real line ℝ is not compact, for the covering of ℝ by 

open intervals  

� ={(n, n+2)| n∈ℤ }  

contains no finite subcollection that covers ℝ. 

Example : 

Any space X containing only finitely many points is 

necessarily compact, because in this case every open 

covering of X is finite. 

2. Compactness 

Theorem 2.1
[6]

: 

A subset C of a topological space X is compact if and only 

if for each open covering (Uα)α∈I of C, Uα open in X, there is 

a finite subcovering Uα
1

,  ……….., Uα
n

 of C. 

Proof: Let C be compact and let (Uα)α∈I be an open 

covering of C. Thus C⊂ ∪ α∈I Uα, hence C=∪ α∈I(Uα∩C), so 

that the family (Uα ∩C)α∈I is a covering of the topological 

space C by relatively open sets Uα∩C. Since C is compact, 

there is a finite collection of indices {α1, α2, …..,αn} such 

that Uα 
1

∩C, Uα
2

∩C,………., Uα
n

∩C covers C; that is C 

=
∪
n

1i

)CU(
i=

α
∩

. Consequently, C⊂ 
∪
n

i i

U
1= α

.   

Conversely, suppose that for each open covering (Uα)α∈I of 

C, there is a finite subcovering Uα
1

, Uα
2

,……….., Uα
n

 of 

C. We must show that given any covering of the topological 

space C by a family (Vβ)β∈J of relatively open subsets of C, 

there is a finite subcovering. For each β∈J,  

Since Vβ is relatively open in C, there is an open subset Uβ 

of X such that Vβ =Uβ ∩C. But C = ∪ β∈J Vβ, therefore 

C⊂∪ β∈JUβ and (Uβ)β∈J is a covering of the subset C by open 

sets. By our hypothesis, there is a finite subcovering Uβ
1

, 

Uβ
2

,……….., Uβ m  of C. Thus, C⊂ ∪
m

1i
i

U
=

β
 and C = 

( ∪
m

1i
i

U(
=

β
)∩C = )CU(

m

1i
i
∩

=
β∪ = ∪

m

1i
i

V
=

β
. 

Hence the covering (Vβ)β∈J of C by relatively open sets has 

a finite subcovering Vβ
1

, Vβ
2

,……….., Vβ m . 

Compactness may be characterized in terms of 

neighbourhoods. 

Theorem 2.2
[6]

: 

A topological space X is compact if and only if, whenever 

for each x∈X a neighbourhood Nx of x is given, there is 

finite number of points  

x1, x2, ……, xn of X such that X=
∪
n

1i
xi

N
=

. 

Theorem 2.3
[4]

: 

Any closed subspace of a compact space is compact. 

Proof: Let Y be a closed of a compact space X, and let {Gi} 

be an open cover of Y. Each Gi, being open in the relative 

topology on Y, is the intersection with Y of an open subset Hi 

of X. Since Y is closed, the class composed of Y′ and all the 

Hi’s is an open cover of X, and since X is compact, this open 

cover has a finite subcover. If Y′ occurs in this subcover, we 

discard it. What remains is a finite class of Hi’s whose union 

contains X. Our conclusion that Y is compact now follows 

from the fact that the corresponding Gi’s form a finite 

subcover of the original open cover of Y. 

Theorem 2.4
[4]

: 

Any continuous image of a compact space is compact. 

Proof: Let f: X→Y be a continuous mapping of a compact 

space X into an arbitrary topological space Y. We must show 

that f(x) is a compact subspace of Y. Let {Gi} be an open 

cover of f(x). As in the above proof, each Gi is the 

intersection with f(X) of an open subset Hi of Y. It is clear 

that {f
−1

(Hi)} is an open cover of X, and by the compactness 

of X it has a finite subcover. The union of the finite class of 

Hi’s of which these are the inverse images clearly contains 

f(X), so the class of corresponding Gi’s is a finite subcover of 

the original open cover of f(X), and f(X) is compact. 

Theorem 2.5
[3]

: 

If A is a compact subset of a Hausdorff space X and x is a 

point of X−A, then there are disjoint neighbourhoods of x 

and of A.  

Consequently each compact subset of a Hausdorff space is 

closed.  

Proof: Since X is Hausdorff there is a neighbourhood U of 

each point y of A such that x does not belong to the 

closure U . Because A is compact there is a finite family U0, 

U1,………, Un of open sets covering A such that x∉ iU  for 

i=0,1,…………, n. If V = ∪{Ui: i=0,1, ….., n}, then A⊂V 

and x∉ V . Consequently X− V  and V are disjoint 

neighbourhoods of x and A. 
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Theorem 2.6
[3]

: 

Let f be a continuous function carrying the compact 

topological space X onto the topological space Y. Then Y is 

compact, and if Y is Hausdorff and f is one to one then f is a 

homomorphism. 

Proof: If α is an open cover of Y, then the family of all sets 

of the form f
−1

[A] for A in α, is an open cover of X which 

has a finite subcover. The family of images of members of 

the subcver is a finite subfamily of α which covers Y and 

consequently Y is compact. Suppose that Y is hausdorff and f 

is one to one. If A is a closed subset of X, then A is compact 

and hence its image f[A] is compact and therefore closed. 

Then (f
−1

)
−1

[A] is closed for each closed set A and f
−1

 is 

continuous. 

Theorem 2.7
[3]

: 

If A and B are disjoint compact subsets of a Hausdorff 

space X, then there are disjoint neighbourhoods of A and B. 

Consequeltly each compact Hausdorff space is normal. 

Proof: For each x in A there is a neighbourhood of x and a 

neighbourhood of B which are disjoint. Consequently there is 

a neighbourhood U of x whose closure is disjoint from B, 

and since A is compact there is a finite family U0, 

U1,………,Un such that iU  is disjoint from B for 

i=1, ……..,n and A ⊂ V = ∪ {Ui: i=0, 1, ……., n}. Then v is 

a neighbourhood of A and X− V  is a neighborhood of B 

which is disjoint from V. 

Theorem 2.8
[3]

: 

If X is a regular topological space, A a compact subset, 

and U a neighbourhood of A, then there is a closed 

neighbourhood V of A such that V ⊂ U. 

Consequently each compact regular space is normal. 

Proof: Because X is regular, for each x in A there is an 

open neighbourhood W of x such that W ⊂ U, and by 

compactness there is a finite open cover W0, W1,……….., 

Wn of A such that iW ⊂ U for each i. Then V = ∪ { iW : i = 0, 

1, ……,n} is the required neighbourhood of A.  

Theorem 2.9
[3]

: 

If X is a completely regular space, A is a compact subset 

and U is a neighbourhood of A, then there is a continuous 

function f on X to the closed interval [0, 1] such that f is one 

on A and zero on X−U. 

Proposition 2.1
[9]

: 

For a topological space X, the following are equivalent  

(1) X is compact 

(2) If ℱ is any family of closed sets in X with fip, then ∩  

ℱ =φ 

(3) Every net in X has a cluster point. 

Theorem (The Heine-Borel Theorem) 2.10
[4]

: 

Every closed and bounded subspace of the real line is 

compact. 

Proof: A closed and bounded subspace of the real line is a 

closed subspace of some closed interval [a, b], it suffices to 

show that [a, b] is compact. If a=b, this is clear, so we may 

assume that a<b. we know that the class of all intervals of the 

form [a, d) and (c, b], where c and d are any real numbers 

such that a<c<b and a<d<b, is an open subbase for [a, b]; 

therefore the class of all [a, c]’s and all [d, b]’s is a closed 

subbase. Let S={[a, ci], [dj, b]}be a class of these subbasic 

closed sets with the finite intersection property. It suffices to 

show that the intersection of all sets in S is non-empty. We 

may assume that S is non-empty. If S contains only intervals 

of the type [a, c
i
], or only intervals of the type [dj, b], then 

the intersection clearly contains a or b. We may thus assume 

that S contains intervals of both types. We now define d by d 

=sup {di}, and we complete the proof by showing that d≤ ci 

for every i. Suppose that c
0i

< d for some i0. Then by the 

definition of d there exists a d
0j

such that c
0i < d

0j
. Since 

[a, c
0i

]∩ [d
0j

, b] = φ, this contradicts the finite intersection 

property for S and concludes the proof. 

Proposition 2.2
[9]

: (The Tube Lemma) 

Let X1×X2 be a product space where X2 is compact and let 

p∈X1 be fixed. Let N be an nbd of the slice {p}×X2 in the 

product space. Then there exists an nbd U of P in X1 such 

that {p}×X2 ⊂U×X2 ⊂N (The nbd U×X2 is called a tubular 

nbd or simply a tube). 

Proposition 2.3
[9]

: 

A finite product space X= n

j

j=1

X∐
 is compact iff each factor 

space Xj is compact. 

Note: The above result holds for arbitrary products also. 

The general result is known as the Tychonoff Theorem. 

Theorem 2.11
[4]

: (The Generalized Heine-Borel Theorem) 

Every closed and bounded subspace of ℝ
n
 is compact. 

Theorem 2.12
[2]

: (Extreme value theorem) 

Let f: X→Y be continuous, where Y is an ordered set in 

the order topology. If x is compact, then there exit points c 

and d in X such that f(c)≤f(x)≤f(d) for every x∈X. 

The extreme value theorem of calculus is the special case 

of this theorem that occurs when we take X to be a closed 

interval in ℝ and Y to be ℝ. 

Definition: 

A real number a>0 is called a Lebesgue number for our 

given open cover {Gi} if each subset of X whose diameter is 

less than a is contained in at least one Gi. 

Definition: 

Let X be a topological space. If (xn) is a sequence of points 

of X, and if n1<n2<………………<ni<………… 

is an increasing sequence of positive integers, then the 

sequence (yi) defined by setting yi=xn
i

is called a 

subsequence of the sequence (xn). The space X is said to be 

sequentially compact if every sequence of points of X has a 

convergent subsequence. 

Theorem 2.13
[4]

: (Lebesgue’s Covering Lemma) 

In a sequentially compact metric space, every open cover 

has a Lebesgue number. 

Definition: 

A space X is said to be limit point compact if every infinite 

subset of X has a limit point. 

Note: On historical grounds, some call it “Frechet 

compactness”; others call it the “Bolzano weierstrass 

property.” 

Theorem 2.14
[2]

: 

Compactness implies limit point compactness, but not 
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conversely. 

Example: 

Let Y consist of two points; give Y the topology consisting 

of Y and the empty set. Then the space X= ℤ+ × Y is limit 

point compact, for every nonempty subset of X has a limit 

point. It is not compact, for the covering of X by the open 

sets Un = {n}×Y has no finite subcollection covering X. 

Now we prove that compactness and limit point 

compactness are equivalent in matrizable spaces.  

Theorem 2.15
[2]

: 

Let X be a metrizable space. Then the following are 

equivalent: 

1. X is compact. 

2. X is limit point compact. 

3. X is sequentially compact. 

Theorem 2.16
[4]

: 

Any continuous mapping of a compact metric space into a 

metric space is uniformly continuous. 

3. Locally Compact Space 

Definition:  

A space X is said to be locally compact at x if there is 

some compact subspace C of X that contains a neighborhood 

of X. if X is locally compact at each of its points, X is said 

simply to be locally compact. 

Example : 

Every compact space is locally compact, since a 

topological space is always a neighborhood of each of its 

points. 

Example : 

Every discrete space is locally compact, since for each 

point p in it, the singleton {p} is a compact nbd. 

Example :  

Every indiscrete space X is locally compact. 

Example : 

Consider the real line ℝ with the usual topology. Observe 

that each point p∈ ℝ is interior to a closed interval, e.g. [p-δ, 

p+δ] and that the closed interval is compact by the Heine-

Borel theorem. Hence ℝ is locally compact space. On the 

other hand ℝ is not a compact space. For example, the class  

� = {………, (-3, -1), (-2, 0), (-1, 1), (0, 2), (1, 3),…….} 

is an open cover of ℝ but contains no finite subcover. 

Therefore ℝ is locally compact but not compact. 

Similarly ℂ and ℤ are locally compact but not compact. 

Theorem 3.1
[7]

:  

Every closed subset of a locally compact space is locally 

compact. 

Proof: Let B be a closed subset of a locally compact space 

X and let x be any point of B. Then there exists a compact 

neighborhood C of x. Therefore B ∩ C is a closed subset of 

C. Therefore B ∩ C is a compact subset of C (since every 

closed subset of a compact space is compact), and so B ∩ C 

is a compact subset of B. Thus B ∩ C is a compact 

neighborhood of x in the subspace B of X. Hence B is locally 

compact. 

Theorem 3.2
[7]

: 

Every separated locally compact space is regular 

Definition: 

A subset B of a topological space X is said to be locally 

compact if B is locally compact considered as a subspace of 

X. 

Theorem 3.3
[7]

: 

Let x be any point of a regular locally compact space X. 

Then the class consisting of all closed compact neighborhood 

of x is a local base at x. The class consisting of all those open 

neighborhoods of x whose closures are compact is also a 

local base at x. 

Theorem 3.4
[7]

: 

Let a subset B of a regular locally compact space X be the 

intersection of a closed and an open subset of X. Then B is 

locally compact. 

Proof: Let x be any point of B. Then there is a 

neighborhood N of x such that B∩N is a closed subset of the 

subspace N of X. Since X is regular and locally compact, 

then by the previous theorem there is a compact 

neighborhood K of x such that K ⊂ N. Since B ∩ N is a 

closed subset of the subspace N, (B ∩ N) ∩ K is a closed 

subset of K. Since K is compact,  

(B ∩ N) ∩ K is compact. Therefore (B ∩ N) ∩ K = B ∩ K 

is a compact neighborhood of x in the subspace B of X. 

Hence B is locally compact. 

Theorem 3.5
[3]

: 

If U is a neighborhood of a closed compact subset A of a 

regular locally compact topological space X, then there is a 

closed compact neighborhood V of A such that A ⊂ V ⊂ U. 

Moreover, there is a continuous function f on X to the 

closed unit interval such that f is zero on A and one on X −V. 

Proof: 

For each point x of A there is a neighbourhood W which is 

closed compact subset of U. Since A is compact it may be 

covered by a finite family of such neighbourhoods and their 

union is a closed compact neighbourhood V of A. Then V 

with the relative topology is a regular compact space which 

is therefore normal. Hence there is a continuous function g 

on V to the closed unit interval such that g is zero on A and 

one on V −V
0
 (V

0
 is the interior of V). Let f equal g on V and 

one on  

X −V. Then f is continuous because V
0
 and X − V are 

separated and f is      continuous on V and X − V
0
. 

Theorem 3.6
[7]

: 

A regular locally compact space is completely regular. 

Theorem 3.7
[7]

: 

A subset B of a locally compact space X is closed if B ∩ C 

is closed for every compact subset C of X. 

Proof: 

Let B ∩ C be closed for every compact subset C of X. Let 

x be any contact point of B. Since X is locally compact, there 

exists a compact neighbourhood C of x. Now let N be any 

neighbourhood of x. 

We know that, if x is any point of topological space X, 

then the class v(x) of neighbourhoods of x. If M and N are 

members of v(x) then M ∩ N is also a member of v(x). 

Hence by the above theorem C∩N is a neighbourhood of x, 
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and as such (C ∩ N) ∩ B is non void. Hence x is a contact 

point of B ∩ C. But B∩C is closed.  

Also we know that a subset B of a topological space is 

closed if and only if B = B . Hence from the above x is in B 

∩ C and therefore in B. Thus B is closed. 

Theorem 3.8
[3]

: 

If X is a locally compact topological space which is either 

Hausdorff or regular, then the family of closed compact 

neighbourhoods of each point is a base its neighbourhood 

system. 

Proof: 

Let x be a point of X, C a compact neihgbourhood of x, 

and U an arbitrary neihgbourhood of x. If X is regular, then 

there is a closed neihgbourhood V of x which is a subset of 

the intersection of U and the interior of C, and evidently V is 

closed and compact. If X is Hausdorff and W is the interior 

of U∩C, then, since W is a compact Hausdorff space, W 

contains a closed compact set V which is a neighborhood of 

x in W ; but V is also a neighborhood of x in W (that is, with 

respect to the relativized topology for W) and is therefore a 

neighborhood of x in X. 

Note: In particular it follows that every locally compact 

Hausdorff space is regular; actually a stronger statement is 

true. 

Proposition 3.1
[8]

: 

An open subspace of a locally compact, regular space is 

locally compact. 

Proof: Let X be locally compact and regular and suppose 

Y is open in X. Let y∈Y. Then Y is a neighborhood of y in X 

and so there exists a compact neighborhood C of y such that 

C ⊂ Y. But then, Y is locally compact at y. Since y was an 

arbitrary point of Y, it follows that Y is locally compact in the 

relative topology on it. 

Proposition 3.2
[8]

: 

Let X be a Hausdorff space and Y be a dense subset of X. 

If Y is locally compact in the relative topology on it, then Y 

is open in X. 

Theorem 3.9
[8]

: 

A subspace of a locally compact, Hausdorff space is 

locllay compact iff it is open in its closure. 

Proof: Let X be a locally compact Hausdorff space and Y 

be a subspace of X. Put Z = Y . Then Z itself is locally 

compact for it is easy to show that local compactness is 

weakly hereditary. Also Z is Hausdorff and therefore regular 

(Since every locally compact, Hausdorff space is regular).  

Now if Y is open in Z then Y is locally compact by 

proposition 1.  

Conversely if Y is locally compact, then by the last 

proposition applied to Z, we see that Y is open in Z. 

Theorem 3.10
[10]

: 

The product of finitely many locally compact spaces is a 

locally compact space. 

Proof: Let S1, S2, ………., and Sn each be locally compact, 

and let p = (p1, ……….., pn) be any point in S1×S2×…….×Sn. 

In each space Si there is an open set Ui containing pi and 

having compact closure. Then the basis element 

U1×U2×……×Un contains p and has closure 

n21 U........UU ×××  which is compact by the 

Tychonoff theorem. Hence 

S1×S2×…….×Sn is locally compact. 

Theorem 3.11
[3]

: 

If a product is locally compact then each coordinate space 

is locally compact and all except a finite number of 

coordinate spaces are compact. 

Proof: 

If a product is locally compact, then each coordinate space 

is locally compact because projection into a coordinate space 

is open.  

We know that if infinitely many coordinate spaces are non-

compact, then each compact subset of the product is nowhere 

dense, and no point has a compact neighbourhood. 

4. Compactification 

Definition: 

Let X be a locally compact Hausdorff space. Take some 

object outside X, denoted by the symbol ∞ for convenience, 

and adjoin it to X, forming the set Y = X ∪  {∞}. 

Topologize Y by defining, the collection of open sets in Y 

to be all sets of the following types: 

(1) U, where U is an open subset of X, 

(2) Y – C, where C is compact subset of X. 

The space Y is called the one-point compactification of X. 

We need to check that this collection of open sets is a 

topology on Y. 

The empty set is a set of type of (l), and the space Y is set 

of type (2). Checking that the intersection of two open sets is 

open involves three cases: 

U1 ∩  U2 is of the type (l). 

(Y – C1) ∩  (Y – C2) = Y – (C1 ∪  C2) is of the type (2). 

U1 ∩  (Y – C1) = U1 ∩  (X – C1) is of the type (1), 

because C1 is closed in X. 

Similarly, one checks that the union of any collection of 

open sets is open: 

U U
α  = U is of the type (1) 

U (Y – C β ) = Y – (∩C β ) = Y – C is of type (2) 

(U
 
U

α
) ∪  (U (Y – C β )) = U∪  (Y – C) = Y – (C – U) 

which is of the type (2), 

because (C – U) is a closed subset of C and therefore 

compact. 

Example : 

The one point compactification of the real line ℝ is 

homeomorphic with the circle. Similarly, the one-point 

compactification of ℝ
2
 is homemorphic to the sphere S

2
. 

Theorem 4.1
[2]

: 

Let X be a locally compact Hausdorff space, which is not 

compact; Let Y be the one point Compactification of X. Then 

Y is a compact Hausdorff space; X is a subspace of Y; the set 

Y – X consists of a single point; and 

cl(X) = Y. 

Theorem 4.2
[3]

: (ALEXANDROFF) 

The one-point compactification X* of a topological space 

X is compact and X is a subspace. The space X* is Hausdorff 
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if and only if X is locally compact and Hausdorff. 

Proof: A set U is open in X* iff (a) U ∩ X is open in X and 

(b) whenever ∞∈  U, then X – U is compact. Consequently 

finite intersections and arbitrary unions of sets open in X* 

intersect X in open sets. If ∞ is a member of the intersection 

of two open subsets of X *, then the complement of the 

intersection is the union of two closed compact subsets of X 

and is therefore closed and compact. If ∞ belongs to the 

union of the members of a family of open subsets of X *, 

then ∞ belongs to some member U of the family, and the 

complement of the union is a closed subset of the compact 

set X – U and is therefore closed and compact. Consequently 

X* is a topological space and X is a subspace. If � is an open 

cover of X*, then ∞ is a member of some U in � and X – U 

is compact, and hence there is a finite subcover of U. 

Therefore X* is compact. If X* is a Hausdorff space, then its 

open subspace X is a locally compact Hausdorff space. 

Finally it must be shown that X* is a Hausdorff space if X is 

a locally compact Hausdorff space. It is only necessary to 

show that, if. x ∈  X, then there are disjoint neighborhoods of 

x and ∞. But since X is locally compact and Hausdorff there 

is a closed compact neighbourhood U of x in X and X* – U is 

the required neighbourhood of ∞. 

Theorem 4.3
[7]

: A one-point compaciificalion of a 

topological space A is separated iff A is separated and locally 

compact. 

Lemma 4.1
[2]

: 

Let X be Hausdorff space. Then X is locally compact at x 

if and only if for every neighbourhood U of x, there is a 

neighbourhood V of x such that cl(V) is compact and cl(V) 

⊂ U. 

Corollary 4.1
[2]

: 

Let X be a locally compact Hausdorff space and Y be a 

subspace of X. If Y is closed in X or opens in X, then Y is 

locally compact. 

Proof: Suppose that Y is closed in X. Given y∈Y, let C be 

a compact set in X containing the neighbourhood U of x in X. 

Then C ∩ Y is closed in C and thus compact. Then it 

contains the neighbourhood U ∩ Y of y in Y. (We have not 

used the Hausdorff condition here.) 

Again suppose that Y is open in X. Given y∈Y, we apply 

the previous lemma to choose a neighbourhood V of y in X 

such that cl(V) is compact and cl(V) ⊂ U. Then C = cl(V) is 

a compact set in Y containing the neighbourhood V of y in Y. 

Hence the proof of the theorem is complete. 

Corollary 4.2
[2]

: 

A space X is homeomorphic to an open subset of a 

compact Hausdorff space if and only if X is locally compact 

Hausdorff. 

Definition: A compactification of a space X is a compact 

Hausdorff space Y containing X such that X is dense in 

Y(That is, such that cl(X) = Y). 

Two compactification Y1 and Y2 are said to be equivalent 

if there is a  homeomorphism h: Y1 →  Y2 such that h(x) = x 

for every x∈X. 

In order for X to have a compactification, X must be 

completely regular, because a subset of a compact Hausdorff 

space is necessarily completely regular. 

Conversely, every completely regular space has at least 

one compactification. 

One way of obtaining a compactification of X is as follows: 

Suppose X is completely regular space. Choose an 

imbedding 

h: X → Z of X in a compact Hausdorff space Z. Let X0 

denote the subspace h (X) of Z, and let Y0 denote its closure 

in Z. Then Y0 is a compact Hausdorff space and 

c1(X0) = Y0; Therefore, Y0 is compactification of X0. 

Example : 

Let Y be the space [0,1]. Then Y is compactification of X 

= (0,1). It is obtained by “adjoining one point at each end of 

(0,1).” 

Definition: 

Let X be a completely regular space. Let {f
α

}
Jα∈  be the 

collection of all bounded continuous real valued functions on 

X, indexed by some index set J. For each Jα∈ , choose a 

closed interval I
α

in ℝ containing f
α

(X). To be definite, 

choose I
α

= [glb f
α

(X), lub f
α

(X)]. 

Then define, h: X →
αI∏  by the rule h (x) = (f

α
(x))

Jα∈ . 

Then by Tychonoff theorem 
αI∏ is compact. Since X is 

completely regular, the collection {f
α

} separates points from 

closed sets in X. Therefore, by the Imbedding theorem h is an 

imbedding. The compactification of X induced by h is called 

the Stone-Cech compactification of X. it is denoted by ( )Χβ . 

The property of the Stone-Cech compactification is the 

following: 

Theorem 4.4
[2]

:(Extension property) 

Let X be a completely regular space and let ( )Χβ be its 

Stone-Cech compactification. Then every bounded 

continuous real-valued function on X can be uniquely 

extended to a continuous real-valued function on ( )Χβ . 

Uniqueness of the extension is a consequence of the 

following lemma: 

Lemma 4.2
[2]

:(Uniqueness of the extension)
 

Let A ⊂  X; let f: A→ Z be a continuous map of A in to 

the Hausdorff space Z. There is at most one extension of f to 

a continuous function g: c1 (A) → Z 

Proof: Suppose that g, g′: c1 (A) → X are two different 

extensions of f; Choose x so that g(x) ≠ g′(x). Let U and U′ 
be disjoint neighbourhoods of g(x) and g′(x), respectively. 

Again choose a neighbourhood V of x so that g(V) ⊂ U and 

g′(V) ⊂  U′. Now V intersects A in some point y; then 

g(y)∈U and g′(y) ⊂ U′. But since y A,∈  we have g(y) = 

f(y) and g′(y) = f(y). This contradicts the fact that U and 

U′ are disjoint. This completes the proof of the theorem. 

The following theorem characterized the fact that Stone-

Cech compactification in a space is unique. 

Theorem 4.5
[2]

: 

Let X be completely regular. Let Y1 and Y2 be two 

compactification of X having the extension property. Thus 

there is a homeomorphism Φ of Y1 onto Y2 such that Φ (x) 
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= x for each x∈X. 

5. σσσσ-Compact and Finally Compact 

Spaces 

Definition: 

A topological space X is said to be σ-compact if and only 

if X is the union of a countable family of its compact subsets. 

Theorem 5.1
[7]

: 

Every closed subset of a σ-compact space is σ-compact. 

Proof: Let C be any closed subset of a σ-compact space X. 

Then X is the union of a countable family {Kn: n ∈ ℕ } of its 

compact subsets. Hence 

C ∩ Kn is a closed subset of the subspace Kn of X for each 

n ∈ ℕ. Hence 

C ∩ Kn is compact in C for each n ∈ ℕ. Consequently C is 

the union of the countable family {C ∩ Kn: n ∈ ℕ } of its 

compact subsets. Thus C is 

σ-compact. 

Theorem 5.2
[7]

: 

Every separated locally compact space X with a countable 

open base is σ-compact. 

Proof: Let α be any countable open base for X. Let x be 

any point of X. Then x has a compact closed neighbourhood 

K. Consequently there exists 

a member M of α such that x ∈ M ⊂ K. 

We know that if B and C are any subsets of a topological 

space X and if B ⊂ C then CB ⊆  and we also know that a 

subset B of a topological space X is closed if and only if B = 

B . Since K is closed, hence from the above theorem we 

have M ⊂ K. Since K is a separated compact subspace of X 

and we know that every compact subset of a separated space 

is closed. Hence from the above M  is a compact subset of K 

and so of X. Thus for each x in X there is a member M of the 

countable open base α such that x ∈ M . It follows that X is 

the union of the countable family { M : M ∈ α} of compact 

subsets. 

Theorem 5.3
[7]

: 

If X is a σ-compact locally compact separated space then 

there exists a sequence (Bn: n ∈ ℕ) of compact subsets of X 

with the property that (
0

nB : n ∈ ℕ) covers X and for each 

compact subset C of X there is an n in ℕ such that C ⊂ 
0

nB . 

Theorem 5.4
[7]

: 

Let X be a locally compact separated space and let X
*
 = X 

∪ {∞} be a one-point compactification of X. Then X is σ- 

compact if ∞ has a countable local base in X
*
. 

Definition: 

A topological space X is said to be finally compact or a 

Lindeloff space if and only if every open cover of X has a 

countable subcover. 

A subset B of X is said to be finally compact if and only if 

B is finally compact as a subspace of X. 

Theorem 5.5
[7]

: 

Every topological space with a countable open base is 

finally compact. 

Proof: Let β be an open cover of a topological space X 

with a countable open base γ. Then for each x in X there is a 

member B of β such that x∈B and we know that a subclass β 

of a topology � for a set X is a base of � if and only if for 

each U in � and each x in U there is a member V of β such 

that x ∈ V ⊂ U. Hence from the above theorem, there is a 

member Cx of V such that x ∈ Cx ⊂ B. Consequently the 

subclass {Cx: x ∈ X} of γ is a countable cover of X. For each 

Cx we can pick a member Bx of β such that Cx ⊂ Bx. Then 

{Bx: x ∈ X} is a countable subcover of β. Hence X is finally 

compact. 

Theorem 5.6
[7]

: 

Every σ-compact space is finally compact. 

Proof: Let X be a σ-compact space. Then there is a 

countable family 

{Xn: n ∈ ℕ } of compact subsets of X such that X = ∪ {Xn: 

n ∈ ℕ }. Consider any open cover α of X. For each n in ℕ 

there is a finite subclass αn of α covering Xn, because Xn is 

compact. Hence ∪ {αn: n ∈ ℕ } is a countable subclass of α 

and covers X. Hence X is finally compact. 

Theorem 5.7
[7]

: 

Every regular finally compact space is normal 

Proof: 

Let A and B be any two disjoint closed subsets of a regular 

finally compact space X. Since X is regular, there exists an 

open set Ux for each x in A such that x ∈ Ux ⊂ U x ⊂ (X − B). 

The class {Ux: x ∈ A} covers A. Therefore {Ux: x ∈ A} ∪ 

{X − A} is an open cover of X. Since X is finally compact, 

there exits a countable subclass of this cover covering X and 

therefore A, and the closure of each member of this countable 

class is disjoint from B. By an analogous argument there 

exists a countable class of open subsets of X such that this 

class covers B and the closures of each member of which is 

disjoint form A. Hence A and B have disjoint 

neighbourhoods. Thus X is normal. 

6. Conclusion 

In this study we show that compactness, limit point 

compactness and sequentially compactness are equivalent in 

metrizable spaces. We introduce it here as an interesting 

application of the Tychonoff theorem. We show that every 

compact space is locally compact but not conversely. We also 

show that the product of finitely many compact spaces is a 

locally compact space. We show that Stone-Cech 

compactification in a space is unique. We also show that 

every regular finally compact space is normal. This research 

work would give some remarkable results which can be used 

to study the whole topological space by studying a finite 

number of open sets. 
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