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Abstract: In this paper following Deissler’s approach and taking Fourier transform, the decay for the concentration of a 

dilute contaminant undergoing a first-order chemical reaction in dusty fluid homogeneous turbulence at times prior to the 

ultimate phase in a rotating system for the case of multi-point and multi-time at four point correlation  is studied. Here two 

and three point correlations between fluctuating quantities have been considered and the quadruple correlations are ignored in 

comparison to the second and third order correlations. Taking Fourier transform the correlation equations are converted to 

spectral form. Finally, integrating the energy spectrum over all wave numbers we obtained the decay law for the 

concentration fluctuations of first order reactant in homogeneous dusty fluid turbulence prior to the final period of decay in a 

rotating system for the case of multi-point and multi-time at four-point correlation.  
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1. Introduction

The introduction of the Chemical reactions occur in the 

gas phase, in solution in a variety of solvents, at gas-solid 

and other interfaces, in the liquid state, and in the solid state. 

It is sometimes convenient to work with amounts of 

substances instead of with concentrations. The essential 

characteristic of turbulent flows is that turbulent fluctuations 

are random in nature. Chemical reaction as used in chemistry, 

chemical engineering, physics, fluid mechanics, heat and 

mass transport.  In recent year; the motion of dusty viscous 

fluids in a rotating system has developed rapidly. The 

motion of dusty fluid occurs in the movement of dust –laden 

air, in problems of fluidization, in the use of dust in a gas 

cooling system and in the sedimentation problem of tidal 

rivers. The behavior of dust particles in a turbulent flow 

depends on the concentrations of the particles and the size of 

the particles with respect to the scale of turbulent fluid. In 

geophysical flows, the system is usually rotation with a 

constant velocity, such large Scale flows are generally 

turbulent. The Coriolis Effect is caused by the rotation of the 

Earth and the inertia of the mass experiencing the effect. The 

most commonly encountered rotating reference frame in the 

Earth. Because the Earth completes only one rotation per day, 

this force causes moving objects on the surface of the Earth 

to appear to change direction to the right in the northern 

hemisphere, and to the left in the southern and it has great 

significance in Astrophysics, Stellar dynamics, Earth 

sciences, Meteorology, Physical geology and Oceanography. 

Deissler (1958, 1960) developed a theory ‘on the decay of 

homogeneous turbulence before the final period’. Loeffler 

and Deissler (1961) studied the temperature fluctuations in 

homogeneous turbulence before the final period. Kishore 

and Golsefid (1988) obtained and expression for the effect of 
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Coriolis force on acceleration covariance in MHD turbulent 

flow of a dusty incompressible fluid. Kumar and Patel (1974) 

studied the first order reactants in homogeneous turbulence 

before the final period of decay. Kumar and Patel (1975) 

extended their problem (1974) on first-order reactants in 

homogeneous turbulence for the case of multi-point and 

multi-time concentration correlation. In (1991), Sarker and 

Kishore studied the decay of MHD turbulence at times 

before the final period using Chandrasekhar’s (1951) 

invariant theory of isotropic turbulence in 

magneto-hydrodynamics relation. Shimomura and 

Yoshizawa (1986) derived expressions for statistical 

analysis of an isotropic turbulent viscosity in a rotating 

system. Shimomura (1989) also studied a statistical equation 

model of turbulent scalar flux in a rotating system. Sarker 

and Ahmed (2011) pointed out that the fiber motion in dusty 

fluid turbulent flow with two point correlation. Corrsin 

(1951) obtained on the spectrum of isotropic temperature 

fluctuations in isotropic turbulence. Azad et al. (2011) also 

studied the statistical theory of certain distribution functions 

in MHD turbulent flow for velocity and concentration 

undergoing a first order reaction in a rotating system. 

M.A.Bkar Pk et al. (2012) derived the decay of energy of 

MHD turbulence for four-point correlation. M.A.Bkar Pk et 

al. (2013) also studied First-order reactant in   homogeneou 

turbulence prior to the ultimate phase of decay for four-point 

correlation in presence of dust particle. M.Monuar Hossain 

et al.(2014) obtained the homogeneous fluid turbulence 

before the final period of decay for four-point correlation in 

a rotating system for first order reactant. Bkar Pk et al., 

(2013) explained that the decay of MHD turbulence prior to 

the ultimate phase in presence of dust particle for four-point 

correlation. Bkar Pk et al., (2013) also studied that the decay 

of dusty fluid MHD turbulence for four-point correlation in a 

rotating system. 

M.Monuar Hossain et al.(2014) obtained their work at 

four-point single time. But in our work, First-order reactant 

of homogeneous dusty fluid turbulence prior to the final 

period of decay in a rotating system for the case of 

multi-point and multi-time at four-point correlation has been 

studied. 

Here, we have considered two-point, three-point and 

four-point correlation equations and solved these equations 

after neglecting fifth-order correlation terms. Finally we 

obtained the decay law of energy fluctuations of 

concentration of dilute contaminant undergoing a first order 

chemical reaction in dusty fluid homogeneous turbulence in 

a rotating system for the case of multi-point and multi-time 

at four-point correlation comes out to the form 

{ }.)]2(exp[)exp(-2RT 52/3
m

2 −− −Ω−+= mmmkim BTfQATX ε  

where 2X  denotes the concentration fluctuation energy. 

It is seen that the demolition of the impurity is more rapid 

than that in the case of pure mixing. This result has been 

shown in the figure also.  

2. Material and Methods 

Following Kumar and Patel (1974) for first-order 

chemical reaction in homogeneous dusty fluid turbulence in 

a rotating system could be written as: 
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The subscripts can take on the values 1, 2, and 3. 

Here,  

)ˆ(xui  = a random function of position and time at a point 

p, 

),ˆ( txuk =turbulent velocity,  

R=constant reaction rate, 

D =diffusivity,  

t= time,  

mkiε =alternating tensor, 

mΩ =constant angular velocity components,  

ρ
kN

f = , dimension of frequency,  

N=constant number density of dust particle,  

sss Rm ρπ 3

3

4= , mass of single spherical dust particle of 

radius sR , 

sρ =constant density of the material in dust particle, 

=ν Kinematics viscosity,  

=ρ Fluid density, 

=),ˆ( txp Pressure fluctuation, 

ku =turbulent velocity component, 

iv = dust particle velocity component, 

kx = space-coordinate and repeated subscript in a term 

indicates a summation of terms, with the subscripts 

successively taking on the values 1, 2, and 3. 

3. Correlations and Spectral Equations 

Under the limitations that 

(i) For multi-point and multi-time the turbulence and the 

concentration fields are homogeneous. 

(ii) For multi-point and multi-time the chemical reaction 

and the local mass transfer have no effect on the velocity 

field and  

(iii) The reaction rate and the diffusivity are constant for 

multi-point and multi-time.  

Differential equation governing the concentration of a 

dilute contaminant undergoing a first-order chemical 

reaction we take the Navier-Stokes equations at the point P 

and the concentration equation at P′ and separated by the 

vector r̂  could be written as  
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where ),ˆ( txX   is a random function of position and time. 

The other symbols are as usual. Multiplying equation (2) 

by X ′ , equation (3) by X, and averaging, we get  
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where the conditions of continuity and the fact that the 

quantities at a point at a particular time are independent of 

the positions at the other points have been utilized. For 

multi-point and multi-time using the transformations.  
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in to equation (4) and (5), we obtain  
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In order to reduce equations (6) and (7) to spectral form 

by using three-dimensional Fourier transform  
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We get  
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where ),,ˆ( tt∆kθ ′   is a function of the three independent 

variables  ;,,ˆ tt∆k  that is obtained by initial conditions. 

For the ultimate phase of homogeneous turbulence 

decompose, the third-order correlations can be ignored in 

comparison to the second-order correlations. With this 

approximation, the solutions of equations (10) and (11) may 

be obtained as  
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For consistent solution of equations (12) and (13) we must 

have  

)]
2

)(22exp[()()( 0

2 t
ttRDkkfkG

∆+−+−=    (14) 

where θπ ′= 22)( kkG  is the concentration spectrum 

function. We evaluate )(kf  by Corrsin (1951) i.e. 
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By integrating equation (15) with respect to k, we obtain 
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where 2/tttm ∆+= .  

4. Three-Point, Three-Time 

Correlations and Equations  

Under the same assumptions as before, we take the 

Navier-Stokes equation for dusty homogeneous fluid 

turbulence in a rotating system at the point P and the 

concentration equations at P′ and P′′ , following Kumar and 

Patel (1975) as 
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Multiplying equation (17) by X′X′′, (18) by Xui
′′  and 

(19) by Xui
′ and then taking space averages, we obtain. 
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For three-point and three-time, using the transformations  
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Into equation (20)-(22), we get 

XXuu
r

XXuu
r

XXuu
rr

XXu
t

ki

k

ki

k

ki

kk

i
′′′′′

′∂
∂+′′′′

∂
∂+′′′

′∂
∂+

∂
∂−′′′

∂
∂

)(  

XXu
rrrr

DXXu
rr

XXp
rr

i

kkkk

i

kkkk

′′′
′∂′∂

∂+
∂∂

∂+′′′
′∂

∂+
∂
∂+′′′

′∂
∂+

∂
∂−= )()()(

1 22
2ν

ρ
 

][)22( XXvXXufXXuR iiimmki
′′′−′′′+′′′Ω+− ε                               (23) 

XuXRXXu
rr

DXXuu
r

XXu
t

ii

kk

ki

k

i
′′′−′′′

′∂′∂
∂=′′′′

∂
∂+′′′

∆∂
∂ 2

                     (24) 

XuXRXXu
rr

DXXuu
r

XXu
t

ii

kk

ki

k

i
′′′−′′′

′′∂′′∂
∂=′′′′′

′∂
∂+′′′

′∆∂
∂ 2

                   (25) 

For four-point and four-time correlations using the 

six-dimensional Fourier transform of the type 
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and the assumption that the quintuple correlations 

representing the transfer terms in equations (23) - (25) can 

be neglected as they decay faster than the lower-order 

correlation terms. Then the equation (23) - (25) in Fourier 

space can be written as  
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where DN s /ν= , the Schmidt number and 

lil vXXLvXX ′′′′=′′′ ψ , 1-L=Q. 

As the pressure force terms are related to higher-order 

correlations, therefore, these along with the quadruple 

correlations are also neglected. Integrating equations 

(26)-(28) between to and t, we obtain 
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This represents the transfer function arising due to the 

consideration of concentration at three- point and three- time. 

When ∆t = 0 and R = 0, the expression for reduces to the case 

of pure mixing. It may also be noted that (for ∆t = 0) 

0=∫ dkW                   (35) 

Here W satisfies the condition of continuity and 

homogeneity. Since W is the measure of transfer of energy 

and total energy transferred to all wave numbers is to be zero. 

With the help of equation (31) and (34), we get 
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If 0=∆t , equation (38) reduces to the form 
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Thus, the decay law for the concentration energy 

fluctuation of homogeneous dusty fluid in a rotating system 

for multi-point and multi-time prior to the final period may 

be written as 
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5. Results and Discussion 

It is noted that y1, y2, y3, y4, y5, y6 and y7 are energy 

decay curves of equation (40). But in the absence of dust 

particles and non-rotating system y1, y2, y3, y4, y5, y6, y7 

are represented by equation (41). Figures 1, 2, and 3 

represents energy decay curves of equation (40) and 

equation (41) for figure 4. In equation (40) we obtained the 

concentration fluctuation energy of dusty fluid 

homogeneous turbulence in a rotating system for multi-point 

and multi-time. In the absence of corriolis force i.e. if the 

frame is non-rotating and dust particles are absence then 

equation (40) becomes 

{ }.)exp(-2RT 52/3
m

2 −− += mm BTATX            (41) 

which was obtained earlier by Kumar and Patel (1974).For 

large times, the last term of equation (41) becomes 

negligible and the decay law for the ultimate period 

becomes )()exp(-2RT 2/3

m

−
mAT which in the case of 

pure-mixing is similar to the law obtained by Corrsin(1953). 

In Fig.1, we observe that the variation of chemical 

reaction(R =3.5, 1.75, 0.875, 0.44, 0.22, 0.11 and 0) causes 

significant changes in the concentration fluctuation decay of 

energy of dusty fluid homogeneous turbulence in presence 

of corriolis force for multi-point and multi-time due to 

F=2.75 and H=1.5. It is mentioned that the energy decay of 

the fluid particles decreases with the increases of the 

chemical reaction R and is maximum at zero. If the system is 

non-rotating i.e. the corriolis force is absence the energy 

decay of the fluid particles more rapidly than rotating with 

dust particle system which indicated in the Fig.2, .In Fig.3, 

for multi-point and multi-time we observe that in the 

absence of corriolis force and dust particles energy decay 

more slowly than with the present of dust particles in a 

rotating system. 

 

Fig. 1. Energy decay curves for F=2.75, H=1.5. 

 

Fig. 2. Energy decay curves for F=0, H=1.5. 

 

Fig. 3. Energy decay curves for F=2.75, H=0. 
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Fig. 4. Energy decay curves for F=0, H=0. 

In Fig.4, we notice that in the absence of dust particles the 

energy decay of fluid particles very slowly due to the 

variation of first-order chemical reaction in homogeneous 

fluid turbulence for the case of multi-point and multi-time. 

6. Conclusion 

The decomposition of the concentration fluctuation in 

homogeneous turbulence in the rotating system is more 

slowly due to absence of dust particles than any other type of 

chemical reactant. In the case of non rotating system for four 

point correlation, this study shows that if the concentration 

selected is the chemical reactant of the first order, then the 

effect is that the decomposition of the concentration 

fluctuation in homogeneous turbulence in the presence of 

dust particle is much more rapid if the system is non-rotating 

and the faster rate of decomposition is governed 

by )exp(-2RTm
. In a normal way, it takes a lot of time to get 

rid of a pollutant in the fluid. The only effective factor in the 

case of chemical reactant is )exp(-2RTm
 which can be taken 

as the correcting law for the pure mixing case and may be 

applied to the data for the case of reactant and thus, the 

numerical work required for this study has been avoided. 

From the above figures and discussion, we conclude that for 

both rotating and non-rotating frame the decomposition of 

the concentration fluctuation in homogeneous turbulence are 

increases due to the decreases of the first order chemical 

reaction in either the presence of dust particles or not and 

maximum at the point where the chemical reaction is zero. 
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