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Abstract: In this paper following Deissler’s approach and taking Fourier transform, the decay for the concentration of a
dilute contaminant undergoing a first-order chemical reaction in dusty fluid homogeneous turbulence at times prior to the
ultimate phase in a rotating system for the case of multi-point and multi-time at four point correlation is studied. Here two
and three point correlations between fluctuating quantities have been considered and the quadruple correlations are ignored in
comparison to the second and third order correlations. Taking Fourier transform the correlation equations are converted to
spectral form. Finally, integrating the energy spectrum over all wave numbers we obtained the decay law for the
concentration fluctuations of first order reactant in homogeneous dusty fluid turbulence prior to the final period of decay in a

rotating system for the case of multi-point and multi-time at four-point correlation.
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1. Introduction

The introduction of the Chemical reactions occur in the
gas phase, in solution in a variety of solvents, at gas-solid
and other interfaces, in the liquid state, and in the solid state.
It is sometimes convenient to work with amounts of
substances instead of with concentrations. The essential
characteristic of turbulent flows is that turbulent fluctuations
are random in nature. Chemical reaction as used in chemistry,
chemical engineering, physics, fluid mechanics, heat and
mass transport. In recent year; the motion of dusty viscous
fluids in a rotating system has developed rapidly. The
motion of dusty fluid occurs in the movement of dust —laden
air, in problems of fluidization, in the use of dust in a gas
cooling system and in the sedimentation problem of tidal
rivers. The behavior of dust particles in a turbulent flow
depends on the concentrations of the particles and the size of
the particles with respect to the scale of turbulent fluid. In

geophysical flows, the system is usually rotation with a
constant velocity, such large Scale flows are generally
turbulent. The Coriolis Effect is caused by the rotation of the
Earth and the inertia of the mass experiencing the effect. The
most commonly encountered rotating reference frame in the
Earth. Because the Earth completes only one rotation per day,
this force causes moving objects on the surface of the Earth
to appear to change direction to the right in the northern
hemisphere, and to the left in the southern and it has great
significance in Astrophysics, Stellar dynamics, Earth
sciences, Meteorology, Physical geology and Oceanography.
Deissler (1958, 1960) developed a theory ‘on the decay of
homogeneous turbulence before the final period’. Loeffler
and Deissler (1961) studied the temperature fluctuations in
homogeneous turbulence before the final period. Kishore
and Golsefid (1988) obtained and expression for the effect of
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Coriolis force on acceleration covariance in MHD turbulent

flow of a dusty incompressible fluid. Kumar and Patel (1974)

studied the first order reactants in homogeneous turbulence
before the final period of decay. Kumar and Patel (1975)
extended their problem (1974) on first-order reactants in
homogeneous turbulence for the case of multi-point and
multi-time concentration correlation. In (1991), Sarker and
Kishore studied the decay of MHD turbulence at times
before the final period using Chandrasekhar’s (1951)
invariant  theory  of  isotropic  turbulence in
magneto-hydrodynamics  relation.  Shimomura  and
Yoshizawa (1986) derived expressions for statistical
analysis of an isotropic turbulent viscosity in a rotating
system. Shimomura (1989) also studied a statistical equation
model of turbulent scalar flux in a rotating system. Sarker
and Ahmed (2011) pointed out that the fiber motion in dusty
fluid turbulent flow with two point correlation. Corrsin
(1951) obtained on the spectrum of isotropic temperature
fluctuations in isotropic turbulence. Azad et al. (2011) also
studied the statistical theory of certain distribution functions
in MHD turbulent flow for velocity and concentration
undergoing a first order reaction in a rotating system.
M.A Bkar Pk et al. (2012) derived the decay of energy of
MHD turbulence for four-point correlation. M.A.Bkar Pk et
al. (2013) also studied First-order reactant in  homogeneou
turbulence prior to the ultimate phase of decay for four-point
correlation in presence of dust particle. M.Monuar Hossain
et al.(2014) obtained the homogeneous fluid turbulence
before the final period of decay for four-point correlation in
a rotating system for first order reactant. Bkar Pk et al.,
(2013) explained that the decay of MHD turbulence prior to
the ultimate phase in presence of dust particle for four-point
correlation. Bkar Pk et al., (2013) also studied that the decay
of dusty fluid MHD turbulence for four-point correlation in a
rotating system.

M.Monuar Hossain et al.(2014) obtained their work at
four-point single time. But in our work, First-order reactant
of homogeneous dusty fluid turbulence prior to the final
period of decay in a rotating system for the case of
multi-point and multi-time at four-point correlation has been
studied.

Here, we have considered two-point, three-point and
four-point correlation equations and solved these equations
after neglecting fifth-order correlation terms. Finally we
obtained the decay law of energy fluctuations of
concentration of dilute contaminant undergoing a first order
chemical reaction in dusty fluid homogeneous turbulence in
a rotating system for the case of multi-point and multi-time
at four-point correlation comes out to the form

(X?) =exp(2RT AT +exp[-(26,,,2,, - OIBT,)

where < X 2 > denotes the concentration fluctuation energy.

It is seen that the demolition of the impurity is more rapid
than that in the case of pure mixing. This result has been
shown in the figure also.

2. Material and Methods

Following Kumar and Patel (1974) for first-order
chemical reaction in homogeneous dusty fluid turbulence in
a rotating system could be written as:

Ou, Oou, _ 1 dp 0°u,
+u, =———+V — Ru,
ot ox, pox,  Ox,0x,
=26,,Q,u; * f(u; =v,) (D

The subscripts can take on the values 1, 2, and 3.

Here,

u;(x¥) =arandom function of position and time at a point
p;

u (%,1) =turbulent velocity,

R=constant reaction rate,

D =diffusivity,

= time,

£, —alternating tensor,

Qm =constant angular velocity components,

f= N , dimension of frequency,
P
N=constant number density of dust particle,

mg

= % 7R ,* p, » mass of single spherical dust particle of

radius R,

L, =constant density of the material in dust particle,

V = Kinematics viscosity,
O = Fluid density,

p(X,t) = Pressure fluctuation,
u, =turbulent velocity component,
v, = dust particle velocity component,

X, = space-coordinate and repeated subscript in a term

indicates a summation of terms, with the subscripts
successively taking on the values 1, 2, and 3.

3. Correlations and Spectral Equations

Under the limitations that

(1) For multi-point and multi-time the turbulence and the
concentration fields are homogeneous.

(i1) For multi-point and multi-time the chemical reaction
and the local mass transfer have no effect on the velocity
field and

(iii) The reaction rate and the diffusivity are constant for
multi-point and multi-time.

Differential equation governing the concentration of a
dilute contaminant undergoing a first-order chemical
reaction we take the Navier-Stokes equations at the point P
and the concentration equation at P’ and separated by the
vector 7 could be written as
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2
X, X ap OX gy 2)
ot ox, 0x,0x,
i 1] 2 r
OX i OX o p O X ey 3)
ot ox, 0x, 0x,

where X (X,t)
The other symbols are as usual. Multiplying equation (2)
by X', equation (3) by X, and averaging, we get

is a random function of position and time.

O(XX') Ou, XX') 9% (XX') ,
ot * ox, B Ox, 0x, R{xx) @)
AXX)  QidX) _ pOUX) _pivey gs)
or Ox, 0x,0x,

where the conditions of continuity and the fact that the
quantities at a point at a particular time are independent of
the positions at the other points have been utilized. For
multi-point and multi-time using the transformations.

d _ a8 o

9 __9 9 _90 0:(6) _9 96_0
dx, Or, Ox, o0r 0t \ot), OAt’dr OAt’

in to equation (4) and (5), we obtain

oXX) O XX') ou Xx) L 0%(XX) .
T+T(—r,—At,t+N)—T(r,At,t)—2DW—2R<XX> (6)
XXy Ou, XX' % {xx'
u + M(—ﬁ—m,t +An) = DM - R<XX’> (7
oAt or, or,0r,

In order to reduce equations (6) and (7) to spectral form
by using three-dimensional Fourier transform

(XX'(7, At,8)) = J'H'(lé,m, HexplikAdk  (8)

—o0o

(XX'(7,00,0)) = [ @, (k. 0t ) exp(ik. Ak (9)

We get
a;’ +(2Dk* +2R)8 =ik, @, (k, At,0) +i(~k; )@, (~ky ,~At, e+ A1) (10)
¢ 2 i ~
—+(Dk* +R)E' = —ik, @ (—k,—At,t + A¢) (11)

04t

where 9’(12,At,t) is a function of the three independent

variables IQ,At,t; that is obtained by initial conditions.

For the ultimate phase of homogeneous turbulence
decompose, the third-order correlations can be ignored in
comparison to the second-order correlations. With this
approximation, the solutions of equations (10) and (11) may
1

9 v ey 4 9 AV B
a(u[XX >+ox,( (up X'x") = o, (pXX")+v o

be obtained as

6 = f;(k, At)exp[~(2Dk* + 2R)(t - 1,)] (12)

8 = fy(k.t)exp[~(Dk> + R)A1)]. (13)

For consistent solution of equations (12) and (13) we must
have

G(k) = f(k)exp[(=2Dk* +2R)(t — 1, +%)] (14)

where G(k)=27%*@ is the concentration spectrum
function. We evaluate f(k) by Corrsin (1951) ie.

f(k)=Nyk*/m, where a constant N, is depending on

initial condition. Thus, we obtain
N 2
G(k) = 07kexp[(—2Dk2 +2R)(t—t, + %)] (15)
s

By integrating equation (15) with respect to &, we obtain

N D1/2
fat;n = 0 €X] [_
) dWami, —t,)"? Pl

where ¢, =t+At/2,

2c(t,, —t))+ P2
8D(Zm - tO)

(xx')( 41 (16)

4. Three-Point, Three-Time
Correlations and Equations

Under the same assumptions as before, we take the
Navier-Stokes equation for dusty homogeneous fluid
turbulence in a rotating system at the point P and the
concentration equations at P"and P”, following Kumar and
Patel (1975) as

2
Oui_'_ Oui:_16l+v 0°u

u, —=-— — - Ru,
ot Ox, P Ox, Ox,0x,

_2£mkiQmui+f(ui_vi) (17
ox' o ,ox'_ o 0'Xx' ,
o T anr T Pavran X (18)
ox" ,0x" 0’ x" "

" +uk " = a1 _RX (19)
ot Ox, 0x, 0x;

Multiplying equation (17) by XX”, (18) by u, X " and

(19) by u, X "and then taking space averages, we obtain.

(wxx"y = R(u; XX") = 26,69, (w; XX ")+ f(u, XX") = (v, XX")] (20)
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0 0 2
— (U XX" Y+ —(uu, XX"y =D——{(u. XX") - R{u.X'X"
af( i > axlrc < ik > x;{ax;{ <ut > <ul > (21)
i(uQ{'X") +i(uiu;;X'X"> -p- 2 (u, XX") =R (u,X'X") (22)
or" 0x; vox,
For three-point and three-time, using the transformations
9. 9,9,90_90 9_09 9, t"_(i] _ 0 _90 0_0 0_0
0x, or, Or, 0x, Or Ox; oOr ot 0t )y e OAr 0N 0f 0Nt O 0N
Into equation (20)-(22), we get
9 ™)y = (L Dy ) 2l xx"y + iy XK
ot or, or, or, .
1 a a nn a a 2 Avall az 62 nn
= (—+ XX") + V(= +—)(u, X'X") + D + XX
p(ark or, KpXA7) (ark ark') ( ) (6rk6rk or,0r, Ko )
~(2R +2£,,Q,)u, XX")+ f[(u,XX") = (v.XX")] (23)
i<u.X'X"> + i<u.u,;X'X"> -p- 2 (0, XX") = R(X'u, X" (24)
oA ! or, ' oror, ' '
a 2
u XX+ —wu, XX")=D———(u, XX") - R(X'u, X" 25
0At'< i > al"k’ < ik > arkrarku< i > < i > ( )
For four-point and four-time correlations using the oy, -~ », ,
o On O : (k, k', D0 1)
six-dimensional Fourier transform of the type Vs
(XX (7,7, 0, A 1)) = T.ka (k. k' DA Y exp(k 7 + k' 7 )dkdk! + D[(k* +2R)/ DI, (k,k',Dt, B¢ ,£) =0 27
. al/’, A '
and with the fact that, —L(k, k', At AL, 1)
A,
© A A ~ ~ A A 12 ~ ] —
(XX = [ [, (k' 0,0 £y exple + k' 7 )lkdk +D[(k'" +2R)/ D, (k,k',At, A1) =0 (28)

—00—00

and the assumption that the quintuple correlations
representing the transfer terms in equations (23) - (25) can
be neglected as they decay faster than the lower-order
correlation terms. Then the equation (23) - (25) in Fourier
space can be written as

oy,

> (k. k', 0,0 ) + D[(1+ Ny k* +2N k' cos {0 + N, )k

+(2R +2¢£,,,Q, - f0)/ D}, (k,k',At, D', 1) = 0 (26)

where N, =v /D, the Schmidt number and
(XX",)) =Ly (XX"y,), I-L=0.

As the pressure force terms are related to higher-order
correlations, therefore, these along with the quadruple
correlations are also neglected. Integrating equations
(26)-(28) between ¢, and ¢, we obtain

W, = f exp{-D[(1+ N )Yk* +2N kk'cos @+ (1+ N )k'> + (2R +2¢,,Q — f0)/D1(t~1t,)}

W, =g, exp{[-D(k> + R/ D)IAr}

W, =hexp{[-D(k'* + R/ D)]At'} .

For these relations to be consistent, we have

ka, =k,(W@,),exp[-D{(1+ N )k*> + k")t —t,)+ kDt + k" At' + 2N kk'cos 8(t — t,)
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+(2R/D)[t —1, +(Dr +Ar') /2] +[(2€,,,Q,, = fO)/ DI(t — 1,)}]

where the subscript 0 refers to the value of {/ ;atr=1, At=

At =0 and @ is the angle between k and k' .The relation
between @Jand ,is given by

k@ (k, Dt t) = jk,.z,//,. (k, 0, k"0, 0)dk! (30)

Substituting equations (30) and (29) into equation (10),

A

W = [ik, () kK> (27)" exp {— D{(l +Ns)k2[t —f A
0 t+N

!
N

o0

(29)
we obtain

G

E+(2k2D+2R)G:W (31)

where G(k) =276 and

J”"z‘“Ns)(’-fo) +[(26,4,Q, = fO)/ DI(t=1,) +2R/ D +

(2R/ D) (z—r{, +A;)H{rlexp[—2Nl\,Dkk'(t—to)cosg]dk' + J.[i(—k‘. W, (=k,=k")],(2m)*k*k'? exp{-D [(1 + Ns)kz[t -1, + HA]‘\, ]

0

1

-k A+ N)(t—t, +A)+[(2¢,,Q, - fO)/ Dt —t,) +%(t—t0 +%)]} x J-exp[—ZNjDkk'(t —t, + At)cosd](d cos O)dk' (32)

where dk' s written as 27%'*d(cos @)dk' and the

quantity ({/;), depends on the initial conditions of the
turbulence. Now, following Deissler (1958, 1960),

we take (277) ik, (k,k"), = —%50(/(2154 —k*k'*) and

Q@ il-ky, (<k,~k"), = %50 K2k = k*k'?) (33)

- anvlzl/z
4D3/2(t _t0)3/2(1 +Nv)5/2

2

+ (2€mkiQm - fQ)(z - t())_ 2R[t - tn + Atjo

+ +
exp{—kle 2N, {t—ta + I+ N, Atj

-1

Substituting equation (33) in (32) and completing the
integration, we get

1+N

s

1+2N

s

15k* N,

s

+
4NZX(t-1,)’D* 1+ N,

2
§ N | 3k
1+N, | 2

ON N7

6 3
k + N.Y — N\' kX
ND(-1,) [(1+N, ] 1+N,

1+2N N
exp -k’D -t + :
1+ N, +1+ N,

. Atj + (2gmkiQm _/Q)(t _t()) _2R(t _ta _ZJ:|

— X
4D /2(t =1, + M) (e + Ng)'?

JAYS

15k* N, N,
x . . 45— ]2
AD*NZ(t-t, +Ar)* {1+ N, 1+N,

This represents the transfer function arising due to the

consideration of concentration at three- point and three- time.

When 4¢= 0 and R = 0, the expression for reduces to the case
of pure mixing. It may also be noted that (for 4t = 0)

[Wdk =0 (35)

= K + Ns 3_ Nx k8
2|N,D(t=t,+8) " [(1+N, ) 1+N,

(34)

Here W satisfies the condition of continuity and
homogeneity. Since W is the measure of transfer of energy
and total energy transferred to all wave numbers is to be zero.
With the help of equation (31) and (34), we get
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2
=Nk exp{— 2(k2D+2R)[t—tn +%)}+7‘/7TN : xiexp[ plr2Ny [ 0+7(11++]Z~;3A’ ] 26,9, ~ fONt~1,) - 2R[t ‘ +%ﬂ
Vs s

D3/2(1+N:)7/2 4 1+N
y 3k o ON-OK' 40N -2N +3K* 8D'(N?-2N, +3K [ [¢=1,)D)|,  JaN, 9,
ZNA‘DZ(Z_Z”)S/Z 3D(l +NS)(Z_Z”)3/2 3(1 +Nj)2(t_t”)1/2 3(1+Ns)5/2 1+Nx D3/2(1+NS)7/2 4
1+2N.) , N, Y,
exp| —D| ——= |k°| t —t, +——=—At |+(2¢ t=1,)=2R[t—1,+
Xp|: ( 1+NY J ( 0 1+2N\. J ( ka m fQ)( 0) [ 2 j:|
4 _ 6 2 _ 8 1/2 2 _ 9 _
o —, 3k . (7N, - 6)k _ 4 (3N52 2N:+3)k”2 L8DPGNE 2N, +3K” [ [(t=1, +A0)D (36)
2D°N (t—t, +At)*'*  3D(1+N,)(t—t, +Ar) 3(1+N)(t—1t, +Ar) 1+N,)"? 1+N,
where,
w
F(w) = exp(-a) [ exp(x” )dx,
0
_; [e=1)D [t + 80D
As in the previous section, by integrating equation (36) with respect to k, we obtain
® N, At
xx' ° exp[ 2R(T+ ﬂ 7 IAY;
—(Qt,t)) = | Gdk = 32 2)|+ exp[—(2¢,,.Q - exp[2R(T +—
< 2 ( m)> .([ 8D3 ZJ;T[T'F%J D6(1+Ns)(1+NS)5/Z p[ ( mki =% m fQ)] p[ ( 2 )]
5 9 9 5N (7N, - 6)
Xj L+ N 5/2 5/2 L+ N 7/2
16T5/2(T+75AT] 16(T+AT)5/2[T+ N AT] 16(1+2N¢)T3/2(T+7‘ATJ
1+2N, 142N, ’ 142N,
5N (TN, -6 2_ 2_
+ s(IN, —6) . - 35N, (3N2 2N, +3) - 35N,(3N2 -2N, +3) .
16(1+ 2N, )(T+AT)3/2[T+ AT] 8(1+2N, )TI/Z(T+1 N AT] 8(1+2NS)<T+AT)”Z(T+LAT]
142N, 142N, 142N,
2 o T @n+n/2 (T+AT)(2n+l)/2
+8NS(3NS _ZNS +3)(1+2NS) il 135(27’!"’9) (2n+11)/2 + AT (2n+1)/2 (37)
3.222(1+N,)'"? a=onl(2n+127" (1+N,)* £T+7j £T+7]
where, T = (¢ — t,),
ForT, =T + AT /2, equation (37) becomes
o,n 9 1
' -2¢,,.Q - —
<XX(t >_ exp(—2RT) ]\2/2 o 4D6(1+N YI+2N) exp[—(2€,,,Q,, fQ)]l6 ATV AT )
V2 T,-—| |T,+
9 L3N.(IN, -6) 1 L NN, ~6) 1 —
16(1- 2N, 3/2
167, +20 BTy 6N, BT BT, 160N [Tm+£] [T - AT ] (38)
2 nt ", 2 1+ 2N,

If At = 0, equation (38) reduces to the form

X? N 1 o, 5 N,(7N, —6)
— ) =exp(—2RT, ° — = exp[—(2¢, 5 -
< ’ > p( ) {8 D2 T;/z 2D6(1+Ns)(1+2Ns) p[—(2¢,,Q fQ)]|:16T5 16 (1+2NS)T,: }}

Therefore,
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(x*)= exp(—zRTm){ N,

3
4\/;.[1)3/2 T;/z

where,

- n {9 5 N,(7N, —6) }
a= —t s g
(1+N)(1+2N,) [16 16 (1+2N,))

Thus, the decay law for the concentration energy
fluctuation of homogeneous dusty fluid in a rotating system
for multi-point and multi-time prior to the final period may
be written as

(x%)= exXp(2RT, AT, +exp[~(F ~ )BT’} (40)

where

3N, _o,a

A= B F=26,Q, adH = 0.

5. Results and Discussion

It is noted that yl, y2, y3, y4, y5, y6 and y7 are energy
decay curves of equation (40). But in the absence of dust
particles and non-rotating system yl, y2, y3, y4, y5, y6, y7
are represented by equation (41). Figures 1, 2, and 3
represents energy decay curves of equation (40) and
equation (41) for figure 4. In equation (40) we obtained the
concentration  fluctuation energy of dusty fluid
homogeneous turbulence in a rotating system for multi-point
and multi-time. In the absence of corriolis force i.e. if the
frame is non-rotating and dust particles are absence then
equation (40) becomes

<X2> =exp(-2an){AT,;3/2 +BT,;5}. (41)
which was obtained earlier by Kumar and Patel (1974).For
large times, the last term of equation (41) becomes
negligible and the decay law for the ultimate period
becomes  exp(-2RT, )(A7,*'*) which in the case of

pure-mixing is similar to the law obtained by Corrsin(1953).
In Fig.1, we observe that the wvariation of chemical
reaction(R =3.5, 1.75, 0.875, 0.44, 0.22, 0.11 and 0) causes
significant changes in the concentration fluctuation decay of
energy of dusty fluid homogeneous turbulence in presence
of corriolis force for multi-point and multi-time due to
F=2.75 and H=1.5. It is mentioned that the energy decay of
the fluid particles decreases with the increases of the
chemical reaction R and is maximum at zero. If the system is
non-rotating i.e. the corriolis force is absence the energy
decay of the fluid particles more rapidly than rotating with
dust particle system which indicated in the Fig.2, .In Fig.3,
for multi-point and multi-time we observe that in the
absence of corriolis force and dust particles energy decay
more slowly than with the present of dust particles in a
rotating system.

+ exp[_(zgmkiQm - fQ)] ——

Timet)

Fig. 2. Energy decay curves for F=0, H=1.5.

3

Timet)

Fig. 3. Energy decay curves for F=2.75, H=0.

84

(39)
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3 4 ] ]
Timett)

Fig. 4. Energy decay curves for F=0, H=0.

In Fig.4, we notice that in the absence of dust particles the
energy decay of fluid particles very slowly due to the
variation of first-order chemical reaction in homogeneous
fluid turbulence for the case of multi-point and multi-time.

6. Conclusion

The decomposition of the concentration fluctuation in
homogeneous turbulence in the rotating system is more
slowly due to absence of dust particles than any other type of
chemical reactant. In the case of non rotating system for four
point correlation, this study shows that if the concentration
selected is the chemical reactant of the first order, then the
effect is that the decomposition of the concentration
fluctuation in homogeneous turbulence in the presence of
dust particle is much more rapid if the system is non-rotating
and the faster rate of decomposition is governed
by exp(-2RT,))- In a normal way, it takes a lot of time to get

rid of a pollutant in the fluid. The only effective factor in the
case of chemical reactant is exp(-2RT,) which can be taken
as the correcting law for the pure mixing case and may be
applied to the data for the case of reactant and thus, the
numerical work required for this study has been avoided.
From the above figures and discussion, we conclude that for
both rotating and non-rotating frame the decomposition of
the concentration fluctuation in homogeneous turbulence are
increases due to the decreases of the first order chemical
reaction in either the presence of dust particles or not and
maximum at the point where the chemical reaction is zero.
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