
 

Pure and Applied Mathematics Journal 
2014; 3(2): 40-48 

Published online May 20, 2014 (http://www.sciencepublishinggroup.com/j/pamj) 

doi: 10.11648/j.pamj.20140302.13  

 

A convex hull’ characterization 

Franco Fineschi, Giovanni Quaranta 

Department DISAG, University of Siena, Italy 

Email address: 
fineschi@unisi.it (F. Fineschi), quaranta@unisi.it (G. Quaranta) 

To cite this article: 
Franco Fineschi, Giovanni Quaranta. A Convex Hull’ Characterization. Pure and Applied Mathematics Journal.  

Vol. 3, No. 2, 2014, pp. 40-48. doi: 10.11648/j.pamj.20140302.13 

 

Abstract: Conditions so that a vector belongs to a convex hull are obtained. Multilinear convex functions are considered. If 

these maps are defined on a convex set, it is obtained the algebraic expression. As an application, infinite games, with linear 

convex payoff, are studied. 
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1. Introduction 

Some properties of the class of the k-linear convex 

functions are considered. These maps seem to be the 

natural extention of k-linear functions if the domain is 

bounded. Given a linear convex mapping, defined on a 

body, it is possible to extend its definition if an argument is 

outside of the domain. This property enables us to find the 

analytical form of a k-linear convex function YX k →:φ , 

if X  is a convex set which contains the null vector.  

An arbitrary element of a convex set can be represented 

in three different ways using finite sequence of elements of 

the set; these representations are obtained by the following 

theorems: the Shapley-Folkman lemma, Carathéodory’s 

theorem and Fenchel-Bunt’ theorem. 

For example by the last theorem, for any element sof a 

convex, connected set X , a sequence of n  elements of 

X  exists such that s is expressed by a convex combination 

of the sequence. In spite of this, it is well known that an 

arbitrary convex set has not a “convex basis”, that is, it is 

impossible to find an unique sequence, with finite number 

of elements of the set, which span, by linear convex 

combinations, any other. In Algebra it is proved that 
nℜ  

is free over the standard basis, this implies some properties, 

one of these is that an arbitrary sequence of a module A  

may be written as a linear combination of the vectors 

)(,),( 1 netet …  for an unique morphism �: nℜ →�. This 

concept of free set is now moved to convex sets by linear 

convex functions. One result obtained in this paper is that a 

convex combination for an element of a convex, connected 

set A  is expressed by a unique convex combination of 

vectors )(,),( 1 nee φφ …  for a linear convex function φ , that 

is, any element a  of A  determines a φ  such that 

∑ aeii =)(φξ .  

Conditions are obtained in order that a vector belongs to 

a convex hull if it is spanned by a finite set. The conditions 

give new expression to the convex hull.  

It is known, see [7] and [8], that two persons, infinite, 

symmetric games, with a compact, convex set as strategy 

space and a linear convex function as payoff, have 

solutions. In the last section we obtain the form of the 

payoff of these games. 

2. Free Convex Sets 

Let S  be a set of vectors in 
nℜ , with the null vector 

S∈0 , then denote by ScoX =  the convex hull of S . 

Suppose nk ≤  the maximal number of linearly 

independent vectors in X  and 
kxx ,,1 …

 be a set of 

linearly independent vectors of X .  

A k-linear convex mapping �: �� � �, for 	
 � �, is 

defined by  

∑∑
==

r

i

kiik

r

i

iiki abaabaaaa
1

1

1

11 ),,,,(=),,,,(=),,,,( ……………… φλλφφ  

where �
 
 0 and∑ �
 � 1, �
 ��
�� nℜ .  

Example 2.1Consider the function  

byaxxyyxf ≤≤≤≤ 0,02=),(  

Let 
�
� � �� � �� � 	 , then yxyxf 11 2=),(  and 

yxyxf 22 2=),( , even if ���� � ��, �� does not exist, so 
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),( yxf  is not a bilinear function. Whereas, for 1<<0 λ ,  

yxxyxxf ))(12(=),)(1( 2121 λλλλ −+−+  

yxyx 21 )2(12= λλ −+  

),()(1),(= 21 yxfyxf λλ −+  

that is, ),( yxf  is a convex linear function of each 

variable separately.  

The following is a known basic statement  

Proposition 2.1 Let 
mkX ℜ→:φ  be a k-linear convex 

mapping and X  a convex subset of 
nℜ . The image 

)( kXφ  is convex in 
mℜ .  

Proof. The image under φ  of every convex 

combination of elements of X  is a convex combination 

in 
mℜ .  

A point of a convex hull has three known representations 

by sequences of elements of the same convex set. 

a)The first representation is founded on the 

Shapley-Folkman lemma, see [1], [2] and [10].Consider a 

finite family�
 ,  � 1,… , "  of subset of 
nℜ , the Minkowsky 

sum # � ∑ #
�
��  is defined by element-wise addiction of vectors 

# � $#� � % � #�: #
 � �
& 
The Minkowsky sum has an immediate property: for any 

nonempty finite family of sets �
 of 
nℜ '(�∑ �
� � ∑ '(�
. 

So if # � ∑ '(�
 and # � #� � % � #� with #
 � '(�
. 
The expression of sby #� � % � #� depends on the same 

point s. For the representation # � #� � % � #� , in the 

space 
nℜ , holds 

Lemma (Shapley-Folkman) If the number k of �
  is 

greater than the dimension n of the space, the point s has 

the expression 

# � ) #

�*
*+

� ) #,
+-�*,*�  

where #
 � '(�
 and #, � �,. 

In other words # � ∑ '(�
 ��*
*+ ∑ �,+-�*,*� . 

b)By the Carathéodory’s theorem, any 
nScos ℜ⊂∈  

may be represented as a convex combination of 1+n  

elements of S . 

c)In particular, if S  is connected, the Fenchel-Bunt’ 

theorem, see [3] and [8], proves that any Scos ∈  can be 

expressed as a convex combination of n  elements of S . 

Thesethree representations of an element do not establish 

the existence of a “convex basis” for Sco , because the n  

elements may depend on the particular s to be computed, see 

[6]. Nevertheless, the next definition asserts the condition in 

order that a convex set is free. For a definition of a free 

module on a subset, see [4]. 

In the following we present a different representation for 

elements of convex set based on the definition of free 

convex set. 

Definition 2.1  Let K  be a subset of a convex set X  in 
nℜ  and let XKj →:  be the insertion of K  in X . 

Denote by A  a subset of 
mℜ , then X  is free over K  if, 

for every function AKf →: , an unique linear convex 

mapping AX →:φ  exists such that fj =�φ . 

Example 2.2. Let . � $	, �& / 2ℜ be a subset and '(. 

its convex hull. We want to prove that '(. is free over ., 

i.e., for every �: . � � an unique linear convex function �: '(. � � exists such that � 0 1 � �. 

Unicity. The condition � 0 1 � �  means that ��	� ���	� and ���� � ����. Then for every �:. � �, we have 

to prove the unicity of �: '(. � � such that ��	� � ��	� 

and ���� � ����. For any " � ��	 � ��� � '(. and for 

every linear convex function �  holds ��"� � ����	 ����� � ����	� � ������ � ����	� � ������  so �  is 

univocally defined. 

Existence. The function �, defined by ����	 � ���� �����	� � ������ , is linear convex, in fact for every � � �2�	 � 2��� � '(. 

��2�	 � 2��� � 2���	� � 2����� � 2���	� � 2����� 

Explicitly the expression of the unique linear convex � is 

given by 

��"� � ����	 � ���� � ����	� � ������ ����'��, '��, '3�� � ���'��, '��, '3��= 

� 4'�� '��'�� '��'3� '3�
5 6����7 � 89 6����7 

Where it is supposed ��	� � �'��, '��, '3�� , ���� �
�'��, '��, '3��  and ��	�, ���� � � : 3ℜ ,for any " ����	 � ���� � '(.  with fixed a and b. Then, φ is the 

matrix 89. 

The underlying property of the example above will be 

proved in a more general setting. 

Some properties of the mapping AX k →:φ  follow.  

Since X  is convex, 1<<0, αXai ∈∀ , 

Xaa ii ∈−+ ααα =0)(1 . In particular Xai ∈α . Moreover  

),,0)(1,,(=),,,,( 11 kiki aaaaaa ………… ααα −+ΦΦ  

   (1) 

supposed ji aa = and Φ skewsymmetric it follows 

  (2) 

comparing 1 and 2, it follows Φ skewsymmetric and 

),,,,,,(=),,,,,,( 11 kjikji aaaaaaaa ……………… αα ΦΦ  

),,,,,,( 1 kjj aaaa ……… αΦ−          (3) 

),,0,,()(1),,,,(= 11 kki aaaaa ………… Φ−+Φ αα

),,,,0,,()(1=),,,,,,( 11 kjkji aaaaaaa ……………… Φ−Φ αα
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Let 
+ℜ∈β  and {0}−∈ Nm  such that 0 � <

= � 1 , 

Xai ∈∀ , by the (3) it holds  

),,,,,,(=),,,,,,( 11 kjikji aaa
m

amaaaa ………………

βφβφ  

),,,,,,( 1 kjj aaa
m

am ………

βφ−          (4) 

Proposition 2.2  Let )( −+ ℜ∈ℜ∈ λλ  and 

Xx ∈λ ,� > |1|, then )( XxXx ∈−∈ αα , for 1<<0 α .  

Proof. If 1<<0 β  satisfies λβα ⋅= , then 

0)(1)(= βλβα −+xx , so Xx ∈α . If λβα ⋅− =  then 

0)(1)(= βλβα −+− xx  and Xx ∈−α .  

The next proposition extends the (1) and defines a linear 

convex mapping if its argument is outside the body 

Proposition 2.3 Let ki xxx ,,,,1 ……  be vectors in X  

and ℜ∈δ , then a linear convex mapping AX k →:φ  

satisfies  

),,0,,()(1

),,,,(),,,,(

1

11

k

kiki

xx

xxxxxx

……

…………

φδ
δφδφ

−+
=

  (5) 

Proof. Let 1<,,<0 νµλ  such that @ � �
A B C �DA

A E  

and 1|<| δλ . It is always possible to determinate such 

numbers νµλ ,, . Indeed, if � � �
F <1, the relation 

@ � �
A B C �DA

A E  becames νααµδ 1)(= −− , then, for 

example suppose E � �
� , for 1||2> +δα , it holds 

1<
2

12
=<0

α
αδµ −+ .  

Then, by the Proposition 2.2, the vectors ii xx νµ ,  are 

in X  and the mapping φ  is defined on them.  

( ) ),,))1(,,(=),,,,( 11 kiki xxxxxx ………… νλλδφµφ −+  

),,,,()(1),,,,(= 11 kiki xxxxxx ………… νφλδλφ −+ that is  

),,,,()(1

),,,,(=),,,,(

1

11

ki

kiki

xxx

xxxxxx

……

…………

νφλ
µφδλφ

−−
 

by the (1) 

),,0)(1,,(
1

=),,,,( 11 kiki xxxxxx ………… µµφ
λ

δφ −+  

),,0)(1,,(
)(1

1 ki xxx …… ννφ
λ

λ −+−−  

),,0,,(
)(1

),,,,(= 11 kki xxxxx ………… φ
λ

µφ
λ
µ −+  

),,,,(
)(1

1 ki xxx ……φ
λ

νλ−−  

),,0,,(
))(1(1

1 kxx ……φ
λ

νλ −−−  

),,,,()
)(1

(= 1 ki xxx ……φ
λ

νλ
λ
µ −−  

),,0,,()
))(1(1)(1

( 1 kxx ……φ
λ

νλ
λ

µ −−−−+  

),,0,,()(1),,,,(= 11 kki xxxxx ………… φδδφ −+  

Theorem 2.1 Let YX k →:φ  be a k-linear convex 

function and X  a convex set with X∈0 , then 

),,( 1 kaa …φ  may be expressed by a linear combination of 

),,(
1 k

jj xx …φ , where Xx
i

j ∈  span the vectors Xai ∈ .  

Proof. The nonnull vectors kaa ,,1…  in X  may be 

written as  	
 � G�
�� � % � G�
�� � �G�, … , G�� 

ii bak ||||=  

)
11

(= 1
1

k

i

ki

i

i
i x

ak
x

ak
ak

||||||||
||||

γγ ++⋯  

j

i

ji
k

j

i x
ak

ak
||||

||||
γ1

=
1=

∑  

{0}
1

=

1=

−∈∑ Nkxb
k

ak jji

k

j

i ||||  

where 1=1 ≤≤−
|||| i

ji

ij
a

b
γ

, kji ,1,=, … .  

By k  applications of the Proposition 2.3 to the 

arguments of φ , it follows  

),,(=),,( 111 kkk bakbakaa |||||||| …… φφ  

),,,0()(1),,,(= 21211 kk aaakaabak …… φφ  |||||||| −+  

),,,,(= 32121
2

kaabbaak …φ||||  ||||  

),,,0,()(1 3121 kaabakak …φ |||||||| −+  

),,,,0()(1|| 3212 kaabakak …φ |||||| −+  

),,,0,0())(1(1 321 kaaakak …φ |||| |||| −−+  

⋯⋯⋯⋯=  

),,(= 11 kk
k bbaak …⋯ φ||||||||  

⋅−+ +−
−∑ )(1111
1

1=

 ||||||||||||  |||||||| ikii
k

k

i

akaaaak ⋯⋯  

⋯…… +⋅ ),,0=,,( 1 ki bbbφ  
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⋅−−+
−

−∑ )(1)(1
11

<<
1

 |||| ||||||||||||
riirkjj

rk

r
ii

akakaak ⋯⋯

⋯

⋯……… +⋅ ),,0=,,0=,,(
1

1 k
r

ii bbbbφ  

)0,,0,0()(1))(1(1 21 …⋯ φ |||| |||| |||| kakakak −−−+       (6) 

where  �, … ,  �  is the complement of 1
 , … , 1�D�  with 

respect to the set 1, … , " and the sum in (6) is over all the 

subsets �, … ,  �  

Now use the convex linearity on all the vectors ib  

)
1

,,
1

(=),,(

1=

1

1=

1 jjk

k

j

jj

k

j

k xb
k

xb
k

bb ∑∑ …… φφ  

),,,(
1

= 21

1=

kii

k

i

bbxb
k

…φ∑  

⋯⋯⋯⋯=  

),,(
1

=
1

1
1

1

k
jk

k
jjj

k
jj

k
xbxb

k
…… φ∑∑  

where, by the (1) 

),,(=),,(
1

1
11

1
1 k

jk
k

jjj
k

jk
k

jjj xbxbxbxb …… φφ  

),,,0()(1
2

2
2

1
1 k

jk
k

jjjj xbxbb …φ−+  

⋯⋯⋯⋯=  

),,(,,=
1

1
1 k

jjk
k

jj xxbb …… φ  

⋅−+ ++−−∑ )(1,,,,, 1
1

1
1

1
1

1
=

i
jk

k
ji

i
ji

i
jj

k
j

j
i
j

bbbbb ……  

⋯…… +⋅ ),,0=,,(
1 k

j
i
jj xxxφ  

⋅−−+
−∑ )(1)(1

11
<<

1

r
ii

rk
ss

r
ii

bbbb ⋯⋯

⋯

 

⋯……… +⋅ ),,0=,,0=,,(
11 k

j
r
iij xxxxφ  

)0,,0,0()(1)(1
1

…⋯ φ
k

jj bb −−+                      (7) 

where rii ,,1 …  is the complement of rkss −,,1 …  with 

respect to the set k,1,…  and the sum in (7) is over all the 

subsets rii ,,1 … .  

So ),,( 1 kaa …φ  is obtained by a linear expression in 

),,(
1 k

jj xx …φ , where some 
i

jx  can be the null vector 0 .  

In the n-dimensional vector space 
nℜ , denote by nS  

the convex hull of the vectors },,{ 1 nee …  of the standard 

basis. nS  is a compact, connected, convex set and its 

elements may be expressed by convex combinations of the 

unit vectors },,{ 1 nee … .  

Theorem 2.2  The set nS  is free over the standard 

basis },,{ 1 nee …  of 
nℜ .  

Proof. Let },,{= 1 neeK … , the condition fj =�φ  

implies iii aefe =)(=)(φ  and the function φ  is defined 

by  

Aaaee iiiiin ∈ℜ∈++ ∑∑ +
1,=,=)( 11 ξξξξξφ ⋯  

Uniqueness. If φ  is a linear convex function with 

ii ae =)(φ , then, for any nSk ∈  

1==)(=)(=)( 11 iiiiinn aeeek ξξφξξξφφ ∑∑∑++⋯  

so φ  is unique.  

Existence. iiak ξφ ∑=)(  defines a function ASn →:φ . 

Let us prove that φ  is a linear convex function. nSk ∈∀  

let 1=,= 11 inneek ξξξ ∑++⋯ , then  

)()(==)(=)( 1111 nniinn eeaeek φξφξξξξφφ ++++ ∑ ⋯⋯  

By the Fenchel-Bunt’ theorem, any element a  of a 

compact, connected, convex set A  is expressed as a 

convex combination of the sequence naa ,,1…  of vectors 

of A , that is nnaaa ξξ ++⋯11= . By the theorem 2.2 

exists an unique linear convex function φ  such that  

)(===)( 11 iiiinn eaaee φξξξξφ ∑∑++⋯  

so, any element Aa ∈  may be expressed as a convex 

combination of the vectors )(,),( ni ee φφ … . In other words, 

any Aa ∈  determines a linear convex function φ  such 

that aeii =)(φξ∑ .  

Example 2.3 Let A  be a convex, connected set in 
2ℜ . 

If ),(=1,=0,,= 212211 iiiii aaaaaa ξξξξ ∑≥+ is an 

element of A , then, by the theorem 2.2, it follows  

)()(==)(= 221122112211 eeaaeea φξφξξξξξφ +++  

where AS →2:φ  is linear convex. This implies 

2211 =)(,=)( aeae φφ , and so  

2
2212

2111
)(=)( Sxx

aa

aa
x ∈








φ  

3. A Convex Hull’ Characterization 

Let maa ,,1…  be a finite set of vectors in 
mℜ , then its 

convex hull is defined by  
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}),,(=,{=},,{ 1

1=

1 mmii

m

i

m aaaco Σ∈∑ αααα ……  

where mΣ  is the unit simplex in 
mℜ . The next 

proposition lays down a condition so that a vector belongs 

to a convex hull.  

Theorem 3.1 Let },,{ 1 maaco …  be a convex hull where 

),,(= 1 maaA …  is a matrix with 0|| ≠A , then 

},,{ 1 maacob …∈  iff   

(i). 0=

111

1

1111

mmmm

m

aab

aab

…

…………

…

…

 

(ii). The determinants  

|||,,,,,|,|,,,,,||,,,,| 121312 Abaaaaabaaab mmm −…………

have the same sign. 

Proof. Suppose },,{ 1 maacob …∈ , then baii

m

i
=

1=
α∑  

for mm Σ∈),,(= 1 ααα … , that is, bA =α . Then  

||

|,,,,,,|
=

111

A

aabaa mjj

j

…… +−α  

is the solution of the system bA =α . Impose 

1=
1=

j

m

j
a∑ , we obtain  

||=|,,,,||,,,,||,,,| 121312 Abaaaaabaaab mmm −+++ …………  

and so the (i).  

Conversely, if (i) and (ii) hold, moving backward, we get 

α  such that bA =α , then },,{ 1 maacob …∈ . 
Next step is the extension of the Theorem 3.1 to a 

convex hull given by the vectors naa ,,1… , in 
mℜ , with 

mn >  and rAr =)( . For this purpose it is necessary to 

introduce some generalizations of elementary definitions in 

linear algebra. For more details see [5].  

The multindex 
n

rI  of length r  is defined by  

}<<1:),,{(= 11 niiiiI rr
n
r ≤≤ ……  

besides we define, for a fixed natural number k ,  

}1

,<<=<<1:),,{(=)( 11

nkwhere

nikiiiiiI rprpk
n
r

≤≤
≤≤ …………

 

Let F  be a field with 2)( ≠Fchar , then, for an 

arbitrary matrix, consider the linear form in the parameters 

F∈α
βλ  given by  

Definition 3.1  Let ∗
















× →∆ )(:
r

n

r

m

nm
r FF  be a map 

defined by  

.,,||=

,

n
r

m
rr IIAA ∈∈∆ ∑ βαλα

β
α
β

βα
 

If )(== Arrm , then ||
α
βA , in Am∆ , are the Plücker 

coordinates of the subspace spanned by the rows of A .  

Example 3.1  For the matrix 









232221

131211
=

aaa

aaa
A

, with 

2=)(Ar  

232221

131211
2 =

aaa

aaa
A∆  

12
23

2322

131212
13

2321

131112
12

2221

1211
= λλλ

aa

aa

aa

aa

aa

aa
++  

The definition of cofactor ijα  can be extended to an 

arbitrary matrix.  

Definition 3.2  Let nmA ×∈F  be a matrix with 

rAr =)( , the cofactor 
r

ijα  of the entry ija  of A , for 

nm < , is defined by  

α
λ

α

α
β

∈
≠+−∆

i ifonly 

0 and 1=an,,1,j1,j,1,=for x0=:=

010=

ij

1

111

……

………

………

……

………

………

ixr

i

mnm

n

r

ij

aA

aa

aa

 

|)(|
=

1

1

1

1

11

'
j

erowthi

r
iii

r
jjj

r
iii

r
jjj

r
jjj

r
iii

A
−∑

……

……

……

……

…………

λ
 

where in the last determinant the i-th row is 

,0),1,(0,= ……
'
je , i.e. the j-th unit vector. The sum is over 

all i
m
rr Iiii )(,,,,1 ∈……  and j

n
rr Ijjj )(,,,,1 ∈……  .  

Similarly, for nm > ,  

jmnm

ini

n

r
ij

aa

aa

aa

……

……………

……

……………

……

0

1

0

=

1

1

111

α  

Example 3.2  For 43×∈FA  and 2=)(Ar  
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)
011010

()
01

1010
(=

0100

0100
=0100=

23
34

3433

23
23

3332

23
13

3331

12
34

1413

12
23

131212
13

1311

23

34333231

12

14131211

2

34333231

14131211

23

λλλλ

λλ

α

aaaaaa

aa

aaaa

aaaa

aaaa

aaaa

aaaa
r

++++

++  

As in the example, it will be useful to write the numbers 

of the rows (columns) involved in the expansion of the 

cofactor like apexes (indexes).  

Let )(=
r
ijC α  the r-cofactor matrix of A . The 

transpose of C , i.e. the r-adjoints of A  will be denoted 

by adA .  

 

Theorem 3.2 Any consistent linear system 0,= ≠bbAx , 

where nmA ×∈F , rAr =)( , has as set of solutions  

nj
A

bb
x

r

m
r
mj

r
j

j ,1,==
11

…

⋯

∆
++ αα

 

for any F∈α
βλ  such that rAr ad ≥)( .  

Proof.
ad

r AA 1)( −∆  are the (1)-inverses of A , then the 

solutions of bAx =  are bAAx ad
r

1)(= −∆ .  

The Theorem 3.2 is an evident Cramer’s rule 

generalization.  

All that is necessary to the next proposition is now 

ready.  

Theorem 3.3 Let },,{ 1 naaco …  be a convex hull where 

),,(= 1 naaA …  is a matrix with mAr =)( , niai ,1,=0 …≠ , 

then },,{ 1 naacob …∈  iff   

(i) 0=1,121111
m
mm

mm
bb ++++ γγγ ⋯  

where the cofactors 
m

ijγ  are obtained by the matrix  





















mmmm

m

aab

aab
C

…

…………

…

…

1

1111

111

=  

(ii) The sums m
m
mj

m
j bb αα ++⋯11 , with 

nj ,1,= … , have the same sign of Am∆ .  

Proof. Suppose },,{ 1 naacob …∈ , then baii

n

i
=

1=
α∑  

for 
nn Σ∈),,(= 1 ααα … , that is, bA =α . Then, by Theorem 

3.2  

A

bb

m

m
m
mj

m
j

j ∆
++ αα

α
⋯11

=  

is the solution of the system bA =α . Impose 

1=
1=

j

n

j
a∑  using linearity by rows, it follows  

11

11

=
11,1

111

1

221
1

…

…

………

…

⋯

…

………

…

…

nmm

n

m

mnm

n
m

aa

aa

b

aa

aa
bA

−−
++∆  

and so the (i). By njj ,1,=0, …≥α , we obtain the (ii).  

If 
rα  is null in the solution of the system bA =α , 

then ),,,,,( 111 nrr aaaacob …… +−∈ . As a special case, if 

only ji αα ,  are nonnull in the solution of bA =α  and 

ji aa ,  are extreme points, then b  is an extreme point of 

the convex hull.  

Example 3.3  A vector b  is in },,{ 321 aaaco∈ , with 

0,2 ≠ℜ∈ ii aa , 2=)(Ar , if it satisfies the following 

conditions  

1,2,3=0)(
1 2

22
2
11

2

jbb
A

jj ≥+
∆

αα  

0=

1111

2322212

1312111

aaab

aaab  

Given any matrix A , a matrix 
(2)A  such that 

(2)(2)(2) = AAAA  is called a (2)-inverse of A . Let 
nmCA ×∈  and rAr =)( . Then 

ad
r AA

1
)(

−∆  is the set of 

(2)-inverses of A  iff rAr
ad ≤)( , see [9].  

A (2)-inverse 
(2)

RNA  with prescribed range R  and null 

space N  is the matrix 
ad

r AA 1)( −∆  such that   

(i). RxxAxAA
ad

r ∈∆ −
=)(

1  

(ii). NyyAA
ad

r ∈∆ −
0=)(

1  

By the next proposition, a matrix 
cA  such that 

αα =AAc
 with nΣ∈α  is obtained.  

Theorem 3.4 Let 
nmCA ×∈  and mAr =)( . The matrix 

cA  is given by  

0.,))()(()(= ≠∈−+ ×++ QCQAAIQAA nm
m

c αααα  

where +)( αA  denotes the Moore-Penrose inverse of 

αA .  

Proof. It is known that the matrix equation CXB =  

has a solution iff CBCB =+
, in which case the general 

solution is )(= ++ −+ BBIQCBX , where Q  is an 

arbitrary matrix of appropriate order. Impose, in the 
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equation, αAB =  and α=C , since 1=)( αα AA +
 the 

equation has the general solution  

0.,))(()(= ≠∈−+ ×++ QCQAAIQAA nm
m

c αααα  

Theorem 3.5  Let ),,( 1 naaco …  be a convex hull. The 

following four statements are equivalent   

(a). ),,( 1 naacob …∈ , 

(b). the linear system bA =α  has the solution 

nΣ∈α ,  

(c). )(=),( AcobAco , 

(d). α=bAc  . 

Proof. It is immediate that (a) and (b) are equivalent. Let 

us show that (b) and (c) are equivalent. Suppose 

)(=),( AcobAcob ∈ , then nnaab αα ++ ,,= 11 ⋯ , so 

bA =α  with nΣ∈α . Conversely, suppose bA =α  with 

nΣ∈α , that is nnaab αα ++ ,,= 11 ⋯  and )(Acob ∈ , but 

it also baab nn 0= 11 +++ αα ⋯  where 1,0)( +Σ∈ nα , then 

),( bAcob∈ . Moreover ),( bAcok ∈∀  is  

baak nnn 111= ++++ δδδ ⋯  

)(= 11111 nnnnn aaaa ααδδδ +++++ + ⋯⋯  

nnnnn aa )()(= 11111 αδδαδδ ++ ++++ ⋯  

since  

)()(=)( 1111111 nnnnnnn ααδδδαδδαδδ +++++++++ +++ ⋯⋯⋯  

11= ++++ nn δδδ ⋯  

1=  

and niini ,1,=),( 1 …αδδ ++ + , are nonnegative, then 

)(Acok ∈ .  

(b) →  (d) . Let nbA Σ∈αα ,= , then there exists 

cA  such that αα =AA c
, so α=bAc

. Conversely, the 

relation α=bAc
 is satisfied by αAb = , then there exists 

),,(= 1 naacoAb …∈α .  

Example 3.4  Consider the convex hull 

0,),,,( 2
321 ≠ℜ∈ ii aaaaaco  and let  

3
321

3

321

2

321

1 ),,(= Σ∈
++++++ λλλ

λ
λλλ

λ
λλλ

λα , then 








































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}
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,
)(1)()
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}
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,
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}
)()()(1

,
)()()(1

{

2

1
=

323222121

332233113232223112132213111

313212111

332233113232223112132213111

323222121

322232113222222112122212111

313212111

322232113222222112122212111

323222121

312231113212221112112211111

313212111

312231113212221112112211111

λλλ
λλλ

λλλ
λλλ

λλλ
λλλ

λλλ
λλλ

λλλ
λλλ

λλλ
λλλ

aaa

qaqaqaqaqaqa

aaa

qaqaqaqaqaqa

aaa

qaqaqaqaqaqa

aaa

qaqaqaqaqaqa

aaa

qaqaqaqaqaqa

aaa

qaqaqaqaqaqa

Ac
 

the condition α=bAc
 implies for ),(= 21 bbb  

),(=
321

323222121

321

313212111

λλλ
λλλ

λλλ
λλλ

++
++

++
++ aaaaaa

b  

so 

}:{=),,( 321
+ℜ∈ibaaaco λ  

4. Symmetric Two Persons Games 

Denote by ),,(=2 ΦΓ XX  the triplet of a two persons 

infinite, symmetric game in normal form, with X  the full 

strategy space, see [7] and [8]. coSX =  is the convex 

hull of subset S  of Euclidean n-dimensional linear space 
nℜ , with the null vector S∈0 , and let ℜ→×Φ XX:  

be the bilinear, skewsymmetric, convex payoff function.  

Explicitly, impose the following axioms  

1) If Xxxx nn ∈++ =11 λλ ⋯ , where Xxi ∈  and 

0≥iλ , 1=
1=

i

n

i
λ∑ , then  

Xyyxyxyx ii

n

i

ii

n

i

∈ΦΦΦ ∑∑ ),(=),(=),(

1=1=

λλ  

likewise, if Yyyy nn ∈++ =11 δδ ⋯ , where Xyi ∈  and 

0≥iδ , 1=
1=

i

n

i
δ∑ , then  

Xxyxyxyx ii

n

i

ii

n

i

∈ΦΦΦ ∑∑ ),(=),(=),(

1=1=

δδ  

2) For every XXyx ×∈, , it holds ),(=),( xyyx Φ−Φ  

The payoff function ℜ→×Φ XX:  satisfies the 

following properties  

a) Xx ∈∀ , by the second axiom, ),(=),( xxxx Φ−Φ , 

that is 0=),( xxΦ .  

b) 1<<0,, αXyx ∈∀ , since X  is convex, 

Xxx ∈−+ ααα =0)(1 . Moreover  

),0()(1),(=),0)(1(=),( yyxyxyx Φ−+Φ−+ΦΦ ααααα that is  

),0()(1),(=),( yyxyx Φ−+ΦΦ ααα           (8) 
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by yx = , it follows  

),0()(1=),( yyy Φ−Φ αα                  (9) 

comparing (8) and (9), it follows  

),(),(=),( yyyxyx ααα Φ−ΦΦ               (10) 

In the same way of theorem 2.1, the analytic form of the 

payoff Φ  is now obtained.  

For any two vectors Xaa ∈21,  let  

iin
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ni

i

i
ij

i

ji
n

j

ii banx
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n
x
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n
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n
ana ||||

||||||||
||||

||||
|||| =)

11
(=

1
= 1

1

1=

++∑ ⋯  

then, by the proposition 2.3, it follows  

),(=),( 221121 banbanaa ||||||||ΦΦ  

)0,()(1),(= 1212121
2 bananbbaan Φ−+Φ |||||||||||| ||||  

)0,0())(1(1),0()(1 21212 Φ−−+Φ−+  |||| |||| |||||||| ananbanan  

using convex linearity  

),(
1

),(
1

(=),( 2

1

1
21

1

11
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2

21 bx
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n
bx
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a

n
aanaa n

n

||||||||
|||| |||| Φ++ΦΦ ⋯  

)0,(
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1
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1
1

1

11
21 n

n x
a

a

n
x

a

a

n
anan

||||||||
 |||||||| Φ++Φ−+ ⋯  

),0(
1

),0(
1

)((1
2

2
1

2

12
12 n

n x
a

a

n
x

a

a

n
anan

||||||||
 |||||||| Φ++Φ−+ ⋯  

)0,0())(1(1 21 Φ−−+  |||||||| anan  

),()(=
2

2

1

1

1=1=

21 j

j

i
i

n

j

n

i

x
a

a
x

a

a
aa

||||||||
 |||| |||| Φ∑∑  

)0,()(1
1

1

1=

21 i
i

n

i

x
a

a
ana

||||
 |||||||| Φ−+ ∑  

),0()(1
2

2

1=

12 j
j

n

j

x
a

a
ana

||||
 |||||||| Φ−+ ∑  

)0,0())(1(1 21 Φ−−+  |||| |||| anan  

by the (1)  

)0,()(),(=),( 221

1=1=

21

1=1=

21 iji

n

j

n

i

jiji

n

j

n

i

xaaaxxaaaa Φ−+ΦΦ ∑∑∑∑ ||||  

)0,0())((),0()( 2211

1=1=

212

1=1=

Φ−−+Φ−+ ∑∑∑∑ ji

n

j

n

i

iji

n
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n

i

aaaaxaaa ||||||||||||  

),0()(1)0,()(1 12

1=

21

1=

ii

n

i

ii

n

i

xanaxana Φ−+Φ−+ ∑∑ |||| ||||  

)0,0())((1)0,0())((1 221

1=
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1=

Φ−−+Φ−−+ ∑∑ i

n

i

i

n

i

aaanaaan |||| |||||||| ||||  

)0,0())(1(1 21 Φ−−+  |||| |||| anan  

By the symmetry of the game, 0=)0,0(Φ . The real 

value ),( 21 aaΦ  is so determined by ),( ji xxΦ  and 

)0,( ixΦ . Denoting by ),( yx  a solution of the game, the 

choice of the ),( ji xxΦ  and )0,( ixΦ  must satisfy the 

following inequalites  







Φ≥Φ≥Φ
Φ≥Φ≥Φ

n,1,=i),0(),()0,(

),()0,()0,(

…yyxx

yxxx ii  

and  







Φ≥Φ≥Φ
Φ≥Φ≥Φ

n,1,=ji,),(),(),(

),(),(),(

…yxyxxx

yxxxxx

ij

ijij
 

Suppose X  be a compact, convex set and define  

XyyxyxXxxmax y ∈Φ≥Φ⇒∈ )},(),(:{=
**

 

and  

XxyxyxXyymin x ∈Φ≤Φ⇒∈ )},(),(:{= **  

then, by the imposed conditions on Φ  and X , ymax

and xmin  are not empty and compact, convex sets.  

The map 2),(},{: XyxmaxminXX yx ∈∀×→×Φ  is upper 

semicontinuous and we can use the following proposition, 

see [8]  

Theorem 4.1 (Kakutani’s fixed-point theorem) If 

}{),(: yx maxminyx ×→Φ  is an upper semicontinuous 

map on compact, convex XX ×  and )},({ yxΦ  is a 

convex set, then, at least an element XXyx ×∈),(  exists 

such that ),(),( yxyx Φ∈ .  

By the theorem 4.1, an element ),( yx  exists with 

xminy ∈  and ymaxx ∈ . Since ymaxx ∈  it holds 

),(),(, yxyxx Φ≤Φ∀  and ),(),(, yxyxy Φ≤Φ∀ , then  

),(),(),(, yxyxyxXyx Φ≤Φ≤Φ∈∀  

that is, ),( yx  is a solution of the game 2Γ  . 
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