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1. Introduction

Some properties of the class of the k-linear convex
functions are considered. These maps seem to be the
natural extention of k-linear functions if the domain is
bounded. Given a linear convex mapping, defined on a
body, it is possible to extend its definition if an argument is
outside of the domain. This property enables us to find the

analytical form of a k-linear convex function @: X k oy,

if X isaconvex set which contains the null vector.

An arbitrary element of a convex set can be represented
in three different ways using finite sequence of elements of
the set; these representations are obtained by the following
theorems: the Shapley-Folkman lemma, Carathéodory’s
theorem and Fenchel-Bunt’ theorem.

For example by the last theorem, for any element sof a
convex, connected set X, a sequence of 7 elements of
X exists such that s is expressed by a convex combination
of the sequence. In spite of this, it is well known that an
arbitrary convex set has not a “convex basis”, that is, it is
impossible to find an unique sequence, with finite number
of elements of the set, which span, by linear convex

combinations, any other. In Algebra it is proved that 1"

is free over the standard basis, this implies some properties,
one of these is that an arbitrary sequence of a module A4

may be written as a linear combination of the vectors
t(e,),...,t(e,) for an unique morphism t: 0" — A. This
concept of free set is now moved to convex sets by linear
convex functions. One result obtained in this paper is that a
convex combination for an element of a convex, connected
set A is expressed by a unique convex combination of
vectors gae,),...,#e,) for alinear convex function ¢, that

is, any element a of A4 determines a ¢ such that

X $ife)=a.

Conditions are obtained in order that a vector belongs to
a convex hull if it is spanned by a finite set. The conditions
give new expression to the convex hull.

It is known, see [7] and [8], that two persons, infinite,
symmetric games, with a compact, convex set as strategy
space and a linear convex function as payoff, have
solutions. In the last section we obtain the form of the
payoff of these games.

2. Free Convex Sets

Let S be a set of vectors in ", with the null vector
00S, then denote by x =cos the convex hull of §.

Suppose k<n the maximal number of linearly
independent vectors in X and x,..x be a set of

linearly independent vectors of X .
A k-linear convex mapping ¢:X* — A, for a; € X, is
defined by

r r
Aay,....a;,...,a,)= ﬂal,...,Z/iibi,...,ak) ZZ/iiﬂal,...,bi,...,ak)
i=1 i=l

where A; =0 and}!_;A; =1,b; € O".
Example 2.1Consider the function

f(x,»)=2xy 0<x<a, 0<y<h

Let %< X <x,<a, then [f(x,y)=2xy and
f(xy,y)=2x,y , even if f(xq + x,,¥y)does not exist, so
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f(x,y) is not a bilinear function. Whereas, for 0< A <1,
S +(1=Axy,y)=2(Ax +(1-A)x,)y
=20y +2(1 = A)x,y
=M (x,y) + (1= A) [ (x2, )

that is, f(x,y)

variable separately.
The following is a known basic statement

is a convex linear function of each

Proposition 2.1 Let @: X* . 0™ be a k-linear convex
mapping and X a convex subset of 0" . The image

@AX") is convexin O™,

Proof. The image under ¢ of every convex
combination of elements of X is a convex combination
. m
in O".

A point of a convex hull has three known representations
by sequences of elements of the same convex set.
a)The first representation is founded on the
Shapley-Folkman lemma, see [1], [2] and [10].Consider a

finite familyS;,i = 1,...,k of subset of 0", the Minkowsky
sum S = Z{-‘zl s; is defined by element-wise addiction of vectors

s={s;+ - +sc:s; €S}

The Minkowsky sum has an immediate property: for any

nonempty finite family of sets S; of 0" co(}¥ S;) = Y coS,;.

So if s €Y coS; and s =s; + -+ 5, with s; € coS;.
The expression of sby s; + -+ s, depends on the same
point s. For the representation s = s; + ---+ 5, in the

space [1", holds
Lemma (Shapley-Folkman) If the number k of S; is
greater than the dimension n of the space, the point s has

the expression
S 3

1<isn n+1s<jsk

where s; € coS; and sj € S;.
In other words s € }1<j<n €OS; + Xns1<j<k Sj-

b)By the Carathéodory’s theorem, any s[coS 00"

may be represented as a convex combination of n+1
elements of S .

¢)In particular, if .S is connected, the Fenchel-Bunt’
theorem, see [3] and [8], proves that any s[JcoS can be

expressed as a convex combination of 7 elements of S .
Thesethree representations of an element do not establish
the existence of a “convex basis” for coS , because the 7

elements may depend on the particular s to be computed, see
[6]. Nevertheless, the next definition asserts the condition in
order that a convex set is free. For a definition of a free
module on a subset, see [4].

In the following we present a different representation for

elements of convex set based on the definition of free
convex set.

Definition 2.1 Let K be a subset of a convex set X in
0" and let j:K — X be the insertion of K in X.

Denote by A asubsetof 1", then X is free over K if,
for every function f:K — A, an unique linear convex

mapping ¢: X — A exists such that ¢oj=f.

Example 2.2. Let K ={a, b} C 0 be a subset and coK
its convex hull. We want to prove that coK is free over K,
i.e., for every f:K — A an unique linear convex function
¢: coK = A exists such that p o j = f.

Unicity. The condition ¢ oj = f means that ¢p(a) =
f(a) and ¢(b) = f(b). Then for every f:K — A, we have
to prove the unicity of ¢:coK — A such that ¢p(a) = f(a)
and ¢(b) = f(b). For any k = A,a + A,b € coK and for
every linear convex function ¢ holds ¢ (k) = p(1,a +
A2b) = 41 ¢(a) + A,¢(b) = A1 f (@) + A.f(b) so ¢ is
univocally defined.

Existence. The function ¢, defined by ¢p(Aia + A,b) =
Mf(a) + A, f(b), is linear convex, in fact for every
x = (& a+é&,b) € coK

P(G1a +&;b) = &1 f (@) + &, (b) = §19(a) + &,9(b)

Explicitly the expression of the unique linear convex ¢ is
given by

d(k) = p(A1a + ;b)) = A1f (@) + A, f (b) =
A1(C11, €21, €31) + A2(Cr2, €22, €32)=

€11 C12 A A

=|Ca1 Cz22 (/1 )=C¢<)l>
C31 C32 2 2

Where it is supposed f(a) = (¢11,C21,¢31), f(b) =

(C12)Ca2,C32) and f(a),f(b) €A S O for any k =

(Aya + A,b) € coK with fixed a and b. Then, ¢ is the

matrix Cg.
The underlying property of the example above will be
proved in a more general setting.

Some properties of the mapping @: X K . 4 follow.
Since X s O, 0X,0<a<1
ag; +(1-a)0=aa; 0 X . In particular qa; X . Moreover

convex,

P(ay,...,qaq;,...,a;,) = P(ay,...,qa; +(1-a)0,...,a;)
=ad(ay,...,a;,...,a;,) +(1-a)P(ay,...,0,...,a;) (1
supposed a; =a;and P skewsymmetric it follows
(@)1 s @) = (1= O)D(ay,. 0, ay)  (2)
comparing 1 and 2, it follows @ skewsymmetric and

aP(ay,...., ;5.0 5,..a,) = Play,...,0a;,...,4;,...,a;)

—(D(al,...,aaj,...,aj,...,ak) 3)
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Let SO0 and mON-{0} such that0<£<1,
Ua; U X, by the (3) it holds

,B¢J(a1,...,a,-,...,aj,...,

B
a,)= mﬂal,...,;ai,...,aj,...,ak)

—mﬂal,...,ﬁaj,...,aj,...,ak) 4)
m
Proposition 2.2 Let ADOO"A007)  and
AxOX ,A> |1, then axOX (~axOX), for 0<a <1.
Proof. If o0<p<1 satisfies a=pBlA , then
ax=pAx)+(1-p0 , so axO0X . If —a=pLIA then

—ax= ) +(1-5)0 and —axOX .
The next proposition extends the (1) and defines a linear
convex mapping if its argument is outside the body

Proposition 2.3 Let x,...,x;,...,x; be vectors in X

and 600, then a linear convex mapping ¢7:Xk |

satisfies

P(X 1o O v X, ) = OP (Xysre s X g X))

+ (1 -0)p(xy,... ,0,... ,x;) (5)
Proof. Let 0<A,uv<1 such that5——u—uv
and A|J|<l1. It is always possible to determinate such
numbers A, 4,V . Indeed, if /1=§<1, the relation
6=%/x—%v becames Jd=au—-(a-1)v , then, for
example supposev=%, for a>2|d|+1 , it holds
0</1:M<1-

2a

Then, by the Proposition 2.2, the vectors LX;,VX; are
in X and the mapping ¢ is defined on them.

Ax,,..., WX)=@x,, (A A= AW)x,.. o x,)
:/]¢(xl,...,dcl, ..,xk)+(1—/])¢(x1,...,l/xl, ..,xk)that IS
APX ey Oy s X ) = Xy ey 5oy Xy )
—(1=D@Axp, .. VX X))
by the (1)
Axy,..., 0, --,Xk):%ﬂxp---,ﬂxi +(1-£00,...,x;)
—(I;A)ﬂxl,...,vx,+(1—V)Q,...,xk)
zgﬂxb xz>"'axk)+( Iu)ﬂl: * 9 :xk)

1-A

( 3 )qu( LoeeesXjsenes Xy)

A Convex Hull’ Characterization

1-M(1-
_(;&axl,...,g ,,,,, x;)
(;4 (1- /])V)ﬂl ..... XiseeonX)

@0

+((1;ﬂ)_(1—/1;(1-

=0¢(x),.. s X X ) (1= 0) (X, ..., 0,00 xp)

Theorem 2.1 Let qo:Xk - Y be a k-linear convex
function and X a convex set with 00X , then
«ay,....,a,) may be expressed by a linear combination of

e

Proof. The nonnull vectors a,..

X ), where x; LJX span the vectors a;JX .
1

»a; in X may be

written as
a; = yuxs + o+ Vigxe = a0 Vi)
=klla b
1 1 ,
Klla, I Gt i
k|la, || klla,ll
1 V
jl
=k|lq, IIZ
1k |l a,
S
=k|la; —b.x.: kON-{0
Ila, ”/.Z:;k ) 0}
where —1gbl_]_=”yf"| <1, Lj=1,...,k.
i a,

By k& applications of the Proposition 2.3 to the
arguments of ¢, it follows

¢(al"'-9ak): ¢(k || a ”bla"-a

=kl a || ¢(by,a,,...,

kll a1l b;)
ak)+(1_k || a ||)¢@’a2"*"ak)

=& Nl lla; | @by, b, 5......a,)
+k ” al ” (l_k ” a2 ||)¢(b]a95a3a'naak)
+k ” a2 H (1 _k ” al ||)¢(Qab27a37'--aak)

+(1_k|| al ”)(l_k ” a2 ||)¢(Qa(_)aa3a'--’ak)

=k Nay |-l a | @by, .. b))

k
2 el la 1 la l-lla 1A=kl 1) O

i=1

@(by,....0;=0,....b )+
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+ Zk’”na llay,  MNA=klla [D--(1=klla; DO
@(bl,..., i = 0oy =0 by) + oo
+(1=klla D=kl ay 1) 1=kl a5 IDgO.0.....0) (6)

where i,,..,i, is the complement of j,...,j,_, with
respect to the set 1, ...,k and the sum in (6) is over all the
subsetsiy, ..., i,

Now use the convex linearity on all the vectors b,

k

k
1
abl,...,bk)=¢(z;bﬂxj,.. Y kb,kx )
=1

1 &
*Z Ab;yx;,by5-.50;)
i=1

»

zklkzmzﬂbjllle’. ” k"x )
T

i
where, by the (1)

ﬂb_/lllea- / kx ) b/ lﬂx/ 5¢ jkkx/k)

HU=by YA0.b; 5% sevesby i)

s

=bjll,...,bjkkqo(le,...,xjk)
Jk
£ D bjisendy by sy (1=b;) 0

ji:fl

ijl,...,xji =Q,...,xjk)+---

+ Z by by,

<<,

(1=, )=+(1=b, )0

[¢(x/1,...,x- =0,....,x; =0,...,x;
+(1_b/1)(1_bjk)¢(959559) (7)

where i,...,i, is the complement of si,...,5,_, with

respect to the set 1,...,k and the sum in (7) is over all the

subsets i,...,i,
So Aay,...,

qle"”’xjk) , where some xfi

a,) 1s obtained by a linear expression in

can be the null vector 0.

denote by S

n

e,} of the standard

is a compact, connected, convex set and its

In the n-dimensional vector space (1",

the convex hull of the vectors {e,...,
basis. S

n
elements may be expressed by convex combinations of the

unit vectors {ey,...,e,}.
Theorem 2.2 The set S,
basis {e,...,e,} of O".
Proof. Let K ={e,...,e,} , the condition ¢oj=f
implies ¢(e;) = f(e;) =a; and the function ¢ is defined
by

is free over the standard

P($1e; + "+<ten):z<tiai EiDD+,ZEi=1,aiDA

Uniqueness. If ¢ is a linear convex function with
¢(e;) = a;, then, for any k0SS,

tetEe,)= D Ede)= Y Eay

SO ¢ isunique.
Existence. ¢(k)=2£iai defines a function ¢:S, — 4.

@k =g e

Y-

Let us prove that ¢ is a linear convex function. 0k 0O S,

let k=¢e + --+fnen,ZEi =1, then

@k = @i+ +Ee,)= D Ea; = Ede) -+ & de,)

By the Fenchel-Bunt’ theorem, any element @ of a
compact, connected, convex set A is expressed as a
convex combination of the sequence q,...,a, of vectors
of A4, that is a=4¢&a, +---+¢,a,. By the theorem 2.2

exists an unique linear convex function ¢ such that

e ++ )= Ea=a= D E@e)

so, any element a0 A4 may be expressed as a convex
combination of the vectors ¢(e;),...,¢(e,) . In other words,

any aA determines a linear convex function ¢ such
that Zfiqo(ei) =a

Example 2.3 Let A be a convex, connected set in a2,
If a=é&a +é&a,, & 20, Zg‘l =1,a;, =(a;,a,) is an
element of A, then, by the theorem 2.2, it follows

a=g(e +6re) = §a; +&a, = §1¢(ey) +$5¢(e,)
where @:S, - A is linear convex. This implies
He) = @, fey) = a , and so

@) =[““ Z”J(x) 08,

dip dp

3. A Convex Hull’ Characterization

Let ay,...,a, be a finite set of vectors in a” , then its

convex hull is defined by
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m
colay,...,a,}= {Za’iai, a=(a,...a,)0Z,}
i=1

where 2

m

is the unit simplex in [” . The next

proposition lays down a condition so that a vector belongs
to a convex hull.

Theorem 3.1 Let cofay,...,a,,} be a convex hull where

A=(ay,...,a,) is a matrix with |A[#0 , then
bUOcolay,...,a,} iff
1 | |
b a; ... aq
). "l=0
bm A Dum
(ii). The determinants
|b,a,,...,a, |,|a,b,as,...,a, |,....| a,a5,...,a,,_1,b],| 4]

have the same sign.
Proof. Suppose bUco{qa,...,a,}, then Zm aia; = b
i=

for a=(ay,...,a,)0%,,  thatis, 4a=5b.Then

B |al,...,aj_l,b,aj+1,...,am |

’ 4]
is the solution of the system Aa=b . Impose
zm a; =1, we obtain
j=t/

|b,ay,...,a, | t|a;,b,as,...,a, | *+...+|a,a,,....a,_,b|=| A|

and so the (i).

Conversely, if (i) and (ii) hold, moving backward, we get
a suchthat 4a=b,then blcola,...,a,,}.

Next step is the extension of the Theorem 3.1 to a
convex hull given by the vectors ay,...,a,, in 0", with
n>m and r(A)=r. For this purpose it is necessary to

introduce some generalizations of elementary definitions in
linear algebra. For more details see [5].

The multindex 7, rn of length 7 1is defined by

I ={(y,-. 1) 1S4 <...<i.<n}

B
besides we define, for a fixed natural number k ,

U = Al ooniy )10 < <@y =k <...<i, <n,

P 7
wherel1< k < n}

Let F be a field with char(F)#2 , then, for an
arbitrary matrix, consider the linear form in the parameters

/]L/; UF  given by

A Convex Hull’ Characterization

Definition 3.1 Let A, :F™" - (F(r][r])D be a map
defined by

DA= | AZ| A5, a1, BOI
a.p

If m=r=r(A4), then |Ag |, in DN, A, are the Pliicker

coordinates of the subspace spanned by the rows of A .
Example 3.1 For the matrix A=(“11 ap al}], with

dyp Gy A4y

r(A)=2
AA_‘ZU app 43
A=
dy dyp  dy
a4 ap a3 ap a3
— AIZ + A12+ AIZ
12 13 23
ay a4y ayp dy3 a4y

The definition of cofactor O'l.j can be extended to an

arbitrary matrix.
Definition 3.2 Let AOF™

r(A)=r, the cofactor 0'; of the entry a; of A, for
m <n, is defined by

be a matrix with

ap ay,
a,.]’. =0 1 0
a cee . a

ml mn

=A,A:a, =0forx=1,....j=1,j+1,....,n,a; :land/]‘; #0
onlyif ila

where in the last determinant the i-th row is

e;» =(0,...,1,...,0), i.e. the j-th unit vector. The sum is over

all iy,...i,...,i, O"); and jl,...,j,...,j,D(If)j )
Similarly, for m>n,

ay, ... 0 ... a,

ro_
a; =\a; 1 Ay
A 0 Ain

]

Example 3.2 For AOF¥™ and r(4)=2
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2
ay dpp a3 ay 12

dp Ay dgz Ay

as,=|0 0 1 0| =
0 0 1 0
d3z; Az dzz Az
23

0 0 1 0 a a a a
+ = 1n a3 A}g £%2 93 A1223

a3y, az, ay Ay 0 1 0 1

a a 0 1 0 1 1 0
C N ) I % A A 7

1 0 a3 ds3 d3p ds3 d33 Ay

As in the example, it will be useful to write the numbers
of the rows (columns) involved in the expansion of the
cofactor like apexes (indexes).

Let C=(a})
transpose of C, i.e. the r-adjoints of 4 will be denoted
by A“.

the r-cofactor matrix of A . The

Theorem 3.2 Any consistent linear system Ax=b,b#Z0,

where AOF™" | r(A)=r, has as set of solutions

r r
_ aljbl teeet amjbm
/ A A

j=1,...n

for any /\g OF such that r(A)=r.
Proof. (A,.A)_lAad are the (1)-inverses of A, then the

solutions of Ax =b are x=(A,.A)_1A”db.

The Theorem 3.2 is
generalization.

All that is necessary to the next proposition is now
ready.

Theorem 3.3 Let cola,..
A=(ay,...,a,) is a matrix with r(A)y=m, a; 20 i=1,...,n,
then bUcola,,...,a,} iff

an evident Cramer’s rule

.a,} be a convex hull where

(i) Wi +bya 4D, Y1 =0

where the cofactors y,’” are obtained by the matrix

1 1 1
C= by ay Am
bm Al Dinm
(ii) The  sums  ay}by+--+a,b, .  with

j=1,...,n, have the same sign of A, A.
Proof. Suppose bUcola,,...,a,} , then 27_laiai =b

for a=(a,,....a,)0%,, thatis, Aa =b5. Then, by Theorem
3.2

m m
_ ayib +--+ayb,

a .
4 AL A

is the solution of the system Aa=b . Impose
n . . . .
Z 4 1 using linearity by rows, it follows
J=1
N | a, ... a
a e a
AmAzbl 21 2n +"'+bm
e e .. am_l)l e am_ln
A Din 1 e 1

and so the (i). By a;20, j=1,...,n, we obtain the (ii).

If @, is null in the solution of the system Aa =5,
then bUco(ay,...,a,_;,a,4,...,a,). As a special case, if
only a;,a; are nonnull in the solution of Aa =5 and
a;,a; are extreme points, then b is an extreme point of
the convex hull.

Example 3.3 A vector b is in Ocofay,a,,a5}, with

a; 0o?, a; 20, r(A)=2, if it satisfies the following

conditions

1 2 2 .
—(bai; +b,a5,)=20 =123
A2A(1 1j 2 2,) J

1 1 1 1
by ay ay a;3|=0

by ay ay ay
Given any matrix A , a matrix A?  such that

AP 44D = 4P s called a (2)-inverse of A . Let
AOC™" and r(A)=r. Then (A,A)"4* is the set of

(2)-inverses of A iff r(4°)<r, see[9].
A (2)-inverse Ag\), with prescribed range R and null
space IV is the matrix (A,A)_lAad such that

(. (DA'A4%x=x  xOR

(). (AAT4y=0  yON

By the next proposition, a matrix A4° such that

A°Aa=a with aOZ, is obtained.
Theorem 3.4 Let AOC™" and r(A)=m. The matrix
A is given by

A =a(da)" +0,, —(da)4a)") ooc™,Q#0.

where (Ada)*

Aa.
Proof. 1t is known that the matrix equation XB =C

denotes the Moore-Penrose inverse of

has a solution iff CB*B=C, in which case the general
solution is X =CB*+Q(U -BB"), where Q is an
arbitrary matrix of appropriate order. Impose, in the
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equation, B=Aa and C=a, since (4a) Aa=1 the
equation has the general solution

A =a(da)" +0d, - Aa(Aa)*)  QOC™",0#0.

Theorem 3.5 Let co(a,...,a,) be a convex hull. The
following four statements are equivalent

(a). bUco(ay,...,a,),

(b). the linear system AaQ =b has the solution
allz,’

(¢). co(4,b)=co(A),

@d). Ab=a .

Proof. It is immediate that (a) and (b) are equivalent. Let
us show that (b) and (c) are equivalent. Suppose
bUco(A4,b)=co(A) , then b=+, --*aq,a, , so

Aa=b with alZ, . Conversely, suppose Aa=5b with
allZ,, that is b=aya;+,---,+a,a, and blco(4), but
italso b=aa +---+a,a,+0b where (q,0)1%,,,, then
bOco(A4,b) . Moreover Uk Oco(A4,b) is
k=0da+--+0,a,+J,,b

= 61“1 *e +6nan + 6n+1(a1a1 +- “+anan)

= (dl + 5n+1a1)a1 e +(6n +5n+1an)an

since
(O +0,ma) ++0, +0,na, = (O +--+0,) + O, (a) +-- +a,)
:61+”'+6n+6n+1
=1
and (0, +0,,,ta,), i=1,..
kUco(A).
(b) — (d) . Let Aa=b>b, allZ,, then there exists

A° such that A°Aa = a,so A°b=a. Conversely, the

relation A°b=a is satisfied by b= Aa, then there exists
b=AaUco(ay,...,a,) .
Example 3.4

.,h , are nonnegative, then

Consider  the convex  hull

co(ay,a,,ay), a; U 02, a; 20 and let
A A %)

a = s s
(/11"'/12"'/13 A+A+A A+ A+ A

)Dz3,then

A Convex Hull’ Characterization

{(1 +ayngy —angi)A +(@pgn ~angin) (g —angin)i;
anAy +apk, +ad;

(A —apgn *a3912)A = (@91 =~ anq12)A ~ (@39, _‘123‘112)/13}
anAy +apn; +aypl;

{allqzl —aygn)A (14 aqy = a5q)Ay (413921 ~a2340)A;

1 ap Ay +aphy +apl;

2| 411921 *au90)A ~ (Z1+ a4y —angn)Ay ~ (@39 ~a39n )/13}
ayn Ay +apnd; +axpd;

{alquI —ay93)A + (@931 ~a5q3)A +(1+a;3q3; — argn)ls

anAy +apk, +ad;

— 41951 + a3 93) A ~ (@931 ~andn)A, —(C1+a13q3) —ayq3)A }

ayn Ay +apnd; +axpd;

the condition A°b=a implies for b= (b,,b,)

b=(

aph +apd +apdy ayA tand, + 023/13)
A+A A A+A+ A

N

co(ay,ay,a;) = {b:A, 00"}

4. Symmetric Two Persons Games

Denote by I', =(X,X,®) the triplet of a two persons

infinite, symmetric game in normal form, with X the full
strategy space, see [7] and [8]. X = coS is the convex
hull of subset S of Euclidean n-dimensional linear space

0", with the null vector 00S, and let ®: XxX - O

be the bilinear, skewsymmetric, convex payoff function.
Explicitly, impose the following axioms
) If xA+--+x,A,=x0X, where x;0X and

A =20, 27:1/1,- =1, then

O(x,3) = P A%, )= D A®(x,») yOX
=1 =1
likewise, if y,0, +---+y,0,=y0Y,where y,0X and

n

3,20, Zf’:ldi =1, then
O(x,3) = P(x, D Fy) =Y aP(x,y,)  x0OX
i=1 i=1
2) Forevery x,yXxX ,itholds ®P(x,y)=-P(y,x)

The payoff function ®: X xX - [ satisfies the
following properties

a) Ox 0 X , by the second axiom, P(x,x)=—-PD(x,x),
thatis ®P(x,x)=0.

b)), yOX,0<a <1,since X isconvex,
ax+(1-a)0=ax X . Moreover

P(ax, y) = @(ax +(1-a)0,y) = a®(x, ) + (1 -a)®(0, y) that is

(ax, y) = a®(x,y) +(1-a)®(0, y) ®)
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by x=y, it follows
®(ay,y) = (1-a)®(,y) )
comparing (8) and (9), it follows
ad(x, y) = ®(ax, y) - ®(ay, y) (10)
In the same way of theorem 2.1, the analytic form of the

payoff @® is now obtained.
For any two vectors a;,a, 0X let

1a]i lani
a=n ““z”Z,, Nl et ) =n | 1
ol alla 1l I

then, by the proposition 2.3, it follows

®(ay,ay) = ®(n|a || by,nllay || by)
=1’ || |[l|ay || Db, by) +n| gy || (1=l a; DB, 0)
+n||ay [|(1=n||a |DPO,b,) +(1=n||a |D(1-n]|a, |)PO,0)

using convex linearity

®(a,,a,) = X, b))+ 7CD(

2
Ila 1|| n

n*lla |l a, I o x,,b
n Ila 1||

1 a
X, 0) 4+ — Oy
lla |l nla |l

+nlla |l (1- nllazll)(ncb( 0

+nllay || (1-

1 a
nllalll)( D0, — <+ —0(0,
|| 2|| n lay Il

+(I=nlla DA =nllay||)®(0,0)

n n

=(la |l a, ||>ZZ¢<“ K
a

i=1 j=1

X;)
Ilaz I

*lla (- n||az||)2¢<

x;,0)
eIl

*+llay Il (1= n||a1||>2¢<, e ” x))
a

+(1=nlla DA =n]lay [H®O,0)

by the (1)

O(ay,a3) = DD 30,0 x )+ DD ay(ll az 1 =a;,)®(x;,0)

i=1 j=1 i=1 j=1

n_n n_n

+3 D apllla l1=ap)®0.5)+ D> D la l1=a,)(la; |1 =a,,)H0.0)

i=l j=1 i=l j=1

+D ay(1=nllay NP, 00+ Y g (1=l g [NPO, x,)

i=1 i=1

+y (=nllay Ddla | =a)®0,0+ " (1=nlla; 1)l a; l| =a,)P©,0)

i=1 i=1

+H(1-n|la [)(A-n]la, [[)P0,0)

0 . The real
is so determined by ®(x;,x;) and

By the symmetry of the game, ®(0,0)=
value ®(a;,a,)

®(x;,0) . Denoting by ()_c,;/) a solution of the game, the
choice of the ®(x;,x;) and ®(x;,0) must satisfy the

following inequalites

®(x,0) 2 D(x;,0) = D(x,, )
O(x,0)2 D(x,y)=D0,y) i=1,..,n

and

{(D(x,xj) > O(x,,x,)2 O(x;, )

P(x,x)) 2 O(x, )2 P(x;,p)  Dj=1,....n

Suppose X be a compact, convex set and define

max, = K x0X=>0(x,y)2d(x,y)  yOX

and

minx={y* yOX = d(x,y7) < D(x,y)} xdXx

then, by the imposed conditions on ® and X, max,
and min, are not empty and compact, convex sets.
The map &:XxX - {min, xmax,},O(x,y)0X> is upper

semicontinuous and we can use the following proposition,

see [8]
Theorem 4.1 (Kakutani’s fixed-point theorem) If
®:(x,y) - {min,Xmax,} is an upper semicontinuous

map on compact, convex XXX and {®P(x,y)} is a
convex set, then, at least an element ()_c,;) OXXX exists
such that (x,y) O®(x, ).

By the theorem 4.1, an element ()_c,)_/) exists with

and xOmax, . Since xOmax, it holds

yUmin, p - 3

O, ®(x,y) S P(x,y) and Ly, D(x,») < P(x, ), then
Ox,y0X  ®(x,p) S P(x,y) < D(x,)

that is, ()_c,;) is a solution of the game T, .

References

[11 M.Carter Foundations of mathematical
Cambridge MIT PRESS, 2001.

economics,

[2] J.W.S. Cassels Measures of the non-convexity of sets and the
Shapley-Folkman-Starr theorem Mathematical Proceedings
of the Cambridge Philosophical Society Vol. 78 pp. 433-436,
1975.

[3] H.G. Egglestone Convexity Cambridge University press
London, 1958.



48

(4]

Franco Fineschi and Giovanni Quaranta:

C.Faith Algebra I Rings,
Springer-Verlag, 1981.

Modules, and Categories

F.Fineschi, R.Giannetti Adjoints of a Matrix Journal of
Interdisciplinary Mathematics. Vol.11, No. 1, pp.39-65. Taru
Publications, 2008 .

J.B.Hiriart-Urruty, C.Lemaréchal Fundamentals of Convex
Analysis Springer-Verlag, 2001.

T. limura, T. Watanabe Existence of a pure strategy
equilibrium in finite symmetric games where payoff
functions are integrally concave Discrete Applied
Mathematics, Forthcoming 2012.

A Convex Hull’ Characterization

(8]

S. Karlin Mathematical Methods and Theory in Games,
Programming, and Economics - The Theory of Infinite
Games Addison-Wesley, 1959.

Y. Wey A characterization and representation of the

generalized inverse AI(QZA), and its applicatations, Linear
Algebra Appl. N. 280 pp 87-96, 1998.

Lin Zhou A simple proof of the Shapley-Folkman theorem
Economic Theory Vol.3, pp. 371-372, 1993.



