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Abstract: Weconsider the third – order recurrence relation �� � 2���� � ���� with initial conditions�	 � 1, �� �
0 and�� � 2 and define these numbers as Pell – Padovan – like numbers.We extend this definition generalized order – k Pell 

– Padovan – like numbers and give some relations between thesenumbers and the Fibonacci numbers. Wealso obtain some 

relations of thesenumbers and matrices by using matrix methods. 
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1. Introduction 

For � � 2, Fibonacci sequence is defined by 

�� � ���� � ���� 

with initial conditions �	 � 0 and�� � 1 . Kalman [3] 

defined a generalized Fibonacci sequence as follows 

���� � �	�� � ������ � � � ��������  (1) 

where �	, ��, � , ��  are real constants. Er [2] defined k 

sequences of the generalized order�� Fibonacci numbers 

as; for n> 0 and 1 � � � � 

��� � � � ��� �
�

 !�
 

with initial conditions for 1 � � � � � 0 

��� � "1  if� � � � 1,
0  otherwise , 

# 

Where�	, ��, � , �� are constant coefficients. 

In [6], Pell–Padovan’s sequence was defined, which is a 

third order recurrence relation  

$� � 2$��� � $���, for every integer � � 1   (2) 

with initial conditions $	 � $� � $� � 1 . In [5], an 

extended form of this sequence was given as 

$��� � %$��� � &$�, for every integer � � 1  (3) 

with initial conditions $� � ', $� � (, $� � � where a, b, 

c, r and s are fixed non-negative integers.  

If we take a � 1, b � 0, c � 2, r � 2  and s � 1  in 

Eq.(3), we obtain a sequence which satisfies the recurrence 

relation (2). Let’s show this sequence with -Q/0/1	 and 

define it as Pell–Padovan–like sequence. For every integer 

n � 3, this sequence satisfies 

�� � 2���� � ���� 

with initial conditions �	 � 1, �� � 0 and �� � 1.First 

few terms of this sequence are 

1, 0, 2, 1, 4, 4, 9, 12, 22, 33, 56, 88, 145, 232, … 

There is a connection between this sequence and the 

Fibonacci sequence given in the following lemma. 

Lemma 1.1 

For every non-negative integer �, we have 

�� � �� � 3�14�    (4) 

where�� is the �th Fibonacci number. 

Proof: We prove the Lemma by induction on n. We have 

�	 � 3�14	 � 1 � �	  and �� � 3�14� � 0 � ��  so the 

statement (4) holds when� � 0 and 1. 

We assume that the statement (4) holds for every positive 

integer smaller than kwherek>1. Thus 

�� � 2���� � ���� 

� 27���� � 3�14���8 � ���� � 3�14��� 
� 2���� � ���� � 3�14��� 
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� ���� � ���� � 3�14��� � �� � 3�14�. 
So, the statement (4) holds for every non-negative integer n, 

and this proves the Lemma. : 

This sequenceappears in “The Online Encyclopedia of 

Integer Sequences” [8] with the code “A008346”. 

In [4, 7], the authors generalize the Perrin sequence and 

the Padovan sequence respectively which are third-order 

integer sequences to � -th order and using matrix 

methods,give some properties of these sequences. We use 

similar methods for finding properties of the generalized 

order – k Pell–Padovan–like numbers. 

2. A Generalization of the 

Pell-Padovan-Like Numbers 

Throughout this paper k denotes an integer greater than 2. 

We definek–sequences of the generalized order–k 

Pell–Padovan–like numbers;for n >0 and 1 � i � k 

��� � 2����� � ����� � � � �����    (5) 

Withinitial conditions 

��� � "1,    if � � � � 1,0,   otherwise, #for1 � � � � � 0. 
��� is the �AB  term of the �AB  sequence. For � � 3and � � 1 , the generalized sequence reduces to the 

Pell–Padovan–like series-��0�1	. 

We define �C� square matrix D such that 

D �
EF
FF
G0 2 1 � 1 11 0 0 � 0 00 1 0 � 0 0H H H I H H0 0 0 � 1 0JK

KK
L
. 

From Eq.(5), we have 

EF
FG

�����
���H������� JK

KL � D
EF
FG

��������
H������� JK

KL.    (6) 

Now we define 

$� �
EF
FG

��� ��� � �������� ����� � �����
H H I H������� ������� � ������� JK

KL.  (7) 

By expanding the vectors on the both sides of Eq.(6) to � � columns and multiplying the obtained matrix on the 

right-hand side by D, we obtain 

$� � D$���. 

From the last equation, by an inductive argument, we have 

$� � D���$� 

and since $� � D , we are in a position to prove the 

following lemma. 

Lemma 2.1 

For all integer � � 1, we have $� � D�. 

Corollary 2.2 

For � � 1, we have 

det $� � "1,            ifk is odd,3�14� ,   ifk is even.

# 
Proof:Since$� � D�, we have 

det $� � det D� � 3det D4� 

with det D � 3�14���. This equation completes the proof. : 

For later use, we need the following lemma. 

Lemma 2.3 

For � M 0, we have 

����� � ��� , 
����� � ���, 

����� � 2��� � ���, 

and 

����� � ��� � �����. 

Proof:From Eq.(7), we can see that 

$N�� � $N$� � $�$N .    (8) 

From the first equation in Eq.(8), by using matrix 

multiplication, the lemma can be obtained easily. : 

Now we give some relations of the generalized order�� 

Pell–Padovan–like numbers. 

Theorem 2.4 

For O � 0and � � 1, we have 

���P� � � �P ��� ���
�

 !�
. 

Proof:From Lemma 2.1, we know that $� � D�.So, we 

can write  

$� � $���$� � $�$���. 

By generalizing this equation, we have 

$��P � $�$P � $P$�. 

From the last equation, we say that an element of $��P is 



176 GoksalBilgici:Generalized Order-k Pell-Padovan-LikeNumbers by Matrix Methods 

 

the product of a row $� and a column $P. Therefore, the 

proof is complete. : 

If we take k � 3and i � 1, we have 

���P� � �P� ��� � �P� ����� � �P� �����  

� �P� ��� � 32�P��� � �P��� 4����� � �P��� �����  

� �P� ��� � 32�P��� � �P��� 4����� � �P��� �����  

and 

���P� � ����P� � 2����� �P��� � ����� �P��� � ����� �P��� . (9) 

Corollary 2.5 

For usual Pell–Padovan–like numbers, we have 

��� � 3��4� � 2������       (10) 

Where��is the �AB Fibonacci numbers, and 

����� � 3����4� � 2������. 

Proof:If we take O � � in Eq.(9), we have 

��� � 3��4� � 23����4� � 2�������� 

� 3��4� � 2����3���� � ����4 

� 3��4� � 2������. 
If we take O � � � 1 in Eq.(9), we obtain 

����� � ������ � 2������ � 3����4� � ������ 

� 3����4� � ��3���� � 2���� � ����4 

� 3����4� � 2������. : 

If we write Q/ � F/ � 3�14/, Eq.(10) becomes 

��� � 1 � 7�� � 3�14�8� � 27���� � 3�14�8��. 

After some simplifications, we have the following 

well–known identity [1] 

��� � ��� � 2������. 

3. Generating Function 

In this section, we give the generating function for the 

order ��  generalized Pell–Padovan–like sequence. We 

begin the generating function for the sequence -��0�1	. 

Let 

R�3C4 � �	� � ���C � ���C� � � � ���C� � �. 

Then 

R�3C4 � 2C�R�3C4 � C�R�3C4 � � � C�R�3C4 

� 31 � 2C� � C� � � � C�4R�3C4 

� �	� � ���C � 3��� � 2�	�4C� � 3��� � 2��� � �	�4C� 

� � � S����� � 2����� � ���T� � � ��	�UC��� � �. 

From the definition of the generalized order �� 

Pell–Padovan–like numbers, we obtain 

31 � 2C� � C� � � � C�4R�3C4 � �	� 

and since �	� � 1, we have 

R�3C4 � 31 � 2C� � C� � � � C�4�� 

for 0 � 2C� � C� � � � C� V 1. 

Let W�3C4 � 2C� � C� � � C� . Then 0 � W�3C4 V 1 

and we can give exponential representation for generalized 

order�� Pell–Padovan–like numbers 

ln R�3C4 � ln71 � W�3C48�� 

� � ln71 � W�3C48 
� W�3C4 � 12 7W�3C48� � � � 1� 7W�3C48� � � 

� C� � 1� 32 � C � C� � � � C���4�
Y

�!	
. 

 

Thus, we obtain 

R�3C4 � exp \C� � 1� 32 � C � C� � � � C���4�
Y

�!	
]. 

4. Generalized Binet Formula 

The characteristic equation of the matrix D  is C� �2C��� � C��� � C��T � � � 1 and this equation is also 

the characteristic equation of the generalized order�� 

Pell–Padovan–like numbers. We should show that the 

eigenvalues of the companion matrix D are distinct to give 

the generalized Binet formula. 

Lemma 4.1 

For � � 3, none of the roots of the equation C��� � C� �2C��� � C��� � 1 is multiple root. 

Proof:We define 

^3C4 � C� � 2C��� � C��� � � � C � 1, 
W3C4 � 3C � 14^3C4 � C��� � C� � 2C��� � C��� � 1. 

Tough 1 is a root of W3C4, it is not a multiple root because ^314 _ 0. Suppose that ` is a multiple root of W3C4 such 

that ` _ 0and ` _ 1. We have 

W3`4 � `��� � `� � 2`��� � `��� � 1 

           � `���7`� � `� � 2` � 18 � 1 

and 
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Wa3`4 � 3� � 14`� � �`��� � 23� � 14`���
� 3� � 24`��� 

       � `���73� � 14`� � �`� � 23� � 14` � � � 28 
       � 0. 

The roots of the equation 3� � 14`� � �`� � 23� �
14` � � � 2 are 

`� � 1
63� � 14 7c � 437�� � 64c�� � 2�8 

`�,� � � 1
123� � 14 7c � 437�� � 64c�� � 4�8

f � √3
123� � 14 7c � 437�� � 64c��8 

where 

c � 7h � 3� � 14i8�/�, 

h � �28�� � 252� � 216 

and 

i � 123�147�T � 294�� � 147�� � 84� � 4204�/�.  

It can be seen that `�, `� and `� are distinct from each 

other. We write 

0 � W3`�4 � `���7`� � `� � 2` � 18 � 1. 

If we choose � � 3, we have 

W3`�4 n �0.433903264 � �30.585166688410��	 _ 0, 

W3`�4 n �0.161491954 � �30.1659503261410�o _ 0, 

W3`�4 n 1.114926467 � �30.4718000278410��	 _ 0, 

and this contradiction proves the lemma. : 

As a result of this lemma, The characteristic equation 

C� � 2C��� � C��� � C��T � � � 1 of the matrix D does 

not have multiple roots for � � 3. Thus, the eigenvalues of 

the matrix D  are distinct. Let p�, p�, � , p�  be these 

eigenvalues. Let q be the following Vandermonde matrix 

q �
E
F
F
Gp���� p���� � p�� 1
p���� p���� � p�� 1

H H I H H
p���� p���� � p�� 1J

K
K
L
. 

We define 

r�� �
E
F
F
Gp������

p������
H

p������J
K
K
L
 

and define q 
3�4

 as a � �square matrix which is obtained 

from q by replacing the sABcolumn of q by r�� . Then the 

following theorem gives the generalized Binet formula. 

Theorem 4.2 

For 1 � � � �, we have 

������
 � tuv wx

3y4

tuv w
. 

Proof:D is a diagonalizable matrix since its eigenvalues 

are distinct. Let r be the transpose of q. We write 

r��Dr � z�'�3p�, p�, � , p�4 � {, 
and obtain 

D�r � r{�. 

Since $� � D�, we have 

|��p���� � |��p���� � � � |�� � p������

|��p���� � |��p���� � � � |�� � p������
H

|��p���� � |��p���� � � � |�� � p������
 

where $N � }|� ~���. For s � 1,2, � , �, we obtain 

|� � tuv wx
3y4

tuv w
, 

So, we have the conclusion. : 

5. Sums of Generalized  

Pell –Padovan-Like Numbers 

To obtain sums of generalized Pell–Padovan–like numbers, 

we define 

�� � � ���
���

�!	
. 

Since �N��� � �N�, we have 

�� � � ���
�

�!�
. 

Let � and �� be 3� � 14 �square matrices such that 

� �
EF
FF
G1 0 0 � 0
1
0H
0

D
JK
KK
L
 

and 

�� �
E
FF
F
G 1 0 0 � 0

��
����H

������

$�
J
KK
K
L
. 

We easily obtain �� � ����� and inductively, we 

have�� � ������. 
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Since ��� � 0  for 1 � � � � and �� � � , we infer �� � ��. So, we can write 

���� � ���� � ���� . 
We consider the equation �� � ������. By multiplying 

the matrices on the right hand-side, we obtain the following 

recurrence relation 

�� � 1 � 2���� � � ��� 
�

 !�
. 

For usual Pell–Padovan–like numbers, if we take � � 3, 

we have 

�� � 1 � 2���� � ����. 
Using the equation �� � ���� � ���� , after some 

elementary operation, we obtain 

�� � 12 33���� � 3���� � ���� � 14
� 12 3���� � �� � ���� � 14.  

Since �� � �� � 3�14�, the last equation gives 

� ��
���

�!	
� 1

2 7���� � �� � ���� � 3�14� � 18 

where �� is the �AB Fibonacci number. 
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