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Abstract: The Beal Conjecture was formulated in 1997 and presented as a generalization of Fermat's Last Theorem, 
within the number theory´s field. It states that, for X, Y, Z, n1, n2 and n3 positive integers with n1, n2, n3 > 2, if Xn1 
+Yn2=Zn3 then X, Y, Z must have a common prime factor. This article aims to present developments on Beal 
Conjecture, obtained from the correspondences between the real solutions of the equations in the forms A2 + B2 = C2 

(here simply refereed as Pythagoras´ equation), δn + γn=αn (here simply refereed as Fermat´s equation) and Xn1 
+Yn2=Zn3 (here simply referred as Beal´s equation). Starting from a bibliographical research on the Beal Conjecture, 
prime numbers and Fermat's Last Theorem, these equations were freely explored, searching for different aspects of 
their meanings. The developments on Beal Conjecture are divided into four parts: geometric illustrations; 
correspondence between the real solutions of Pythagoras´ equation and Fermat's equation; deduction of the 
transforms between the real solutions of Fermat's equation and the Beal´s equation; and analysis and discussion about 
the topic, including some examples. From the correspondent Pythagoras´ equation, if one of the terms A, B or C is 
taken as an integer reference basis, demonstrations enabled to show that the Beal Conjecture is correct if the 
remaining terms, when squared, are integers. 
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1. Introduction 

The Beal Conjecture is a proposition within the number 
theory´s field that was formulated by Andrew Beal, 
according to which, for X, Y, Z, n� , n�  and n�  positive 
integers with n�, n�, n�> 2, if X�� � Y�
 � Z�
  then X, Y, 
Z must have a common prime factor. Stated another way, 
there is no solution in integers for X�� � Y�
 � Z�
  in the 
case of X, Y, Z, n�, n�, n� positive integers and n�, n�, n� > 
2 if X, Y and Z are coprime [1]. 

Darmon and Granville have also worked in this kind of 
problem while investigating integer solutions of the 
superelliptic equation �� � ���, �� , where F is a 
homogeneous polynomial with integer coefficients of the 
generalized Fermat equation ��� � ��� � ��� [2]. 

The Beal Conjecture is presented by Mauldin [1] as a 
generalization of Fermat's Last Theorem. Concerning the 
latter, Rubin and Silverberg [3] mention that Pierre de 
Fermat (1601-1665) wrote that “it is impossible to 

separate a cube into two cubes, or a fourth power into 

two fourth powers, or in general, any power higher than 

the second into two like powers. I have discovered a truly 

marvelous proof of this, which this margin is too narrow 

to contain”. 
Written in mathematical notation, Fermat's Last 

Theorem states that if n � 2 , δ� � γ� � α�  has no 
solutions in nonzero integers. As Fermat used not to 
annotate the proofs of his theorems, this and other 
statements inspired many generations of mathematicians, 
who went on to develop important math advances while 
seeking solutions. All statements of Fermat were 
eventually proved - except one that was refuted, but in 
this case, Fermat did not actually say that he knew a proof 
[4]. The only statement that remained unproved was the 
above one, which became known as "Fermat´s Last 
Theorem" (not because it was the last to be written, but 
the last to be proved). 

According to Stewart [4], Fermat's Last Theorem became 
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notorious and Euler proved that it is valid for cubes, Fermat 
himself proved that it applies to the fourth power, Peter 
Lejeune Dirichlet dealt with the fifth and fourteenth powers, 
Gabriel Lamé and Kummer for all powers to the 100th 
except 37, 59 and 67, and Friedrich Gauss tried to correct 
Lamé´s attempt to the 7th power, but gave up after not 
getting success. The author also points out that in 1980 
other mathematicians proved the theorem for all powers to 
the 125,000th until the mathematician Andrew Wiles (with 
the collaboration of Richard Taylor) proved it definitively 
in 1995, using, however, ideas and methods that did not 
exist at the time of Fermat. These materials have become a 
permanent and important increase to the arsenal of 
mathematics. 

The aim of this work is to provide developments on Beal 
Conjecture with the use of basic mathematics. 

Starting from a bibliographical research on the Beal 
Conjecture, prime numbers and Fermat's Last Theorem, 
the equations in the general forms A� � B� � C�  (here 
simply refereed as Pythagoras´ equation), δ� � γ� � α� 
(here simply refereed as Fermat´s equation) and X�� �
Y�
 � Z�
 (here simply referred as Beal´s equation) were 
freely explored, searching for different aspects of their 
meanings. 

The developments on Beal Conjecture are divided into 
four parts. The first part consists on the presentation of 
geometric illustrations that allow a view of the argument to 
be adopted. The second part presents the deduction of the 
correspondence between the real solutions of Pythagoras´ 
equation and Fermat's equation, obtaining the transforms 
that enable this operation. The third part contains the 
deduction of the transforms between the real solutions of 
Fermat's equation and the Beal´s equation, and the fourth 
part includes analysis and discussion about the topic, 
including some examples. 

The presented language is simple, sometimes making use 
of geometrical illustrations to explore analytical aspects of 
the problem, which is believed to be helpful for the 
solution´s understanding. It is thus intended that the 
statements are sufficiently clear and straightforward, 
allowing analysis by the scientific community and by non-
experts enthusiasts on the subject. 

2. Developments on Beal Conjecture 

2.1. Geometric Illustrations 

Using a geometric approach to illustrate this proposition, 
one can take the figures below, in which are represented 
two squares of sides A and B, with areas A�  and B� , 
respectively. The forms are out of scale and possibly out of 
proportion what, however, do not imply in loss of the 
problem´s understanding. 

By adding the areas of the squares of sides A and B one 
can obtain an area numerically equal to S � A� � B�. There 
are infinite geometric surfaces that may represent the area 
S, among which some are exemplified in figure 2. 

 

Figure 1. Squares of sides A and B, and areas ��and ��, respectively. 

Source: author. 

 

Figure 2. Examples of figures with the same area S. Source: author. 

Choosing a square of side C to represent the area S, there 
comes that S � A� � B� �	C�, resulting in the Pythagorean 
equation for real numbers. That is, from the sum of two 
squares it is possible to obtain a third square, which can be 
graphically represented in Figure 3: 

 

Figure 3. Graphic representation of Pythagoras´ equation for squares 

with sides A, B and C, respectively. Source: author. 

Assuming that each square has an infinitesimal thickness 
du, the infinitesimal volumes of the elements correspond 
to: dV% � A�du, dV' � B�du and dV( � C�du. In fact, the 
sum of the areas can be converted into volumes by simply 
multiplying the scalar du on the Pythagoras´ equation, 
resulting in: 

A�du � B�du � 	C�du                        (1) 

Or, equivalently: 

dV% �	dV' � dV(                              (2) 

As illustrated in Al Shenk [5], one can integrate the 
infinitesimal volumes along an axis u transverse to plane of 
the figures (therefore linearly independent to it, [6]) until 
some arbitrary thickness U, and then have: 

) dV%*
+ �	) dV'*

+ � ) dV(*
+                            (3) 

) A�du*
+ �	) B�du*

+ � ) C�du*
+                  (4) 

A�U � B�U � 	C�U                                 (5) 
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By making U numerically equal to A, that is, making the 
thickness set to all elements be equal to the side of the first 
element, there comes that: 

A�A � B�A � 	C�A                            (6) 

A� � B�A � 	C�A                              (7) 

As one can see, by setting U = A, the cube of side A on 
the first element was obtained in a direct way. Being C 
always greater than A and B, and assuming B different from 
A (just for the purpose of visualization, but this is not a 
condition at first), the corresponding volumes to the second 
and third elements will necessarily be different from their 
respective cubes, corresponding to tridimensional solids in 
the shapes of parallelepipeds. 

 

Figure 4. Graphic representation of the sum of volumes corresponding to 

figures with main faces with sides A, B and C, respectively, all of them 

with thickness (depth) A. Source: author. 

In an analogous manner to the areas (figure 2), a volume 
V can be represented by various tridimensional solids. It is 
well known that the volume contained in a parallelepiped 
can also be represented by a cube of an equivalent volume, 
with side equal to L � √V
 . Relying on this artifice, it can 
be obtained a cubic equivalency to the volumes of the 
second and third solids, resulting in: 

V' � B�A � L'�                               (8) 

V( � C�A � L(�                               (9) 

L' � √B�A
                                    (10) 

L( � √C�A
                                   (11) 

The equation of volumes can then be rewritten in the 
form: 

A� � L'� �	L(�                                 (12) 

One can note that the equation now assumes the form of 
a sum of cubes, revealing that from the solutions for 
A� � B� �	C� in reals one can obtain equivalent solutions 
for A� � L'� �	L(�  in reals and vice versa, using the 
transforms L' � √B�A
  and L( � √C�A
 . 

2.2. Correspondence between Real Solutions of 

Pythagoras´ Equation and Fermat´s Equation 

In case the equation of volumes is integrated again and 
by making U=A, one can obtain: 

A/ � B�A� �	C�A�                       (13) 

From this moment, the tridimensional visualization 
feature cannot be applied, since it requires a 4-dimensional 
space. If the integrations continue in a n-dimensional 
Euclidean space [7] until it is obtained the n-power of A 
[8], there will be: 

A� � B�A�0� �	C�A�0�                (14) 

Similarly to the approach performed in tridimensional 
space illustrated above, one can obtain in n-space the 
equivalent elements that allow rewriting the equation to the 
n-power. By making γ� � B�A�0� and α� � C�A�0� , the 
equation becomes: 

A� � γ� �	α�                                   (15) 

This is the general form of Fermat´s equation. It is 
highlighted that the deductions are being made within the 
framework of real numbers, not addressing in particular the 
existence of entire solutions. 

It was demonstrated, therefore, that it is possible to 
obtain real solutions for A� � γ� �	α�  from the solutions 
for A� � B� �	C�  in reals and vice versa, using the 
transforms γ � √B�A�0�3 and α � √C�A�0�3 . The term A 
remains the same, that is, not transformed. 

2.3. Correspondence between Real Solutions of Fermat's 

Equation and Beal´s Equation 

Taking the Beal´s equation in the form X�� � Y�
 � Z�
  
one can realize that it is possible to transform it into the 

Fermat´s equation by making Y � γ
�� �
4 and Z � α

�� �
4 , 
resulting in: 

X�� � �γ�� �
4 ��
 � �α�� �
4 ��
                   (16) 

X�� � γ�� �	α��                              (17) 

This is the general form of the Fermat´s equation for 
δ � A � X and n � n�. Having established that Y � γ

�� �
4 , 

γ � √B�A�0�3 , Z � α
�� �
4 , α � √C�A�0�3  and making A=X 

e n � n�, one can have: 

Y � � √B�X��0�3� ��� �
4 � √B�X��0�3
           (18) 

Z � � √C�X��0�3� ��� �
4 � √C�X��0�3
           (19) 

As demonstrated, one can obtain real solutions X, Y, Z 
for the Beal´s equation from real solutions A, B, C for the 
Pythagoras´ equation, using the transforms X � A , Y �
√B�X��0�3


 and Z � √C�X��0�3

. 

2.4. Analysis 

From the transforms Y � √B�X��0�3
 and Z �
√C�X��0�3
 , one can note that, in principle, unless that  
n� � 2 (situation in which the power of X is zero, resulting 
in the unit) or X=0 (trivial solution), the variable X is 
always present in the transforms.  

Assuming X, Y, Z integers and n� � 2, B� and C�must 
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be rational numbers, because they are necessarily written as 
quotients of integers: 

B� = 53

63�7


                                       (20) 

C� = 83

63�7


                                       (21) 

Once the primes are infinite [9] and W an integer number 
by hypothesis, one can necessarily write W in the form of 

the product of the infinite primes raised to their respective 
powers [10]. As the powers represent the number of times a 
given prime appears in the factorization of W, the absent 
primes in the factorization will have exponents 0, 
corresponding to the unit and thus not altering the product. 
Adopting the notation of infinite product, the number W 
can be written as: 

W = ∏ P<
=>,?@

<A� = P�
=>,�P�

=>,
 …P@
=>,C                                                              (22) 

In which kE< represents the number of times the i-th prime appears in the factorization of W. Writing X��0�, Y�
  and Z�
  
in infinite product notation, one can have: 

X��0� = ∏ P<
���0��=F,?@

<A� = P�
���0��=F,�P�

���0��=F,
…P@
���0��=F,C                                                (23) 

Y�
 = ∏ P<
�
=G,?@

<A� = P�
�
=G,�P�

�
=G,
 …P@
�
=G,C                                                 (24) 

Z�
 = ∏ P<
�
=H,?@

<A� = P�
�
=H,�P�

�
=H,
 …P@
�
=H,C                                                 (25) 

Therefore, B� and C�can be written as: 

B� = I�
3
JG,�I


3
JG,
…IC
3
JG,C

I�
�3�7
�JF,�I


�3�7
�JF,
…IC
�3�7
�JF,C                                                           (26) 

C� = I�
3
JH,�I


3
JH,
…IC
3
JH,C

I�
�3�7
�JF,�I


�3�7
�JF,
…IC
�3�7
�JF,C                                                            (27) 

Or equivalently: 

B� = P�
�
=G,�0���0��=F,�P�

�
=G,
0���0��=F,
 …P@
�
=G,C0���0��=F,C                                                    (28) 

C� = P�
�
=H,�0���0��=F,�P�

�
=H,
0���0��=F,
 …P@
�
=H,C0���0��=F,C                                                    (29) 

Since B�  and C� are rational numbers, three situations 
may occur: 

1) Situation 1: �� and �� are integers; 
2) Situation 2: �� or �� is integer and the other is non-

integer; 
3) Situation 3: �� and �� are non-integers. 

2.4.1. Situation 1 Analysis (KL and MLIntegers) 

Assuming that B� and C� are integers, all the powers of 
the primes factors must be positive or zero. If not, then the 
prime factor would be raised to a negative power, going to 
the denominator and leading to a non-integer result. This 
condition can be expressed in the general form as 

n�k5,< − �n� − 2�k6,< = kB2,< ∴ n�k5,< = kB2,< + �n� − 2�k6,<                                                         (30) 

n�k8,< − �n� − 2�k6,< = kC2,< ∴ n�k8,< = kC2,< + �n� − 2�k6,<                                                         (31) 

As one can note, if 	k'
,< ≥ 0 for all primes and a certain prime factor PR  exists in X (k6,R ≥ 0), then necessarily 
k5,R ≥ 0, that is, PR is also present in Y. The same is valid for X and Z once 	k(
,< ≥ 0, that is, if a prime factor PS is 
present in X (k6,S ≥ 0), then necessarily it will be present in Z (k8,S ≥ 0�.  

WritingX�� , Y�
 , Z�
  with highlights to the PR and PS prime factors, one can have: 

X�� = P�
��=F,� …PR

��=F,T …PS
��=F,U …P@

��=F,C                                                                   (32) 

Y�
 = P�
�
=G,� …PR

�
=G,T …PS
�
=G,U …P@

�
=G,C                                                                   (33) 

Z�
 = P�
�
=H,� …PR

�
=H,T …PS
�
=H,U …P@

�
=H,C                                                                    (34) 

Therefore the equation X�� + Y�� = Z�� becomes: 
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VP�
��=F,� …PR

��=F,T …PS
��=F,U …P@

��=F,CW + VP�
�
=G,� …PR

�
=G,T …PS
�
=G,U …P@

�
=G,CW 

= P�
�
=H,� …PR

�
=H,T …PS
�
=H,U …P@

�
=H,C                                                                         (35) 

Once PR is present in X (k6,R ≥ 0) and in Y (k5,R ≥ 0), it can be put at evidence, resulting  

PR[VP�
��=F,� …PR

��=F,T7� …PS
��=F,U …P@

��=F,CW + VP�
�
=G,� …PR

�
=G,T7� …PS
�
=G,U …P@

�
=G,CW] = Z�
                    (36) 

As the content of the brackets is integer (here named M), 
it comes that Z�
 = PRM, that is, Z�
  also has the prime 
factor PR  in its factorization. As Z is assumed integer by 
initial hypothesis, then Z and Z�
  have the same prime 

factors, resulting that PR is also present in Z. 
Doing the same for PS, once PS is present in X (k6,S ≥ 0) 

and in Z (k8,S ≥ 0), it can be put at evidence, resulting  

PS [VP�
�
=H,� …PR

�
=H,T …PS
�
=H,U0�…P@

�
=H,CW − VP�
��=F,� …PR

��=F,T …PS
��=F,U7� …P@

��=F,CW\ = Y�
                        (37) 

As the content of the brackets is integer (here named N), 
it comes that Y�
 = PSN , that is, Y�
  also has the prime 
factor PS  in its factorization. As Y is assumed integer by 
initial hypothesis, then Y and Y�
  have the same prime 
factors, resulting that PS is also present in Y. 

As already mentioned, the exception occurs when n� =
2, when Y and Z do not depend on the variable X anymore. 
One can note that, in principle, it seems not to be necessary 
that n�, n� > 2 for the rule to be considered valid, but only 
n� > 2 . However, there are cases of known integer 
solutions of X, Y, Z coprime in which n� > 2 and n� = 2 
or n� = 2, i.e. 7� + 13� = 2a  e 2b + 17� = 71�  [2]. This 
aspect will be clarified in section 2.5. 

2.4.2. Situation 2 Analysis (KL or MLNon-Integers) 

Writing B�(non-integer) in the notation form I' + ε, in 
which I'  represents the whole part of B�  and ε  is the 
decimal part, and as X� + B� = C�, it follows that: 

X� + I' + ε = C�                                 (38) 

�X� + I'� + ε = C�                                (39) 

Since X� and I'  are integers, then �X� + I'� = I( , in 
which I( is the whole part of C�. This results that C� = I( +
ε, that is, if B� is a non-integer real, then C� also is, and the 
decimal part ε is common to both. Therefore, situation 2 is 
not possible, leaving only situation 3. 

2.4.3. Situation 3 Analysis (KL and MLNon-integers) 

Assuming that B� and C� are non-integers, there are one 
or more prime factors with negative powers in their ratio 

form. If not, then the prime factors would be raised only to 
positive powers, leading to B� and C� integers.  

Naming the prime factors with negative powers in B� as 
PR∗  and the prime factors with negative powers in C�as 
PS∗, there comes that: 

n�k5,R∗ − �n� − 2�k6,R∗ = k'
,R∗             (40) 

n�k8,S∗ − �n� − 2�k6,S∗ = k(
,S∗             (41) 

 Developments on this section are further explored in 
Gregorio [11] and may lead to exceptions to Beal 
Conjecture, in case of certain conditions are attended. 

2.5. Extending the approach for Situation 1 

In fact, the initial approach adopted the first shape as the 
reference for the development (figure 4), what led to 
A� + B�A�0� =	C�A�0� , and consequently X = A , 

Y = √B�X��0�3

, Z = √C�X��0�3


. 
One can also adopt the second element as the basis, 

resulting in A�B�0� + B� =	C�B�0�, and X = √A�B�
0�3�
, 

Y = B, Z = √C�B�
0�3

. The same applies if one chooses 

the third element to be the reference, coming to A�C�0� +
B�C�0� =	C� and X = √A�C�
0�3�

, Y = √B�C�
0�3

, Z =

C. 
As one can see, a rational solution of A� + B� = C�(in 

which at least A or B or C is integer) may lead to three 
different types of solutions for X�� + Y�
 = Z�
: 

Table 1. Types of solutions for ef� + gf
 = hf
that can be obtained using the first, second and third elements as unaltered basis, respectively. Source: 

author. 

SOLUTIONS FOR ijk + ljL = mjn X Y Z 

I A o��ef�0�
p


 o��ef�0�
p


 
II o���f
0�

p�
 B o���f
0�p


 
III o���f
0�

p�
 o���f
0�p


 C 

 
The development performed for solution type I is 

analogous for the solutions II and III and will not be 
replicated to avoid redundancy. Considering the case of 
Situation 1, it is clear that: 

1) In solution type I, for q� > 2 and if B� and C� are 
integers, then Y and Z depend on X; 

2) In solution type II, for q� > 2 and if A� and C� are 
integers, then X and Z depend on Y; 
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3) In solution type III, for q� � 2 and if B� and A� are 
integers, then X and Y depend on Z. 

One can note that, in the case of Situation 1, there are 
prime factors in common to X, Y, Z since in solution type 
I,n� > 2; in solution type II,n� > 2 and in solution type 

III,n� > 2. I. e. one can obtain infinite integer solutions 
for X�� + Y�
 = Z�
  with common prime factors from 
the classic Pythagorean solution 3� + 4� = 5� , among 
which some of them are following presented: 

Table 2. Solutions for ef� + gf
 = hf
obtained from 3� + 4� = 5�. Source: author. 

SOLUTIONS FOR ijk + ljL = mjn X Y Z jk  jL  jn  

I-a(3 is common) 3 6 45 6 4 2 

I-b(3 is common) 3 36 45 6 2 2 

II-a(2 is common) 6 4 10 2 3 2 

II-b(2 is common) 6144 4 10240 2 13 2 

III-a(5 is common) 15 20 5 2 2 4 

III-b(5 is common) 75 10 5 2 4 6 

 
The opposite is also true, that is, from one whole 

solution for X�� + Y�
 = Z�
 , one can obtain three 
different rational solutions for A� + B� = C� . I. e. [1] 

presented the solution 3� + 6� = 3u, resulting in:  

Table 3. Types of rational solutions for �� +�� = �� obtained from 3� + 6� = 3u. Source: author. 

SOLUTIONS FOR vL + KL = ML vL  KL  ML  

I´ 9 (A=X=3) 72 81 

II´ 4,50 36 (B=Y=6) 40,5 

III´ 1 8 9 (C=Z=3) 

 
In the example presented, one can note that solution 

type I´ led to B�and C� integers, solution type II´ led to 
A�and C� non-integers and solution type III´ led to A�and 
B� integers. 

The Beal Conjecture states that, for n�, n�, n�> 2, the 
integer solutions for X�� + Y�� = Z��  have a common 
prime factor. Therefore, the Beal's Conjecture is correct 
for Situations 1 (possible to happen) and 2 (impossible to 
happen). 

3. Conclusion 

Demonstrations revealed the correspondence between 
real solutions of equations in the forms A� + B� = C� 
(Pythagoras), δ� + γ� = α�  (Fermat) and X�� + Y�� =
Z��  (Beal), what enabled to show that the Beal 
Conjecture is correct for possible situations in which: 

1) B�and C�  are integers, if A is taken as an integer 
reference basis; 

2) A�and C�  are integers, if B is taken as an integer 
reference basis; 

3) A�and B�  are integers, if C is taken as an integer 
reference basis; 

That is, from the correspondent Pythagoras´ equation, 
if one of the terms A, B or C is taken as an integer 
reference basis, demonstrations revealed that the Beal 
Conjecture is correct if the remaining terms, when 
squared, are integers. 

However, cases different than the previous exposed 
(situation 3) may lead to exceptions to Beal Conjecture, 
in case of certain conditions are attended. Developments 
for Situation 3 are explored in Gregorio [11]. 
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