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1. Introduction 

Let Th be some fixed, but unspecified, consistent formal 

theory. 

Theorem1.[1].(Löb’s Theorem). 

If �� 	 
�Prov����, ��� � ��  where x is the Gödel 

number of the proof of the formula with Gödel number n, 

and �� is the numeral of the Gödel number of the formula�� 

then�� 	 �� . Taking into account the second Gödelincom-

pleteness theorem it is easyto see that ��  not be able to 

prove
�Prov����, ��� � ��, for disprovable (refutable) and 

undecidable formulas�� Thus Löb’s theorem says that for 

refutable or undecidable formulas��, the intuition “if there 

is exists proof of�� [i.e.�� 	 
�Prov�����, ���]then�� [i.e. 

Th	 ���” is fails.The reason of this phenomenon, consist in 

thatthe concept of natural numbers is not absolute and 

therefore in general case statement �� 	 
�Prov�����, ��� 

does not asserts that:�� 	 ��. 

Definition 1.Let��
�� . be an �-model of the Th. We said 

that, Th#is a nice theory over Thor a nice extension of the 

Thiff:  

(i) Th
#
contains Th; 

(ii) Let� be any closed formula, then 

 �� 	 !"��� ��#�� $  ��
��  % �� 

implies. , ��# 	 �.Here  ��# is a code of Φ [2]. 

Definition2.We said that, Th#is a maximally nice theory 

over Th or a maximally nice extension of the ThiffTh#is 

consistent and for any consistent nice extension ��'of the 

Th:  ()*���#� + ()*���'� implies:. ()*���#� ,

()*���'�. 
Theorem2.(Generalized Löb’s Theorem).Assume that (i) 

Con(Th) and (ii) Thhas an ω -model��
��  . Then theo-

ryThcan be extended to a maximally consistent nice theory 

Th#. 

Theorem3.(Strong Reflection Principle corresponding to 

ω-model) Assume that (i) -.�����, (ii) Th has an ω-model 

��
��.LetΦ be a Th-sentence and let ��be a Th-sentence Φ 

relativized to a model ��
��.Then 

��� 	 �� / ��� 	 Pr���� ���#�,  

��� % �� / ��� % Pr���� ���#�.  

Theorem4.Let κ be an inaccessible cardinal.Then 

¬Con(ZFC+
κ). 

Theorem5. ¬Con(NFUA). 

Theorem6.¬Con(NFUB). 

2. Preliminaries 

Let Thbe some fixed, but unspecified, consistent formal 

theory. For later convenience, we assume that the encoding 

is done in some fixed formal theory S and that Thcontains S. 

We do not specify S --- it is usually taken to be a formal 

system of arithmetic, although a weak set theory is often 

more convenient. The sense in which Sis contained in Th is 

better exemplified than explained: If Sis a formal system of 

arithmetic and This, say, ZFC, then Th contains S in the 

sense that there is a well-known embedding, or interpreta-

tion, of S inTh. Since encoding is to take place in S, it will 

have to have a large supply of constants and closed terms to 
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be used as codes (e. g. in formal arithmetic, one 

has0�, 1�, … �.Swill also have certain function symbols to be 

described shortly. To each formula� of the language of Th is 

assigned a closed term  ��#called the code of � . If� is a 

formula with a free variable x, then �����# is a closed term 

encoding the formula����  with x viewed as a syntactic 

object and not as a parameter. Corresponding to the logical 

connectives and quantifiers are function symbols: 

�)3�·�, 567�·�, etc., such that, for all formulae Φ,Ψ:8 	
�)3� ��#� ,  9��# , 8 	 567�·� ,  � � :�# , etc. Of par-

ticular importance is the substitution operator, represented 

by the function symbol;<�·,·�. For formulae ����, terms t 

with codes =�#:  

8 	 >;<� �����#,  =�#� ,  ��=��#.   (2.1) 

Iteration of the substitution operator sub allows one to 

define function symbols >;<?, >;<@, … , >;<� ,such that 

8 	 >;<�� ���?, �@, … , �� , ��#,  =?�# ,  =@�#, … ,  =��# , � ,

,  ��=?, =@, … , =���.
#
.     (2.2) 

It well known [2],[3] that one can also encode derivations 

and have a binary relation Prov����, A� (read “x proves y” 

or “x is a proof of y”) such that for closed =?, =@ : 8 	
Prov���=?, =@�iff=? is the code of a derivation in Th of the 

formula with code =@. It follows that  

                �� 	 � / 8 	  Prov���=,  ��#�        (2.3) 

for some closed term t. Thus one can define predicate 

Pr���A�: 

                     Pr���A� / 
�Prov����, A�         (2.4) 

and therefore one obtain a predicate asserting provability. 

Remark2.1. 

We note that is not always the case that [2]-[3]: 

                        �� 	 � / 8 	 Pr��� ��#�.         (2.5) 

It well known [3] that the above encoding can be carried 

out in such a way that the following important conditions 

D1,D2 and D3 are met for allsentences [2],[3]: 

 (1.  �� 	 � � 8 	 Pr��� ��#�, 
 (2.  Pr��� ��#� � Pr��� Pr��� ��#��#�,(2.6) 

 (3.  Pr��� ��#� $ Pr��� � � :�#� � Pr��� :�#�. 
Conditions D1,D2 and D3 are called the Derivability 

Conditions. 

Assumption2.1. 

We assume throughout that:  

(i) the language of Th consists of: numerals 0�, 1�, … � 

countableset of the numerical variables:DEF, E?, … G 

countable setF of the set variables: 

H , D�, A, I, J, K, L, M, N, O, P, … G; 
countable set of the n–ary function symbols: 

RF
�, R?

�, … , RS
�, …; 

countable set of the n–ary relation 

bols:TF
� , T?

� , … , TS
� , …; 

connectives:9, �; 
quantifier:U. 

(ii) Thcontains a theory Th
*
: 

��V , LH- W 
�� X 6.*)Y  .R LH-�. 
(iii) Thhas anω-modeY  ��

�� . 

Theorem2.1. 

(Löb’s Theorem). Let be (1) Con(Th) and (2) �be closed. 

Then 

 �� 	 Pr��� ��#� � �.          (2.7) 

It well known that replacing the induction scheme in 

Peano arithmetic PA by the ω-rule with the meaning “if the 

formulaZ��� is provable for all n, then the formulaZ���is 

provable” : 

[�F�,[�?�,…,[���
U\[�\�                (2.8) 

leads to complete and sound system!Z] where each true 

arithmetical statement is provable. S.Feferman showed that 

an equivalent formal system ��# can be obtained by erect-

ing on Th=PA a transfinite progression of formal 

tems!Z^ according to the following scheme 

!ZF , !Z, 

!Z^_? , !Z^ W `U�!"a[b� Z��c��#� � U�Z���d, (2.9) 

 !Ze , f !ZF^ge , 

whereZ��� is a formula with one free variable and where 

λis a limit ordinal. Then��# , f !ZF^hi ,Obeing Kleene’s 

system of ordinal notations, is equivalentto a theory:.!Z] It 

is easy to see that a theory��# , !Z# , !Z], i.e.��# #Th  

is a maximally nice extension of  thePA. 

Generalized Löb’s Theorem. Strong Reflection Principle 

Corresponding to ω-model. 

Definition3.1. 

AnTh-wff��(well-formed formula 

��is closed i.e., �� is a Th- sentence iff it has no free 

variables; a wff Ψ is open if it has free variables. We’ll use 

the slang ‘k – place open wff’ to mean a wff with k distinct 

free variables. Given a model���   of the Thand a Th– 

sentence�, we assume known the meaning of��� % �- i. e. 

� is true in���, (see for example [4],[5],[6]).  

Definition3.2. 

Let � �
��

be an ω-model of the Th. We said that,��# is a 
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nice theory over Th or a nice extension of the Thiff: 

(i) ��# contains a theoryTh; 

(ii) Let �be any closed formula, then 

   �� 	 Pr��� ��#�� $ j� �
�� % �k 

impliesthat:��# 	 �.  

Definition3.3. 

We said that ��# is a maximally nice theory over Thor a 

maximally nice extension of the Thiff��# is consistent and 

for any consistent nice extension��'of the Th: ()*���#� +
()*���'�implies()*���#� , ()*���'�.  

Lemma3.1. Assume that: (i)Con(Th)and (ii)   �� 	
!"��� ��#� ,where � is a closed formula. Then: �� l
Pr��� 9��#�. 
Proof.Let -.������ be the formula 

-.������ m 

U=?U=@9 Prov���=?,  ��#� $ Prov���=@, �)3� ��#��� 
/ 

9
=?9
=@ Prov���=?,  ��#� $ Prov���=@, �)3� ��#���  

(3.1) 

where=?, =@ is a closed term. We note that under canoni-

calobservation, one obtain 

�� W -.����� 	 -.������ for any closedwff�.  

Suppose that:  �� 	 !"��� 9��#� , then assumption (ii) 

gives  

                  �� 	  Pr��� ��#� $ Pr��� 9��#�         (3.2) 

From (3.1) and (3.2) one obtain(3.3) 


=?9
=@ Prov���=?,  ��#� $  Prov���=@, �)3� ��#���
 

But the formula (3.3) contradicts the formula (3.1). 

Therefore:�� l Pr��� 9��#�. 
Lemma3.2. 

Assume that: (i)Con(Th)and (ii)    �� 	
Pr��� 9��#�, where  � is a closed formula. Then   �� l
Pr��� ��#�. 
Theorem3.1. 

[7],[8]. (Generalized Löb’s Theorem). Assume 

that:Con(Th). Then theory Th can be extended to a max-

imally consistent nice theory 
#Th  over Th. 

Proof.Let .,�?, … , �n , …be an enumeration of all wff’s of 

the theory Th (this can be achieved if the set of propositional 

variables can be enumerated). Define a chain 

o , D��n|5 h qG, ��? , ��, 
of the consistent theories inductively as follows: assume 

that theory ��n  is defined.  

(i) Suppose that a statement (3.4) is satisfied 

  �� 	 Pr��� �n�#�and 

 �� l �n� $ j� �
�� % �nk         (3.4) 

Then we define theory ��n_? as follows: 

��n_? m ��n r D�nG 

(ii) Suppose that a statement (3.5) is satisfied 

  �� 	 Pr��� 9�n�#�and 

 �� l 9�n� $ j� �
�� % 9�nk.          (3.5) 

Then we define theory��n_?as follows 

��n_? m ��n r D9�nG. 

(iii) Suppose that a statement (3.6) is satisfied 

  �� 	 Pr��� �n�#�and 

��n 	 �n.                (3.6) 

Then we define theory ��n_? as follows:  

��n_? m ��n r D�nG 

(iv) Suppose that a statement (3.7) is satisfied 

  �� 	 Pr��� 9�n�#�and 

             ��n 	 9�n.               (3.7) 

Then we define theory 
1iTh +  as follows: ��n_? m ��n . 

We define now theory ��# as follows 

��# , f ��nnhq .             (3.8) 

First, notice that each��n  is consistent. This is done by 

induction on i and by Lemmas 3.1-3.2. By assumption, the 

case is true when 1i = . Now, suppose  ��n is consistent. 

Then its deductive closure()*���n� is also consistent. If a 

statement (3.6) is satisfied, i.e.  �� 	 Pr��� �n�#�and��n 	
�nthen clearly��n_? m ��n r D�nG is consistent since it is a 

subset of closure ()*���n�.If a statement (3.7) is satisfied, 

i.e.,   �� 	 Pr��� 9�n�#� and   ��n 	 9�n  then clearly 

��n_? m ��n r D9�nG is consistent since it is a subset of 

closure ()*���n�.Otherwise: 

(i) if a statement (3.4) is satisfied, i.e.   �� 	
Pr��� �n�#�  and �� l �n  then clearly ��n_? m
��n r D�nG is consistent by Lemma 3.1 and by one 

of the standard properties of consistency: ∆r DZG is 

consistent iff∆l 9Z; 
(ii) if a statement (3.5) is satisfied, i.e.   �� 	

Pr��� 9�n�#�and �� l 9�n , then clearly ��n_? m
��n r D9�nG  is consistent by Lemma 3.2 and by 

one of the standard properties of consistency: 

∆r D9ZGis consistentiff∆l 9Z. 

Next, notice ()*���#� is a maximally consistent nice 

extension of the set ()*����. A set()*���#� is consistent 

because, by the standard Lemma 3.3 below, it is the union of 
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a chain of consistent sets. To see that ()*���#� is maximal, 

pick any wff�. Then � is some �n in the enumerated list 

of all wff’s. Therefore for any � such 

that   �� 	 Pr��� �n�#� or   �� 	 Pr��� 9�n�#�  either 

� h ��#or9� h ��#. 

Since  ()*���n_?� + ()*���#� we have  � h
()*���#� or 9� h ()*���#� , which implies that 

()*���#�, is maximally consistent nice extension of the 

()*����.  

Lemma3.3.  

The union of a chaino , Dsn|5 h qG of theconsistentsetss, 

ordered by+, is consistent.  

Definition3.4. 

(a) Assume that a theoryThhas ω-model � �
��

 and � 

is aTh-sentence. Let ��be a Th-sentence �with all quan-

tifiers relativized to ω-model � �
��

 [9]; 

(b) Assume that a theory Thhas standard model 8��� 

And Φ is a Th-sentence. Let �tu be a Th-sentence Φ 

with all quantifiers relativized to a model 8��� [9]. 

Remark3.1. 

In some special cases we denote a sentence �� by a 

symbol: � ��
���. 

Definition3.5. 

(a)Assume that Thhas an �-model � �
��

. Let ���be a 

theory Threlativized toa model � �
��

 - i.e., any 

���-sentenceΨ has a form �� for some Th-sentence �[9]; 

(b) Assume that Th has an standard model 8��� . Let 

��tube a theory Th relativized to a model 8���- i.e., any 

��tu-sentence Ψ has a form �tu for some Th-sentence Φ 

[9]. 

Remark3.2.  

In some special cases we denote a theory ���  by a 

symbol:�� ��
���. 

Definition3.6. 

(a) For a givenω-model � �
��

 of the Thand for any 

���-sentence��, we define relation� �
�� %V �� such that 

the nextequivalence: 

� �
�� %V �� iff ��y 	 ��� $ 

     $ z���� 	 Pr���� ���#� / ��y 	 ���{,    (3.9.a) 

where��y m �� W 
��
�� is satisfied. 

(b) For a given standard model 8��� of the theoryThand 

for any ��tu -sentence �tu wedefine relation �tu
�� %V �tu 

such that the next equivalence: 

�tu
�� %V  �tuiff  ���y 	 �tu� $     (3.9.b) 

$ ���|} 	 Pr��~�� �tu�#� / ��y 	 �tu�, 

where ��y m �� W 
�tu
�� , issatisfied. 

Theorem3.2.(Strong Reflection Principle correspondingto 

ω-model).Assume that: (i) Con(Th),(ii) Th has ω-model 

� �
�� ,i.e.� �

�� % ���.Let Φ be a Th-sentence. Then 

 ��� ��� 	 Pr���� ���#� / ��� 	 ��, 

 �<� ��� % Pr���� ���#� / ��� % ��(3.10) 

Proof.(a) Let Φ is any axiom of thetheory Th. Then 

statement (3.10) immediately follows from Definition 3.6 

(a).The one direction is obvious. For the other, assume that  

��� 	 Pr���� ���#�,(3.11) 

��� l ��and ��� 	 9��. Then 

��� 	 Pr���� 9���#�. (3.12) 

Notethat (i)+(ii) implies -.������.Let  -.����be the 

formula: 

-.���� m U=?U=@U=��=� ,  ���#�9zProv����=?,  ���#� $
Prov����=@, �)3� ���#��� /(3.13) 

9
=?9
=@9
=��=� ,  ���#�zProv����=?,  ���#� $
Prov����=@, �)3� ���#���,  

Here=?,=@, =� is a closed term. Note that in any ω-model 

� �
��

 by the canonical observation one obtain the equiva-

lence: -.������ /   -.���� , But the formulae: (3.11) – 

(3.12)contradicts the formula (3.13). Therefore ��� l �� 

and ��� l Pr���� 9���#�.
 Then a theory ���

' , ��� W 9�� is consistent and from 

the above observation one have obtain that: 

-.�����
' � /   -.����� , where 

  -.����� /                (3.14) 

/ 9
=?9
=@9
=��=� ,  ���#�zProv���� �=?,  ���#� $
Prov���� �=@, �)3� ���#��{,  

On the other hand one obtain 

���
' 	 Pr���� � ���#�, ���

' 	 Pr���� � 9���#� (3.15)  

But the formulae (3.15), contradicts the formula (3.14). 

This contradiction completed the proof. 

(b) The one direction is obvious. For the other, assume 

that:(i)��� % Pr���� ���#� ��* (ii)��� %   9��. From (ii) 

using derivability condition D1 (see Remark 2.1) one obtain 

��� % Pr���� 9���#�.  Therefore one obtainthe contra-

diction 

 ��� % Pr���� ���#� $ Pr���� 9���#� .  
This contradiction completed the proof. 

Definition3.7.(a)Assume that: (i) Thhas an ω-model 

� �
��

,(ii) ��,%
��  is a set and (iii) � �

�� %V ���. Then we 
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said that � �
��

 is a strong ω-model of the Th and denote 

such ω-model of the Thas��,%V
�� . 

(b) Assume that: (i) Thhas an standard model8���,(ii) 
8�%V

�� is a set and (iii)8��� %V ��tu . Then we said that 

8���is a strong standard model of the Th and denote such 

standard model of the Th as 8�%V
��. 

Remark3.3. Note that there exists formal theoriesTh-

which has not a strong standard models.For example a 

theory ZFC+(V=L) has not any strong standard model. 

Definition3.8.(a) Assume that Thhas a strong 

ω-model ��,%V
�� .Then we said that This a strongly consistent.  

(b) Assume that Th has a strong standard model 8�%V
�� 

Then we said that Th is a strongly SM-consistent 

Definition3.9.(a) Assume that a theoryThhas a strong 

ω-model  ��,%V
�� .and � is aTh–sentence. Let ��,%V  be a 

Th–sentence � with all quantifiers relativized to a strong 

ω-model ��,%V
�� . 

(b) Assume that Th has a strong standard model 

8�%V
��and Φ is a Th-sentence Let �tu,%V be a Th-sentence 

Φ with all quantifiers relativized toa model8�%V
��. 

Remark3.4. 

In some special cases we denote a sentence ��,%Vby a 

symbol: �z��,%V
�� {. 

Definition3.10. Assume that a theoryThhas a strong  

ω-model  ��,%V
�� .Let ���,%V  be a theory Threlativised to a 

model ��,%V
��  i.e., any ���,%V-sentence Ψ has a form ��,%V 

for someTh-sentence Φ. 

Remark3.5. 

In some special cases we denote a theory ���,%V by a 

symbol:��z��,%V
�� {. 

Definition3.11.  

(a) Let Thbe a theory such that Assumption 2.1 is satisfied. 

Let -.�� ���; ��,%V
 �� �be a predicate in Thasserting that��,%V

��  

is a strong ω-model of the Th.Then a 

tence-.����; ��,%V
�� � such that 

-.����; ��,%V
�� � / 
��,%V

�� -.�� ���; ��,%V
 �� � 

isa sentence in Th asserting that Th has a strong 

ω-model ��,%V
�� .(b) Let Th*be a theory: 

��V , �� W -.����; ��,%V
�� � 

Let-.����V; ��,%V
��V � be a sentence in Th* asserting that 

Th* has a strong ω-model��,%V
��V

.  

Lemma3.4.Assumethat a theory Th has a strong ω-model 

8��,%V
��  and a theory Th* has a strong ω-model 

��,%V
��V .Then: (i) a sentence-.����; ��,%V

�� � is aTh-sentence, 

(ii);a sentence -.����V; ��,%V
��V � is a Th*-sentence. 

Proof.Immediately follows from Definition 3.6 and De-

finition 3.11. 

Assumption3.1.We now assume,throughout this subsec-

tion that Th is a strongly consistent, i.e. a 

tence-.����; ��,%V
�� � is true in any ω-model ��

�� of the 

Th. 

Remark3.6. 

Note that: 

-.����; ��,%V
�� � / -.����,%V        (3.16) 

where 

 -.����,%V / 9Pr���,%V�z��,%V{#�          (3.17) 

Herea sentence��,%Vis refutablein���,%V. 
Remark3.6.Note that: 

-.����V; ��,%V
��V � / -.����V                 (3.18)  

where 

-.����,%VV / 9Pr���,%VV �z��,%V
V {#�.    (3.19)  

Herea sentence��,%V
V is refutablein���,%V

V .  

Lemma3.5. 

Ander Assumption3.1 a theory Th* is a strongly consis-

tent.  

Proof. Assume that a theoryTh*is no strongly consistent, 

that is, has not any strong ω-model  ��,%V
��V

 of the Th*. This 

means that there is no any model ��� of the theory Th in 

which a sentence-.����; ��,%V
�� �is true and therefore a 

sentence 9-.����; ��,%V
�� � is true in any model ���of 

the theoryTh.In particular a sentence�: 

� m 9-.����; ��,%V
�� �         (3.20)is true in any 

strong ω-model  ��,%V
��  of theTh.Therefore from formula 

(3.16) one obtain, that a formula 9-.����,%Vis true in any 

strong ω-model ��,%V
��  oftheTh,i.e. 

���,%V
�� % 9-.���� �,%V             (3.21) 

Here ��� �,%V m ���,%Vz���,%V
�� { ,  i.e. ��� �,%V. is a theory 

���,%V relativized to a strongω-model ���,%V
�� , seeRe-

mark3.2.From formulae (3.17) and (3.21) one obtain 

��%V
��%Pr��� �,%V�z���,%V{#�.          (3.22) 

Here ���,%V m ��,%Vz���,%V
�� {,  i.e. ���,%V is a sen-

tence��,%Vrelativized to a strong ω-model ���,%V
�� ,see Re-

mark 3.1.So from formula (3.22) using a Strong Reflection 

Principle (Theorem3.2.b) one obtain 

���,%V
�� % ���,%V, where a sentence ���,%V is refutable in a 

theory ��� �,%V, i.e. ��� �,%V 	 9���,%V andtherefore ���,%V
�� %

9���,%V. 

Thus a sentence��? m ���,%V $ 9���,%Vis satisfiedina mod-

el ���,%V
�� , i.e.���,%V

�� % ��?.But a sentence �1Θ  contrary to the 

assumption that Th is a strongly consistent. This contradic-

tion completed the proof.  
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Theorem3.3. 

Th has notany strong ω-model ��,%V
�� .Proof. By Lemma 

3.5 and formula (3.17) one obtain that ���,%V
V 	  -.����,%VV . 

But Gödel’s Second Incompleteness Theorem applied 

to ���,%V
V  asserts that a sentence  -.����,%VV is 

in ���,%V
V . This contradiction completed the proof.  

Theorem3.4. 

ZFC has not any strong ω-model ��,%V
��� .  

Proof. Immediately follows from Theorem 3.3 and defini-

tions. 

Theorem3.5. 

ZFC has not any strong standard model.8�%V
���  

Proof. Immediately follows from Theorem 3.4 and defini-

tions. 

Theorem3.6. 

ZFC+Con(ZFC) is incompatible with all the usual large 

cardinal axioms [10],[11] which imply the existence of a 

strong standard model of ZFC. 

Proof.Theorem3.6 immediately follows from Theorem 

3.5. 

Lemma3.6. 

Let κ be an inaccessible cardinal and let ��  be a set of all 

sets having hereditary size less then, κ.Suppose that 

-.��LH- W 
��.Then��forms a strong standard model of 

ZFC. 

Proof. From definitions one obtain that ��  forms some 

standard modelSM of ZFC. Let ����  be any axiom of ZFC 

and ��y m �� W 
�� .Thenbydefinitions one obtain  

���y 	 ���� �����            (3.23) 

����tu 	 ���� ��� / ��y 	 ���� ����. 

Using Strong Reflection Principle (see Theorem3.2) from 

statement (3.23)one obtain that RHS of the formula (3.9.b) is 

satisfied. Thus �� %V LH-. 

Theorem3.7.  

Letκ be an inaccessible cardinal.Then 9-.��LH- W 
��. 

Proof. Let �� be a set of all sets having hereditary size 

less then κ.From Lemma3.6 we know that ��forms a strong 

standard model of ZFC.Therefore Theorem 3.7 immediately 

follows from Theorem 3.6. 

New Foundation [NF for short] was introduced by Quine 

[13].It well known that his approach for blocking paradoxes 

of naïve set theory was to introduced a special stratification 

condition in the comprehension schema. Jensen [14] intro-

ducedNFU, the [slight?]version of NF in which axiom of the 

extensionality was weakened to allow ur-elements which are 

not sets. The theory NFU has a universal class,V,which 

contains all of its subsets. 

Definition3.12. 

We say that a set S is a Cantorianiffthere is a bijection of S 

with the set USC(S)consistingof all the singletons whose 

members lie in S. A set is strongly Cantorianiff the map 

� � D�Gprovides a bijection of S withaset USC(S). 

Holmes [15],[16],[17]introduced the system NFUA which 

is obtained from NFU by adjoining the axiom 

that:”EveryCantorian set is a strongly Cantorian.” 

Theorem3.8.(Solovay,1995)[18].The following theories 

are equiconsistent: 

(i) ��? m ZFC+D“there is n-Mahlo cardinal”: � h �G, 
(ii) ��@ m �H�Z. 
Holmes also introduced stronger theoryNFUB [19].Note 

that in NFU one can introduce ordinal such that any 

ordinal� consists of the class of all well-orderings which 

are order-isomorphic to a given well-ordering. 

Definition3.13. 

We say that an ordinal�is Cantorian if the underlying sets 

of the well-orderings which are its members are all Canto-

rian. 

Definition3.14.  

We say thata subcollectionΣ of the Cantorian ordinals is 

coded if there is there is some set σ whose members among 

the Cantorian ordinals are precisely the members of Σ. 

The system NFUB is obtained from the system NFUA by 

adding the axiom schema which asserts that any subcollec-

tion Σ of the Cantorian ordinals which is definable by a 

formula of the language of NFUB[possible unstratified and 

possible with parameters] is coded by some set σ. 

Theorem3.9. 

(Solovay,1997)[19].Let LH-�be a theory consisting all 

the axioms of ZFC except the power set axiom.The follow-

ing theories are equiconsistent: 

(i) ��? m
LH-� W Dthere is a weakly compact cardinalG,  

(ii) ��@ m NFUB. 

Remark3.7. 

The formulation of “weak compactness”we shall use is: κ 

is weakly compact if κ is strongly inaccessible and every 

κ-tree has a branch [19]. 

Theorem3.10.¬Con(NFUA). 

Proof. Theorem3.10 immediately follows from Theo-

rem3.7 and Theorem3.8. 

Theorem3.11.¬Con(NFUB) 

Proof.Theorem3.11 immediately follows from Theo-

rem3.7, Theorem3.9 and definitions. 

Strong Reflection Principle Corresponding to Nonstan-

dard Models. LetTh be consistent formal theory. When in-
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terpretedas a  

proof within first order theory Th,Dedekind’s categoricity 

proof for PAshows that the each model��� of the Th has the 

unique sub-model �a[ � ���� + ���of thePAarithmetic, 

up to isomorphism, that imbedsas an initial segment of all 

models of PA contained within model ����  of set theory 

ZFC.In the standard model of the Th this smallest model of 

the PA is the standard model8�a[ � qof PA. 

Remark4.1. 

Note that.in any nonstandard model�>��� of the Thit 

may by a nonstandard model �>�a[of the PA. 

Remark4.2. 

Note thatin any nonstandard model of the PA, the 

terms0� ,  80� , 1�, 880� , 2�, …  comprise the initial segment 

isomorphic to 8�a[. This initial segment is called the 

standard cutThe order type of any nonstandard model of 

PAis equal to q+A�ℤ for some linear order A[12]. 

Definition4.1. 

Let �>���bea nonstandard model of the Th and Φ is a 

Th-sentence. Let ���u be a Th-sentence Φ with all quan-

tifiers relativized to nonstandardmodel  �>��� .In some-

special cases we denote thissentence by symbol � �>����. 
Definition4.2.Let ����u be a theory Th relativized to a 

model �>���.In some special cases we denote this theory 

as:�� �>���� 
Definition4.3.  

One can define a predicate Pr������A�such that for all 

yh �>���theequivalence:: 

Pr������A� / 
��� h �a[�Prov�������, A�.         (4.1) 

is satisfied.Therefore one obtain a predicate asserting 

provability in a theory����u. 

Definition4.4. 

For a given nonstandard model �>���of the Thand any 

����u -sentence ���u we define relation �>��� %V
���usuch the next equivalence: 

�>��� %V ���uiff ���y 	 ���u� $      (4.2) 

� j���tu 	 Pr������ ���u�#�� / ���y 	 ���u�k, 

where ��y m �� W 
�>���, issatisfied. 

Theorem4.1.(StrongReflectionPrinciple corresponding to 

nonstandard model)Assume that:(i) Con(Th),(ii)Th has an-

nonstandard model �>��� , i.e. �>��� % ����u .LetΦis a 

Th-sentence. Then 

Pr������ ���u��� / ����u  	 ���u .   (4.3) 

Proof. The proof completely to similarly a proof of the 

Theorem 3.2. 

Definition4.5.Assume that: (i) Th has an nonstandard  

model �>��� ,(ii) �>�%V
��  is a set and �55��>��� %V

���u . Then we said that �>��� is astrong nonstandard 

model of the Th anddenotesuchnonstandard model as 

�>�%V
��. 

Definition4.6. 

Assume that a theoryTh has astrononstandard 

el  �>�%V
�� . Then we said that a theory Th is a strongly 

NsM-consistent. 

Definition4.7.  

Assume that a theory Th has a strongnonstandard 

el �>�%V
��  and Φ is a Th-sentence. Let ���u,%V  be a 

Th-sentence Φ with all quantifiers and all constants relati-

vized to a model �>�%V
��. 

Remark4.3. 

In some special cases we denote a sentence���u,%Vby a 

symbol: � �>�%V
���. 

Definition4.8.  

Assume that a theory Th has a strong nonstandard 

el �>�%V
��. Let ����u,%Vbe a theory Threlativized to a model 

�>�%V
�� i.e., any ����u,%V-sentence Ψ has a form���u,%Vfor 

some Th-sentence Φ. 

Remark4.4.In some special cases we denote 

atheory����u,%Vby a symbol:�� �>�%V
���. 

Assumption4.1. 

We now assume throughout this subsectionthat Th is a 

stronglyNsM-consistent, i.e. a sentence-.����; �>�%V
��� is 

true in any nonstandard model �>��� of the Th. 

Definition4.9.(a) Let Th be a theory such that Assumption 

3.1 is satisfied. Let -.�� ���; �>�%V
���  be a predicate in 

Thasserting that �>�%V
�� is a strong nonstandard model of 

the Th. Then a sentence -.����; �>�%V
���such that: 

-.����; �>�%V
��� /  
�>�%V

��-.�� ���; �>�%V
���(4.4) 

is a sentence in Thasserting that Th has a strong 

non-standard model �>�%V
�� . (b) Let Th* be a theo-

ryTh*=Th+ -.����; �>�%V
��� .Let -.����V; �>�%V

��V� bea 

sentence inTh* asserting that Th* has a strongnonstandard 

model�>�%V
��. 

Lemma4.1. 

Assume that a theory Th has a strong nonstandard model 

�>�%V
�� anda theory Th* has a strong nonstandard 

el �>�%V
��V . Then: (i) a sentence -.����; �>�%V

��� is 

aTh-sentence, (ii)a sentence -.����V; �>�%V
��V� is a 

Th*-sentence.  

Proof.Immediately follows from Definition 4.4 and De-

finition 4.9. 

Remark4.5.Note that: 
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-.����; �>�%V
��� / -.������,%V,      (4.5)  

where 

-.������,%V / 9Pr�����,%V�z���u,%V{#�.   (4.6) 

Here a sentence ���u,%Vis refutable in ����u,%V. 
Remark4.6. 

Note that 

-.����V; �>�%V
��V� / -.���V���,%V ,    (4.7) 

where 

-.���V���,%V / 9Pr��V���,%V�z�V
��u,%V{#�.  (4.8) 

Here a sentence ���u,%V,
V isrefutable in����u,%V

V . 
Lemma4.2.Ander Assumption 4.1 a theoryTh* is a 

strongly NsM-consistent. 

Proof. The proof uses formulae (4.5) and (4.6) and com-

pletely, to similarly a proof of the Lemma 3.5. 

Theorem4.2. 

Th has not any strong nonstandard model�>�%V
��. 

Proof. The proof uses formulae (4.7) and (4.8) and com-

pletely, to similarly a proof of the Theorem 3.3. 

Theorem4.3.ZFChas not any strong nonstandard 

el�>�%V
��� . 

Proof. Immediately follows from theorem 4.2 and defini-

tions. 

Definability in Second-Order Set Theory 

Definition5.1. 

Assume that: (i) Con(Th) and (ii)Th has an ω-model ��
��. 

Let :�J�  be one-place open Th-wiff and let :��J�  be 

Th-wiff :���  relativized to ω-model ��
�� . Assume that 

condition 

��� 	 
! J��J� h ��
��� :��J��� (5.1) 

is satisfied. We say that an Th-wiff:�J� is a nice Th-wiff, 

iff condition (5.1) is satisfied. 

Definition5.2. 

Let us define a second-order predicate 

 ��:�J��� suchthat equivalence 

 � :�J��� / ��� 	 ¡�
��¢£�,             (5.2) 

where 

¡�
��¢£� m 
! J��J� h ��

��� :��J���          (5.3) 

is satisfied.We say that a set K is a ��� -set iffthe 

second-order sentence: 

¤¥ :�J�, J�� m 


:�J��D � :�J�����K , J��G                (5.4) 

is satisfied inω-model ��
��, i.e. 

��
�� % 
:�J��D � :�J�����K , J��G.          (5.5) 

Definition5.3. 

Let:?���and :@���  is a nice Th-wiffs. Let us define 

equivalence relation:?��� ¦ :@��� such that condition 

:?��� ¦ :@��� / J�§ , J�¨        (5.6) 

is satisfied. 

Assumption5.1. 

Weassume now that: (i) a theory Th admitscanonical 

primitive recursive encoding of syntax and (ii) the set of 

codes of axiom of This primitive recursive. 

Lemma5.1.Second-order predicate  � :�J��� can be 

replaced by some equivalent first-order predicate: 

 ©�D :�J���# ,  J��#G.            (5.7) 

Proof. Let us rewrite a sentence (5.3) in equivalent form 

such that 

¡�
��¢§� m 
! J?�J? h ��

��� :��J?��.             (5.8) 

Using a Strong Reflection Principle [formula (3.10.a)], 

one obtain equivalence  

Pr��� �j¡�
��¢£�k

#
� / ��� 	 ¡�

��¢£�
. 

Therefore  

 ©�D :�J���# ,  J��#G / Pr��� �j¡�
��¢£�k

#
�    (5.9) 

Formula (5.9) andDefinition 5.2 completed the 

proof.Lemma5.2.Second-orderpredicate ¤¥ :�J�, J��  can 

be replaced by some equivalent first-order predicate: 

¤©¥ j :�J���#,  J��# ,  K�k(5.10) 

Proof. Let us rewrite formula(5.4) in the next equivalent 

form 

¤¥ :�J?�� m 


:�J?�D � :�J?����K , J?�G              (5.11) 

Using formula (5.7) one can rewrite RHS in the next 

equivalent first-order form  


t�t ,  :�J?��#�  ©�Dt,  J?�#G�� K�# ,  J?�#��.  (5.12) 

Formula (5.12) completed the proof. 

Remark5.2. 

We now assume, throughout this subsection that encoding 

 «�#means canonical Gödel encoding such that defined in 
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[20].Let (i) EVbl(x) be the predicate: x is a Gödel number of 

an expression consisting of a variable, (ii)Fr(y,x)be the pre-

dicate:y is the Gödel number of 1-place openwffof Th which 

contains free occurrences of the variable with Gödelnumber 

x [20]. 

Remark5.3. 

Note that by using Remark 5.2, first-order predicate 

 ©�D :�J?��# ,  J?�#G,               (5.13) 

one can by replace in equivalent form such that 

 ©�DA?, �?G,                   (5.14) 

where��
�� % Fr�A?,, �?�. 

Remark5.4.  

Note that by using Remark 5.2 first-order predicate given 

by formula (5.12) one can replace by first-order predicate 

such that 

6. Conclusion 

In this paper we proved so-called strong reflection prin-

ciples corresponding to formal theories Thwhich has 

ω-models ��
��  and in particular to formal theories Th,, 

which has a standard models  8��� .Theassumption that 

there existsa standard model of Th is stronger than the as-

sumption that there exists a model of Th. This paper ex-

amined some specified classes of the standard and non-

standard models of ZFC so-called strongstandardmodels of 

ZFC and strong nonstandard models of ZFC correspon-

dingly. Such strong standard models of ZFC correspond 

tolarge cardinal axioms. In particular we proved that theo-

ryZFC+Con(ZFC) is incompatible with existence of any 

inaccessible cardinal κ.Note that the state-

ment:Con(ZFC+
 some inaccessible cardinal κ) is­?
F.Thus 

Theorem 3.6 asserts there is exist numerical counterexample 

which is turn would imply that a specific polynomial equa-

tion has at least one integer root. 
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