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Abstract: In a beforehand paper they found some exact and explicit solutions for the standard Rossby form of the 

equation for the stream function for some specified and realistic wind stress. This equation, which is a third order linear 

partial differential equation for the stream function, relates the rate of change of vertical vortices to the curl of the applied 

wind stress. The equation involves the gradient of the Coriolis parameter and has particular relevance to the equatorial 

region, such as the North Indian Ocean. Some interesting physical properties of the solutions are considered. In this paper 

we find some more complicated but similar exact and explicit solutions. Some properties for these solutions are derived 

which are in some sense complementary to the kind of properties of the simpler solutions considered in advance.  
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1. Introduction 

Some years ago the investigation [7] made a detailed 

study of the dynamic response of the North Indian Ocean to 

the onset of the Southwest Monsoon. The mathematical 

problem is fairly complicated since, even with the 

simplifying assumption of uniform depth and neglect of 

variation of velocity wit depth, one gets a system of 

nonlinear partial differential equations, which are 

intractable. The linearized theory, however gives 

reasonable results, as [8] shows. One of these results is the 

connection between the onset of the Southwest Monsoon 

and the relatively strong Somali current that occurs on the 

east coast of Africa about a month later. There have been 

other similar studies such that of investigation [1], [7], [8]. 

In the investigation [5] they found some exact and 

explicit solutions for the standard Rossby form of the 

equation for the stream function for some realistic given 

wind stress; this is a third order partial differential equation 

[5]. Some properties of the solution were derived. In this 

paper we extend these solutions to similar but more 

complicated exact and explicit solutions. We consider 

further properties of the solutions which are in a sense 

complementary to the ones derived for the simpler 

solutions considered earlier. In particular, we determine the 

streamlines, which turn out to be ellipses with a realistic 

global structure, with the velocity vanishing near the centre, 

reaching a maximum as one move away from the centre, 

and again vanishing at great distance from the centre, 

reminiscent of cyclones. As before [5] they find two kinds 

of solutions, the first having Gaussian factors with 

exponential `tails’ the second being bounded that is, 

vanishing strictly outside a bounded region in space and 

time.  

As indicated in paper [5] although the Rossby form itself 

is approximate and the linearity is a restriction, never the 

less the exact and explicit form of the solutions and in 

particular the unusual nature of the solutions with bounded 

support (we are not aware of any such solutions in this 

context), may help to provide some insights into this 

important problem and related ones [3]. We derive the 

further exact solutions of Gaussian form in §2, and consider 

some properties in §3. The further, explicit exact solution 

with bounded support and some properties are considered 

in §4. 
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2. Further Exact Solutions of Gaussian 

Form 

We have the Rossby form of equation as used in paper 

[5]. 

,tcx tyy x x y
G Fψ ψ βψ+ + = −                     (2.1) 

Where ψ is steam function, the usual notations are used 

the paper [5]. 

Let  

                          
0 1 2,

Q Q Q Q=                            (2.2a) 

      2

0
1exp( )

2
Q tα= −                   (2.2b) 

                           2

1
1exp( )

2
Q xγ= −                  (2.2c) 

                          2

2
1exp( ),

2
Q yγ ′= −                (2.2d) 

Where 0 1 2, ,Q Q Q are Gaussian functions, /, ,α γ γ  are 

constants 

We make the following assumption about the form of the 

solution [9].  

, , ,Q G GQ F FQψ ψ= = =             (2.3)  

Where , ,G FΨ   are polynomials in t, x, y defined below. 

Now 

( ) ,
x x x x

G G Q GQ G xG Qγ= + = −                (2.4a) 

( ) .y y y yF F Q FQ F yF Qγ ′= + = −              (2.4b) 

Taking all the derivatives form (2. 3) and substituting in 

(2.1) and canceling a factor Q, we get the following 

equation, both sides of which are polynomials. 

2 2 2 2

2 2 2

2 2 ( ) (( )

2 ( ) 2 ( )

tcxx tyy x tx xx x t

ty t yy y x y

x t ytx x t x

x y y t ty t y G xG F yF

ψ ψ βψ γ ψ α ψ α ψ γ γ ψ α γ γ

βγ ψ γ ψ γ γ ψ α ψ αγ ψ α γ γ ψ γ γ

+ + − − + + − + − − + Ψ −

′ ′ ′ ′ ′ ′− + − + − + − − + = − − +     (2.5)

We now assume ψ  to have the following form: 

2 2( ),t ax by cψ = + +                                                                           (2.6) 

Where a, b, c are constants. Then the following derivatives are obtained readily from (2.6): 

2 2

2 , 2

2

2 , 2 ,

2 , 2 , 2 .

txx tyy

t

ty x

xx yy y

a b

ax by c tx ax

by atx

at bt bty

ψ ψ

ψ ψ
ψ ψ
ψ ψ ψ

= = 


= + + = 
= = 
= = = 

                                               (2.7) 

Next assume ,F G , to be of the following form (the reason for the choice of , ,F Gψ  will be explained later), where the 

a’s and b’s are constants:   

2 2 2 3 2ˆˆ( ) ( )G t a x ax t ax by a x b xy ax′ ′ ′ ′= + + + + + +
                                    (2.8a) 

2 2 3 2ˆ( ) 3 .F t a x y b y by ctxy a x y b xy by′′ ′′ ′ ′′= + + + + + +
                                   (2.8b) 

Obtaining the derivatives , ,
x

G Fy  and substituting these and all the derivatives of ψ  into (2.5) finally we get. 

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2

2 2 2 2 2

2( ) 2 4 2 4 ( )( ) ( )

( ) ( ) 4 ( )( ) 2 4

( )( )

ˆ(3 ) 2 3 (

a b a tx a x a t a t x x ax by c t x

ax by c tx ax by c b y y ax by c b t b t y t

y ax by c

t a x a atx a x b y a t

β γ α αγ γ γ α γ γ
βγ γ γ γ α αγ α

γ γ

+ + − − + + − + + + − − +
′ ′ ′+ + − + + − + − + + + − + −

′ ′− + + +

′ ′ ′= + + + + + − 2 2 2 2

2 4 2 3 2 4 2 2 2 2 2 2 4 2

2 2 2 4 2

ˆ3 ) 3

ˆˆ( ) ( ) ( ) ( )

ˆ

a x b y b ctx a x ab y b

t a x ax t ax bxy a x b x y ax t a x y b y by

c txy a x y b y by

γ γ γ γ

γ γ

′′ ′′ ′′ ′′+ + − − − −

′ ′ ′ ′ ′′ ′′− + − + − + + + + +

′ ′′ ′ ′′+ + +

 (2.9) 
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If we now equate the coefficients of various terms on the 

left and right hand sides of this equation, we find that all 

the unknown constants appearing on the right hand side 

that is, all the coefficients appearing in the equations (2.8a, 

b) for F  and G  can be expressed in terms of the constants 

appearing on the left hand side, namely, , , , , ,a b cβ α γ ′  we 

will not give details here but state the result and verify a 

couple of cases. The unknown constants on the right on the 

right hand side of (2.9) are given as follows: 

2

2

2

ˆˆ ˆ, , ( )

, , ,

/ ,

/

/ 2 , 2 / ,

2 ( ) / , / 2 .

a a c c b b c

a a a a b c

a a b b b

a a b c b b

a c b a b b b c

a a c b b b b

β βγ γ β
αγ γ γ

αγ αγ γ αγ
γ γ γ γγ γ

αγ αγ γ α α αγ γ αγ

γ γ γ γ γ γ

′= = = +


′ ′ ′= = − = 
′′ ′ ′ ′′ ′= − − = − 
′′ ′ ′ ′ ′′ ′= + + = 
′ ′ ′ ′= + − = + −

′ ′ ′= − + − = − − 

  (2.10) 

We verify two cases at random. The coefficients of 
2 2

t z  

in (2.9) require the satisfaction of the following equation: 

25 3 ,a c a a a aαγ αγ αγ γ′ ′ ′′− + = − −           (2.11) 

Which is readily verified if we substitute on the right 

hand side for , ,a a a′′ from (2.10). Next consider of 2 2x y in 

(2.10) this yields the following equation: 

2 2 ,b a b aγ γ γ γ′ ′ ′ ′′+ = − +                    (2.12) 

Which is again verified if we substitute for ,b a′ ′′ from (2. 

10) 

3. Some Properties of the Solution 

The horizontal components (u, v) of the velocity are 

given by 

,y x
u vψ ψ= − =              (3.1) 

For the form (2.6) of the function ψ  we get 

2 2[ 2 ( )]u ty b ax by c Qγ ′= − + + +         (3.2a) 

2 2[2 ( )]v tx a ax by c Qγ= − + +            (3.2b) 

It is easier to discuss specific properties of the solution in 

a slightly less general and simpler form than those given in 

(3.2a, b) and the forms of F, G given in (2.3) and (2.8a, b). 

The form of (3. 2a, b) suggests two limiting case, as 

follows: 

Case (A): 2b = , 2 .c a cγ γ′ =  

Case (B) a =b = 0. 

We study these cases in some detail. 

Case (A). In this case the velocity components are as 

follows: 

2 21 ( )
2

u c ty x y Qγ γ γ′ ′= +              (3.3a) 

21 ( )
2

v c tx x y Qγ γ γ ′ ′= − +
            (3.3b) 

From (3. 3a, b) we get 

0xu yvγ γ ′+ =                    (3.4) 

This relation shows that the velocity vector (u, v) is 

perpendicular to the vector ( , )x yγ γ ′ . Consider the 

quadratic function E (x, y) defined as follows so that the 

curves E(x, y) = constant are ellipses: 

2 21( , ) ( )
2

E x y x yγ γ ′= + =  Constant        (3.5) 

Clearly, the normal to such an ellipse at the point (x, y) 

has direction proportional to the vector (Ex, Ey), that is to 

the gradient of E. We have 

(Ex, Ey) = ( , )x yγ γ ′            (3.6) 

Since, from (3.4) the velocity vector (u, v) is normal to 

the vector (3.6), and since the latter is normal to the ellipse 

(3.5), it follows that the velocity vector is along the ellipse; 

in other words, the streamlines are the concentric ellipses 

given by (3.5) for any give fixed value of the time t. Further 

for any given y>0 (that is, position north of the equator), 

u<0 for t<0 and u>o for t>o (assuming c>0), while for y<0, 

u>for t<0 and u<0 for t>0. One can give similar analysis of 

the v-component of the velocity. All this behavior is 

summarized in Figs. (1, 2, 3 and 4) where the signs of the 

velocity components are indicated at the four points 

0 0 0 0 0 0 0 0( , ), ( ), ( , ), ( )x y x y x y x y− − − −  for t>0 and t<0 and 

typical streamlines are also indicated for t>0 and t<0 in figs. 

1 and 2 are quite consistent with the streamlines shown in 

Figs 3 and 4. It is worth noting that the semi axes of the 

ellipses (3.5) are proportional to 1/ γ  and 1 ,γ ′  which 

are related to the Gaussian ‘spread’ of the disturbance, as 

indicated earlier. 

 

Figure 1. This diagram indicates the signs of the velocity components (u, v) 

at the four points shown for t>0 for the solution (3.3a, b). 
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Figure2. This diagram is similar to that of Fig.1, but for t<0. 

 

Figure 3. This diagram gives the elliptical streamline corresponding to 

that of Fig.1. The directions of the velocity shown at the four points in 

Fig.1 are consistent with the directions of the streamline at the same 

points here. Other streamlines (for a fixed value of t) are concentric 

ellipses. t<0 

 

Figure.4. This diagram corresponds to that of Fig. 2 in the same way that 

the diagram of Fig. 3 corresponds to that Fig. 1. 

The coefficient of the expressions ,G F  occurring in (2. 

10) in this case reduce to the following (we are continuing 

with case (A) : 

2 2 2

2

2

ˆ1ˆ ˆ, , (3 / 2) ,
2

1 1, , ,
2 2

1 1( ), ,
2 2

1 1( 3 ), ,
2 2

1 ,
2

1( ) .
2

a c c c b c

a c a c b c

a c b c

a c b c

a c b

a c b

βγ βγ βγ

αγ γ γ

αγ γ γ αγ

γ γ γ γ

αγ

γ γ

′= = =

′ ′ ′ ′= = − =

′′ ′ ′′ ′= − + = − 


′′ ′ ′′ ′= − + = − 


= − = 

′= − + =


      (3.7) 

The corresponding expressions for ,G F are as follows: 

2 2 2 2 2 2 21 1 1 1( 1) ( 3 ) ( )
2 2 2 2

G c x xt c x y t cx x yαγ γ β γ γ γ γ γ γ′ ′= + + + + − + − −                      (3.8a) 

2 2 2 2 2 2 21 1 1 1[ ( ) ] [ ( 3 ) ]
2 2 2 2

F c x y yt c txy c x yα γ γ γ γ γ βγ γ γ γ γ γ γ γ′ ′ ′ ′ ′= − + − + + + + + − −     (3.8b) 

These forms of ,G F are not very illuminating except to 

note that it takes fairly complicated forms of wind stress to 

produce the relatively simple expressions (3.3a,b) for the 

velocity components (u,v) As will be shown below, the 

expressions for (u,v) become even simpler and more 

transparent. If we restrict further to 

γ γ ′=  

A further point to note is the following. Suppose we have 

fixed values of c , ,γ γ α′ . Then the velocity  

components (u, v) are fixed (for any given t, x, y) by (3.3a, 

b) while the ,G F  are given by (3.8a, b).  

Now the coriolis parameter β   representing the rotation 

of the earth occurs only in the expression for ,G F . If we 

set 0β =   in these expressions, this does not appear to 

have any effect on the components (u, v) given by (3.3a, b). 

This situation (with 0β = ) represents an infinite flat ‘sea’ 

in which currents are produced by the given wind stress. 

The interpretation here is that when 0β ≠  (that is when we 

have rotation), then it requires the corresponding modified 

stresses ,G F (with factor Q), to produce the same velocity 

field (u, v) of currents. 

Still continuing with Case (A), we set ,γ γ ′=  that is, we 
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consider the Gaussian ‘spread’ in the x and y directions to 

be the same. It is readily seen from (3. 3a, b) that in this in 

this case the square of the magnitude of the velocity is as 

follows: 

2 2 2 4 2 6 2 21( ) exp( )exp ( ),
4

u v c t r t rγ α γ+ = − −      (3.5) 

Where we have set r = x + y and written out the 

exponentials explicitly. Note that for any fixed t, the 

streamlines are circles with the origin as centre, reminiscent 

of cyclones, while the velocity tends to zero both at infinity, 

being strongly damped by the Gaussian factor as well as at 

zero, so that the centre of the ‘storm’ is relatively calm, 

similar to some actual situations. For any fixed t the 

maximum of the velocity is the same as the maximum of 

the square of the velocity. This is seen, by differentiation 

with respect to r, to occur at the following value  

1
2

0.
(3 / )r rγ= =                               (3.10) 

The magnitude of the velocity (the velocity being cross 

radial) for a fixed t as one moves from r= 0 along a straight 

line in any direction is depicted in Fig. 5, in which 0.r is the 

value of r at which the maximum occurs given by (3.10), 

while 1r  and 2r  are the values at which the given curve 

changes from being convex towards the r-axis to being 

concave towards it and vice versa. These two points are 

obtained by setting equal to zero the second derivative with 

respect to r of magnitude of the velocity, for fixed t.  From 

(3.9) we see that the r dependence of the magnitude of the 

velocity can be taken as follows. 

1
2 2 3 22 1( ) exp ( ) ( ),

2
u v Ar r f rγ+ = − =         (3.11) 

Where A is a function of t that can be read off from (3.9). 

The first and second derivatives of f (r) with respect to r are 

as follows: 

2 2 2 2 2 21 1( ) (3 )exp( ), ( ) (6 7 )exp( ).
2 2

f r Ar r r f r Ar r r rγ γ γ γ γ′ ′′= − − = − + −                      (3.12) 

Thus ( ) 0f r′ =  gives the value 0r r=  given by (3.10) while ( ) 0f r′′ =  yield the values 
1 , 2
r r  as follows: 

1 1
2 2

1 2.
(1/ ) , (6 / )r r r rγ γ= = = =                                                              (3.13) 

As expected 1 0 2.r r r< <  One can carry out a similar analysis with respect to t for fixed r. Indeed the magnitude of the 

velocity in this case is  

1
2 2 22 1( ) exp ( ) ( )

2
u v Bt t h tα+ = − =                                                          (3.14) 

Where B  is a function of r  which can be determined from (3.9) the nature of the t-dependence of the velocity for fixed

r is indicated by the first and second derivatives of h (t) with respect to t, as follows: 

2 2 2 21 1( ) (1 )exp( ), ( ) ( 3 )exp( ).
2 2

h t B t t h t B t t tα α α α α
• ••

= − − = − + −                (3.15) 

The equation h (t) = 0 gives the maximum (for fixed r) at

0t t= , while in the case unlike the function f (r), we get one 

non-zero value of t, 

 

Figure 5. This diagram depicts the behavior of the magnitude of the 

velocity, Eq. (3.11) as a function of r for fixed t, the values 0 1 2, ,r r r are 

given by (3.10) (3.13). 

 

Figure 6. This diagram depicts the depicts the behavior of the magnitude 

of the velocity, Eq. (3.14), as a function of t for fixed r , The values 

0 1,t t  are given by (3.16). 



 Pure and Applied Mathematics Journal 2013; 2(3): 110-118 115 

 

 

 

Figure 7. This diagram depicts the behavior of the magnitude of the 

velocity, Eq. (3.10), as a function of r fixed t. The values 
0, 1

r r′ ′  are 

given by (3.19). 

Given by 1,t t= at which point the second derivative 

vanishes, so that the curve changes from being concave to 

being convex towards the t-axis; these are as follows: 

1 1
2 2

0 1
(1/ ) , (3 / ) .t tα α= =                        (3.16) 

This behavior is shown in Fig. 6. 

As before the form of the functions F, G for γ γ ′=  is not 

very illuminating. In particular, the square of the magnitude 

of the stress, 2 2F G+  is not expressible in terms of r for 

,γ γ ′=  unlike the expression 2 2u v+ .Thus, although the 

magnitude of the velocity is spherically symmetric, the 

magnitude of the stress that produces the velocity is not. 

This is not surprising; it probably arises from the fact that 

the curl of the vector (F, G) is involved in the determination 

of the velocity components. This completes case (A).  

Case (B). 

In this case the velocity components are as follows: 

, .u c tyQ v c txQγ γ′= =−                   (3.17) 

As before the velocity components satisfy the equation 

(3.4), so that the streamlines are again, for a fixed t 

concentric ellipses if we again specialize to ,γ γ ′=   the 

magnitude of the velocity is given as follows:  

1
2 2 2 22 1 1( ) exp ( )exp( ).

2 2
u v c tr t rγ α γ+ = − − (3.18) 

In this case the behavior of the magnitude of the velocity 

with respect to r for fixed t is the same as that with respect 

to t for fixed r, as is clear from (3.18), so that the r-

dependence also has the same form as that depicted in Fig.6. 

This is shown in fig.7. Thus in this case also we have, for 

fixed t, zero magnitude of velocity at the centre r = 0, 

indicating relative calm at the ‘centre’ of the storm. Note 

that in Fig. 7 for the r-variable we have the two values 

0 1r r′ ′ given by (see (3.16) 

1 1
2 2

0 1(1/ ) , (3 / ) ,r rγ γ′ ′= =                  (3.19) 

So that the maximum, at 0 ,r′  occurs at a smaller value 

than the corresponding maximum 0.r  of case (A) (Fig. 5). 

This completes the consideration of cases (A) and (B). 

4. Further Exact Solution with Bounded 

Support 

In this section we consider more solutions of the Rossby 

equation, rewriting it for convenience: 

,txx tyy x x y
G Fψ ψ βψ+ + = −           (4.1) 

And make the following ansatz for ψ  : 

2exp( / ), 0

0, 0

A B S S

S

ψ ′ ′= <
′= ≥

       (4.2a) 

Where 

2 2 2

0 0( ) ( )S x x y y R′≡ − + − −             (4.2b) 

Where 0 0 0 0( ), ( )x x t y y t= =  are unspecified function of t, 

but R is a constant independent of t. Note that the curves 

0S ′=  is a circle of radius R with moving centre 

0 0( ( ), ( ))x t y t .The form (4.2a) is quite distinct to that given 

by (14) of paper [5] and cannot be reduced to the latter for 

any functions 0 0( ), ( )x t y t  and constant R. we proceed to 

show that the Eq. given  by (4.2a,b) is an exact solution of 

(4.1) for certain F and G, which will be of the following 

form 

ˆˆ ,F F G Gψ ψ= =           (4.3) 

Where ˆˆ ,F G will be determined below 

We have  

2 2

2 2 2

0 0

exp exp .
( ) ( )

B B
A A

Sx x y y R
ψ

 
= =  ′− + − − 

 

2 2

00 0 002 2
[2( ) 2( ) ] , [2( )] ,.t x

B AB
A x x x y y y x x

S S
ψ ψ ψ ψ

• •
= − + − = − −

′ ′
 

2 2 4 22
0 00 0 0

2 3 4

8 ( ) 4 ( )2
.

tx

AB x x x AB x x xAB x

S S S
ψ ψ ψ ψ

• ••
− −

= + +
′ ′ ′
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2 4

0 0 0 00 0

3 4

8 ( )( ) 4 ( )( )
.

AB x x y y y AB x x y y y

S S
ψ ψ

• •
− − − −

+ +
′ ′

2 2 4
3

0 0 00 0 03 4 4

24 48 12
( ) ( ) ( ) .txx

AB AB AB
x x x x x x x x x

S S S
ψ

• • •
= − − − + −

′ ′ ′
 

( )
4 6 4

3 3 2
0 00 0 0 0 05 6 5

48 8 48
( ) ( ) ( ) .

AB AB AB
x x x x x x x x y y y

S S S

• • •
− − − − − − −

′ ′ ′
 

6 2 4
2

0 0 0 00 0 05 3 5

8 8 4
( ) ( ) ( ) ( ) .

AB AB AB
x x y y y y y y y y y

S S S

• • •
− − − + − + −

′ ′ ′
 

2
2

0 0 04

48
( ) ( ) ,

AB
x x y y y

S

•
− −

′
 

2 2 4

0 0 00 03 4 4

24 48 12
( ) ( ) ( ) .tyy

AB AB AB
y y y y y y y y y

S S S
ψ

• • •
= − − − + −

′ ′ ′
 

( )
4 6 4

23 3
00 0 0 00 05 6 5

48 8 48
( ) ( ) ( ) .

AB AB AB
y y y y y y x x y y x

S S S

• • •
− − − − + − −

′ ′ ′
 

6 2 4
2

0 0 00 0 0 06 3 4

8 8 4
( )( ) ( ) ( )

AB AB AB
x x y y x x x x x x x

S S S

• • •
− − − − − + −

′ ′ ′
 

2
2

00 04

48
( )( ) .

AB
x x y y x

S

•
− − −

′
 

We have used ( )22 2

0 0
( )x x y y S R′− + − = +    obtain the following 

txx tyy x
ψ ψ βψ+ + =

2 2 2

0 00 0 003 4

24 48 ( )
[( ) ( ) ] ( )

AB AB S R
x x x y y y x x x

S S

• • •′ +− + − − − ′ ′
 

4 2 4 2 4
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48 ( ) 48 ( ) 12
( ) ( ) [( ) ( ) ]

AB S R AB S R AB
x x x y y x x x x y y y

S S S

• • •′ ′+ +− − − − + − + −
′ ′ ′
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8 ( ) 8 48
( ) ( ) ( ) ( ) ( )

AB S R AB AB
x x x y y y S R y y y S R

S S S

• • •′ + ′ ′− − − − + − − +
′ ′ ′

 

2 4 2
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8 4 2
[( ) ( ) ] [( ) ( ) ] ( )

AB AB AB
x x x y y y x x x y y y x x

S S S

• • • • 
+ − + − + − + − − − ′ ′ ′ 

 

2 2 4
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00 0 0 3 4 5

24 48 48
[( ) ( ) ] ( ) ( )

AB AB AB
x x x y y y S R S R

S S S

• •  ′ ′= − + − − + − + ′ ′ ′
 

4 6 2 4 2
2

04 6 3 4 2

12 8 8 4 2
( ) ( )

AB AB AB AB AB
S R x x

S S S S S
ψ β ψ′+ − + + + − −′ ′ ′ ′ ′

                   (4.4) 

Assuming R= B and putting 00 0 0
( ) ( )x x x y y y we get

• •
− + − ≡ ∑  

}

2 4 6

3 4 5

8 2

06 2

(24 48 8) ( 48 48 12 4) ( 48 8)

2
( 8) ( )

AB AB AB
txx tyy x

S S S

AB AB
x x

S S

ψ ψ βψ

ψ β ψ


+ + =∑ − + + − − + + + − − ′ ′ ′

+ − − −
′ ′

2 4 6 8 2

03 4 5 6 2

16 80 56 8 2
( ) ( ) .

AB AB AB B A AB
x x

S S S S S
ψ β ψ=∑ − − − − − −

′ ′ ′ ′ ′
                        (4.5) 

Recall that right hand side of the equation (4.1) is  
2 2

0 02 2

2 2ˆ ˆ ˆ( ) ( )x y

B B
G x x G F y y F

S S
ψ 

− − − + − ′ ′ 

⌢

 

If we now take G β=  the term in this expression arising from β  here cancels with the term proportional to β  on the 
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right hand side of (4.5) 

So we are left with 

2 2 2 6
20 0

2 2 3 4 5 6

ˆ2 ( ) 2 ( ) 16 80 56 8ˆ }x y

B x x G B y y F B B B
G F AB

S S S S S S

′′− − − + − = + + + ∑′ ′ ′ ′ ′ ′
               (4.6) 

We assume 

3 31 2 1 2
0 02 3 4 2 3 4

ˆ( ), ( ).
g fg g f f

G x F y
S S S S S S

• •
= + + = + +

′ ′ ′ ′ ′ ′
                                       (4.6a) 

Therefore 

31 2
00 3 4 5

31 2

0 0 3 4 5

42 3
2( ) ( ),

42 3ˆ 2( ) ( ).

x

y

gg g
G x x x

S S S

ff f
F y y y

S S S

•

•

= − − + +
′ ′ ′

= − − + +
′ ′ ′

                                             (4.6c) 

We now assume,   
1 1 2 2 3 3;

, ,f g f g f g= − = − = −        then we get 

2 2

0 0

2 2

3 31 2 1 2

0 0 0 3 4 5 4 6

ˆ2 ( ) 2 ( ) ˆ

42 3
[ 2( ) 2( ) ][ 2 ( )]

5

x y

B x x G B y y F
G F

S S

g gg g g g
x x x y y y B

SS S S S S

− −
− + −

′ ′

= − − − − + + + + +
′′ ′ ′ ′ ′

                   (4.7) 

Thus (4. 6) is satisfied 

2 2 6

1 2 3
4 , 12 , 4g B A g B A g B A= = =  

For these values cause the right hand side of (4.7) to be 

equal to the right hand side of (4.6). Thus Ψ  given by 

(4.2a, b) and ˆ ˆ,G F given by (4,6a) constitute an exact 

solution of the Rossby Equation (4.1); this is a solution 

with bounded support. 

5. Some Properties the Solution 

The velocity components are as follows: 

2 2 2 2

0 02 ( ) / , 2 ( ) / .y xu AB y y S v AB x x Sψ ψ ψ ψ′ ′= − = − = = − −                                (5.1) 

Using arguments which are familiar by now [5] we see that 

these vanish strictly outside surface S = 0.They also 

vanishes respectively far 0 0 0 0( ), ( )x x t y y t= = , which 

displays somewhat unusual behavior. It is interesting that 

the solution is valid and exact, for the given F and G, for 

arbitrary motion of the centre 0 0( ( ), ( ))x t y t of the circle 

within which the disturbance is completely confined. It is 

also noteworthy that the radius of the circle within which 

the storm is confined stays the same as the circle moves. It 

may be possible to build more realistic models along the 

lines of this solution. 

However, as investigating [7], [8] points out, for the Indian 

Ocean the linear theory gives good results. The nonlinear 

terms would be important for the Somali current, causing 

an ‘inertial overshoot’; this can be seen from numerical 

studies of nonlinear effects [2], [4], [10]. 
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