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1. Introduction 

Hepatitis B has become a worldwide disease [1]. When 

people are infected with HBV, some antigens are secreted 

such as HBsAg, HBeAg and HBcAg. The virus antigens in 

blood or liver cell membrane can induce organism to 

produce the specific humoral and cellular immune response 

[2]. In recent years, research on Hepatitis B Virus model 

with immune response has been widely studied [3-9]. In [6], 

a Hepatitis B Virus infection model with the cellular 

immune and humoral immune was established as follows. 
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where y1(t), y2(t), y3(t) and y4(t) denote density of 

uninfected liver cells, infected liver cells, free antigen in 

the blood and strength of immune response at time t, 

respectively. Here, the birth rate b of uninfected cells is 

approximately equal to that of infected cells. The death rate 

per uninfected cell and per infected cell is a constant d. 

Uninfected cells are infected at rate cy1(t)y3(t). my2(t)y4(t) 

represents the removal rate of cellular immune response to 

infected liver cells. Antigens are produced by infected cells 

at rate ky2(t) , and die at rate wy3(t). uy3(t)y4(t) denotes 

the removal rate of the humoral immune response to 

antigens. sy3(t)y4(t) is the strength of specific immune 

response. Immune factors metabolic rate is hy4(t). In (1.1), 

the infection terms and immune responses are based on the 

mass-action principle. It is assumed that all parameters of 

system (1.1) are positive constants. By using 

Routh-Hurwitz criteria, Fang and Zhou studied the local 

asymptotic stability of a positive equilibrium point of 

system (1.1), and they also proved that the stable switch 

will occur with the delay increasing [6]. 

In fact, uninfected liver cells and infected liver cells are 

not generated at the same rate and they do not die also at 

the same rate. Because of the circadian rhythms of human 

body, the model parameters should depend on time and take 

place change periodically. Therefore, we establish the 

following model on the basis of the model (1.1). 
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 (1.2) 

where b1(t), b2(t), c(t), d1(t), d2(t), d3(t), m(t), k(t), h(t), s(t) 

and d4(t) are positive continuous T-periodic functions. b1(t) 

and b2(t) are the birth rate of uninfected liver cells, infected 

liver cells, respectively. d1(t)y1(t), d2(t)y2(t) and d3(t)y3(t) 

are the death rate of uninfected liver cells, infected liver 

cells and antigen, respectively. Immune factors metabolic 

rate is d4(t)y4(t). h(t)y3(t)y4(t) denotes the removal rate of 

the humoral immune response to antigens. The meanings of 

other parameters are the same to (1.1). In order to 

understand the causes of the spontaneous fluctuation 
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pattern of HBV DNA loads in chronically infected patients, 

we investigate the existence of a positive periodic solution 

of the hepatitis B virus infection model (1.2). 

2. Existence of Positive Periodic 

Solution 

First, we introduce some important concepts by Gain and 

Mawhin [10]. 

Let X and Z be real Banach spaces; L : Dom(L) ⊂ X→Z 

be a linear mapping, and N : X→Z be a continuous mapping. 

The mapping L is called a Fredholm mapping of index zero 

if dim(Ker(L)) = codim(Im(L))<+∞ and Im(L) is closed in 

Z. If L is a Fredholm mapping of index zero, there exist 

continuous projectors P: X→X and Q: Z→Z such that Im(P) 

= Ker(L) and Im(L) = Ker(Q) = Im(I-Q). It follows that the 

restriction LP of L to Dom (L)∩Ker(P) is invertible. We 

denote the inverse of this map LP by KP. If Ω is an open 

bounded set of X, the mapping N is called L-compact on Ω  

if QN ( Ω ) is bounded and KP(I-Q)N: Ω →X is compact. 

Since Im(Q) is isomorphic to Ker(L), there exists an 

isomorphism J : Im(Q)→Ker(L). 

Next, we introduce continuation theorem of Gaines and 

Mawhin [10].  

Lemma 2.1 Let L be a Fredholm mapping of index zero 

and let N be L-compact on Ω . Suppose  

(1)L(x) ≠λN(x),∀λ∈(0,1), x∈∂Ω∩Dom(L); 

(2)QN(x) ≠0,∀x∈Ker(L)∩∂Ω; 

(3)degB(JQN,Ω∩Ker(L),0)≠0. 

Then L(x) =N(x) has at least one solution in Dom (L)∩ Ω . 

For convenience, we introduce some notations: 
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where f(t) is a continuous T-periodic function.  
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has at least one positive T-periodic solution. 
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Let yi(t)=exp(ui(t)), i=1, 2, 3, 4. Then system (1.2) is 

rewritten as 

( ) ( ), 1, 2,3,4i iu t F t i′ = =              (2.1) 

To prove the existence of positive periodic solution system 

(1.2), we need to prove the existence of periodic solution of 

system (2.1). Let  

X=Z={(u1, u2, u3, u4)T ∈C(R,R4):ui(t) = ui(t+T), 

i=1,2,3,4}, 

and define the norm of X and Z  
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then X, Z are Banach spaces. Let 

N(u)=(F1(t),F2(t),F3(t),F4(t))T, 

( ) , ( ) , , ( ) ,′= = ∈ = ∈L u u P u u u X Q z z z Z , 

Thus, it follows that Ker(L)=R
4
, 
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Im( ) : ( ) 0, 1, 2,3,4= ∈ = =∫
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is closed in Z, dim(Ker(L)) = 4 = codim(Im(L)) and P, Q 

are continuous projectors such that Im(P) = Ker(L), Ker(Q) 

= Im(L) = Im(I–Q). Hence, L is a Fredholm mapping of 

index zero. Furthermore, the generalized inverse (to L) is  

Kp: Im(L)→Ker(P)∩Dom(L), 
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1
( ) ( ) ( )

t T t

PK z z s ds z s dsdt
T

= −∫ ∫ ∫
. 

Thus,  

( )( ) , , , ,=
T

QN u F F F F1 2 3 4

 

and

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

− =

 − + − 
 

 − + − 
 

 − + − 
 

 − + −


∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

P

t T t T

t T t T

t T t T

t T t

K I Q N u

t
F s ds F s dsdt F s ds

T T

t
F s ds F s dsdt F s ds

T T

t
F s ds F s dsdt F s ds

T T

t
F s ds F s dsdt

T T

1 1 1

0 0 0 0

2 2 2

0 0 0 0

3 3 3

0 0 0 0

4 4

0 0 0

1 1

2

1 1

2

1 1

2

1 1

2

.

( )

 
 
 
 
 
 
 
 
 
 
 

 
∫

T

F s ds
4

0

 

Obviously, QN and KP(I–Q)N are continuous. By Arze 

la-Ascoli Theorem, we know that for any open bounded set 

Ω⊂X, Kp(I-Q)N( Ω )is compact. Therefore, N is L-compact 

on Ω  for open bounded set Ω⊂X.  

Corresponding to the operator equation L(x)=λN(x), 

λ∈(0,1), we have 

( ) ( ), 1, 2,3, 4,i iu t F t iλ′ = =        (2.2) 

where λ∈(0,1). Assume that u=u(t)∈X is a T-periodic 

solution of (2.2). There exist ξi, ηi∈[0,T] such that 
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Integrating the fourth equality of (2.1) in [0, T], we get 
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the absolute value, from (2.8) we have 
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From F3(η3)=0 we have  
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Obviously, H is independent of λ. Now define 
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. 

According to (2.3), (2.6), (2.7), (2.9), (2.10), (2.11) and 

(2.12), Ω satisfies the condition (1) in Lemma 2.1.  

Next, we prove that QN(u) ≠ 0 for u ∈ ∂Ω∩Ker(L). 

Because Ker(L) = R
4
, when u∈∂Ω∩Ker(L), u=(u1, u2, u3, 

u4)
T
 is a constant vector, and ||u||=H. Assume that QN(u)=0, 

then  
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Similar to the proof process of (2.3), (2.6), (2.7), (2.9), 

(2.10), (2.11) and (2.12), the equation (2.13) implies ||u||<H, 

that is u∈Ω, it contradicts in u∈∂Ω∩Ker(L). Therefore, the 

condition (2) in Lemma 2.1 holds. 

We show that the condition (3) in Lemma 2.1 also holds. 

Consider the following system: 
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Because Im(Q)=Ker(L), we can take J=I. A direct 
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Therefore, the condition (3) in Lemma 2.1 is satisfied.  

By Lemma 2.1, the system (2.1) has at least one 

T-periodic solution. Therefore system (1.2) has at least 

one positive T-periodic solution. 

3. Conclusion 

This paper considers a hepatitis B virus infection model 

with the immune response. By using the coincidence 

degree theory, we obtain a condition that ensures the 

existence of one positive periodic solution of this system. If 

the system (1.2) has a positive periodic solution, then it 

shows that the hepatitis B viruses are not cleared fully in 

some cases. This result can be used to explain the wave 

phenomena of hepatitis B virus in patients. It also can be 

used to guide the clinical treatment. From the condition of 

Theorem 2.1, we know that the therapeutic measures 

should be taken to reduce the mortalities of uninfected liver 

cells, infected liver cells and free antigen in the blood, to 

increase the uninfected liver cell birth rate. 
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