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Abstract: This paper mainly studies the evaluation of partial derivatives of four types of two-variables functions. We can 

obtain the infinite series forms of any order partial derivatives of these four types of functions by using differentiation term by 

term theorem, and hence reducing the difficulty of calculating their higher order partial derivative values greatly. On the other 

hand, we propose four functions of two-variables to evaluate their any order partial derivatives, and some of their higher 

order partial derivative values practically. At the same time, we employ Maple to calculate the approximations of these higher 

order partial derivative values and their infinite series forms for verifying our answers.  
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1. Introduction 

In calculus and engineering mathematics courses, the  

research about the partial derivatives of multivariable func-

tions is an important issue. For example, Laplace equation, 

wave equation, as well as some other important physical 

equations are involved the partial derivatives of multivaria-

ble functions. Therefore, whether in physics, engineering or 

other sciences, the evaluation and numerical calculation of 

the partial derivatives has its importance. Books and papers 

in this regard can refer to [1-9]. In this paper, we mainly 

study the evaluation of partial derivatives of the following 

four types of two-variables functions  

),(1 yxf

)]sin(cosh[)]cos(sin[)](cos[ dcxydcxydcxm
rr +⋅+⋅+=  

)]sin(sinh[)]cos(cos[)](sin[ dcxydcxydcxm
rr +⋅+⋅+− (1) 

),(2 yxf

)]sin(sinh[)]cos(cos[)](cos[ dcxydcxydcxm
rr +⋅+⋅+=

)]sin(cosh[)]cos(sin[)](sin[ dcxydcxydcxm
rr +⋅+⋅++ (2) 

),(1 yxg

)]sin(cosh[)]cos(cos[)](cos[ dcxydcxydcxm
rr +⋅+⋅+=  

)]sin(sinh[)]cos(sin[)](sin[ dcxydcxydcxm
rr +⋅+⋅++ (3) 

),(2 yxg

)]sin(cosh[)]cos(cos[)](sin[ dcxydcxydcxm
rr +⋅+⋅+=  

)]sin(sinh[)]cos(sin[)](cos[ dcxydcxydcxm
rr +⋅+⋅+− (4) 

where dcr ,,  are real numbers, and m  is any integer. 

We can obtain the infinite series forms of these four types of 

functions by using differentiation term by term theorem, 

that is, the major results in this paper : Theorems 1, 2, 3, and 

4. On the other hand, we propose four functions of 

two-variables to evaluate their any order partial derivatives, 

and some of their higher order partial derivative values 

practically. Simultaneously, we employ Maple to calculate 

the approximations of these higher order partial derivative 

values and their infinite series forms for verifying our an-

swers.  

2. Main Results 

Firstly, we introduce some notations, formulas and an 

important theorem used in this paper. 
Notations: 
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(i) Suppose that t  is any real number, and m  is any 

positive integer. Define =mt)( )1()1( +−⋅⋅⋅− mttt , and 

1)( 0 =t . 

(ii) Assume that pq,  are non-negative integers. For the 

two-variables function ),( yxf , the p -times partial deriva-

tive with respect to x , and then q -times partial derivative 

with respect to y  is a )( pq + -th order partial derivative 

of ),( yxf , and denoted by ),( yx
xy

f

pq

pq

∂∂
∂ +

. 

Formulas: 

In the following, we assume that ba,,θ  are arbitrary 

real numbers, z  is any non-zero complex number, m  is 

any integer, and 1−=i . 

(i) Euler's formula:  

θθθ sincos iei += . 

(ii) DeMoivre's formula： 

mi )sin(cos θθ + θθ mim sincos += . 

(iii) ∑
∞

=

−+
−

−
−=

1

12
1

)!12(

)1(
sin

n

mn
n

m z
n

zz . 

(iv) ∑
∞

=

+−=
0

2

)!2(

)1(
cos

n

mn
n

m z
n

zz . 

(v) baibaiba sinhcoscoshsin)sin( ⋅+⋅=+ . 

(vi) baibaiba sinhsincoshcos)cos( ⋅−⋅=+ . 

Differentiation term by term theorem ([10]). 

If, for all non-negative integer k , the functions 

Rbagk →),(:  satisfy the following three conditions：(i) 

there exists a point ),(0 bax ∈ such that ∑
∞

= 0
0 )(

k
k xg is con-

vergent, (ii) all functions )(xgk  are differentiable on open 

interval ),( ba , (iii) ∑
∞

= 0

)(
k

k xg
dx

d
 is uniformly convergent 

on ),( ba . Then ∑
∞

= 0

)(
k

k xg  is uniformly convergent and 

differentiable on ),( ba . Moreover, its derivative 

=∑
∞

=0

)(
k

k xg
dx

d
∑
∞

= 0

)(
k

k xg
dx

d
. 

Next, we derive the first result in this article.  

Theorem 1. Assume that dcr ,,  are real numbers, m  

is any integer, pq, are any non-negative integers, and 

suppose that the domain of the two-variables function 

),(1 yxf

)]sin(cosh[)]cos(sin[)](cos[ dcxydcxydcxm
rr +⋅+⋅+=   

)]sin(sinh[)]cos(cos[)](sin[ dcxydcxydcxm
rr +⋅+⋅+−  

is { }0,),( 2 ≠∈ yexistyRyx r
. Then the )( pq + -th order par-

tial derivative of ),(1 yxf , 

),(1 yx
xy

f

pq

pq

∂∂
∂ +

 

⋅⋅
−

−+⋅−−
⋅= −−

∞

=

−

∑ qrnr

n

p
q

n
p y

n

mnrnr
c 2

1

1

)!12(

)12()2()1(
  






 ++−+
2

))(12(cos
πp

dcxmn         (5) 

Proof. Let )](exp[ dcxiyz r += , then by formula (iii), 

Euler's formula and DeMoivre's formula, we obtain 

)]}(exp[sin{)](exp[ dcxiydcximy rmr +⋅+  

)])(12(exp[
)!12(

)1(

1

)12(
1

dcxmniy
nn

rmn
n

+−+⋅⋅
−

−= ∑
∞

=

−+
−

 (6) 

, and hence  

×+++ )](sin)([cos dcxmidcxm  

)]sin()cos(sin[ dcxiydcxy
rr +++  

++−+⋅
−

−= −
∞

=

−
∑ ))(12{cos[(

)!12(

)1( )12(

1

1

dcxmny
n

rn

n

n

  

)]})(12sin[( dcxmni +−+        (7) 

Using formula (v) and the equality of the real part of 
both sides of (7), we have 

)]sin(cosh[)]cos(sin[)](cos[ dcxydcxydcxm rr +⋅+⋅+  

)]sin(sinh[)]cos(cos[)](sin[ dcxydcxydcxm rr +⋅+⋅+−  

)])(12cos[(
)!12(

)1( 2

1

1

dcxmny
n

rnr

n

n

+−+⋅
−

−= −
∞

=

−
∑      (8) 

Therefore, by differentiation term by term theorem, we 

obtain the )( pq + -th order partial derivative of ),(1 yxf , 

),(1 yx
xy

f

pq

pq

∂∂
∂ +

 

⋅⋅
−

−+⋅−−
⋅= −−

∞

=

−

∑ qrnr

n

p
q

n
p

y
n

mnrnr
c

2

1

1

)!12(

)12()2()1(
 






 ++−+
2

))(12(cos
πp

dcxmn  

Using the equality of the imaginary part of both sides of 

(7), and the same proof as Theorem 1, we immediately 
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have the following second result in this paper. 

Theorem 2. The assumptions are the same as Theorem 1, 

and the domain of the two-variables function 

),(2 yxf

)]sin(sinh[)]cos(cos[)](cos[ dcxydcxydcxm rr +⋅+⋅+=  

)]sin(cosh[)]cos(sin[)](sin[ dcxydcxydcxm rr +⋅+⋅++  

is { }0,),( 2 ≠∈ yexistyRyx
r

. Then the )( pq + -th order 

partial derivative of ),(2 yxf , 

),(2 yx
xy

f

pq

pq

∂∂
∂ +

 

⋅⋅
−

−+⋅−−
⋅= −−

∞

=

−

∑ qrnr

n

p
q

n
p y

n

mnrnr
c 2

1

1

)!12(

)12()2()1(
 






 ++−+
2

))(12(sin
πp

dcxmn        (9) 

Below we derive the third result in this article. 

Theorem 3. The same assumptions as Theorem 1, and 

the domain of  

),(1 yxg

)]sin(cosh[)]cos(cos[)](cos[ dcxydcxydcxm rr +⋅+⋅+=

)]sin(sinh[)]cos(sin[)](sin[ dcxydcxydcxm rr +⋅+⋅++  

is { }0,),( 2 ≠∈ yexistyRyx
r

. Then the )( pq + -th order 

partial derivative of ),(1 yxg , 

),(1 yx
xy

g

pq

pq

∂∂
∂ +

⋅⋅
+⋅−

⋅= −
∞

=
∑ qnr

n

p
q

n
p

y
n

mnnr
c

2

0 )!2(

)2()2()1(
 






 +++
2

))(2(cos
πp

dcxmn       (10) 

Proof. Also, we let )](exp[ dcxiyz r += , then by formula 

(iv), Euler's formula and DeMoivre's formula, we obtain 

)]}(exp[cos{)](exp[ dcxiydcximy rmr +⋅+  

)])(2(exp[
)!2(

)1(

0

)2( dcxmniy
nn

rmn
n

++⋅⋅−= ∑
∞

=

+
     (11) 

Therefore, 

×+++ )](sin)([cos dcxmidcxm  

=+++ )]sin()cos(cos[ dcxiydcxy
rr  

)]})(2sin[()])(2{cos[(
)!2(

)1( 2

0

dcxmnidcxmny
n

nr

n

n

+++++⋅−
∑
∞

=
(12) 

By formula (vi) and the equality of the real part of both 

sides of (12), we have 

)]sin(cosh[)]cos(cos[)](cos[ dcxydcxydcxm rr +⋅+⋅+  

)]sin(sinh[)]cos(sin[)](sin[ dcxydcxydcxm rr +⋅+⋅++  

)])(2cos[(
)!2(

)1( 2

0

dcxmny
n

nr

n

n

++⋅−= ∑
∞

=
         (13) 

Thus, by differentiation term by term theorem, we obtain 

the )( pq + -th order partial derivative of ),(1 yxg , 

),(1 yx
xy

g
pq

pq

∂∂
∂ +

⋅⋅
+⋅−

⋅= −
∞

=
∑ qnr

n

p
q

n
p

y
n

mnnr
c

2

0 )!2(

)2()2()1(
 






 +++
2

))(2(cos
πp

dcxmn  

From the equality of the imaginary part of both sides of 

(12), and use the same proof as Theorem 3, we immediately 

obtain the fourth result in this paper. 

Theorem 4. The same assumptions as Theorem 1, and 

the domain of  

),(2 yxg

)]sin(cosh[)]cos(cos[)](sin[ dcxydcxydcxm rr +⋅+⋅+=  

)]sin(sinh[)]cos(sin[)](cos[ dcxydcxydcxm rr +⋅+⋅+−  

is { }0,),( 2 ≠∈ yexistyRyx r
. Then the )( pq + -th order 

partial derivative of ),(2 yxg , 

),(2 yx
xy

g
pq

pq

∂∂
∂ +

⋅⋅
+⋅−

⋅= −
∞

=
∑ qnr

n

p
q

n
p

y
n

mnnr
c

2

0 )!2(

)2()2()1(
 






 +++
2

))(2(sin
πp

dcxmn     (14) 

3. Examples 

In the following, we propose four functions of two- va-

riables to find their any order partial derivatives, and some 

of their higher order partial derivative values practically. 

On the other hand, we use Maple to calculate the approxi-

mations of these higher-order partial derivative values and 

their infinite series forms.  

Example 1. Suppose that the domain of the following 

two-variables function 
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),(1 yxf =

)]52sin(cosh[)]52cos(sin[)]52(4cos[ 33 −⋅−⋅− xyxyx  

)]52sin(sinh[)]52cos(cos[)]52(4sin[ 33 −⋅−⋅−− xyxyx  

is { }0),( 2 ≠∈ yRyx . By Theorem 1, we obtain the infi-

nite series forms of any )( pq + -th order partial derivatives 

of ),(1 yxf  as follows.  

),(1 yx
xy

f

pq

pq

∂∂
∂ +

⋅⋅
−

+⋅−−
⋅= −−

∞

=

−

∑ qn

n

p
q

n
p

y
n

nn 36

1

1

)!12(

)32()36()1(
2






 +−+
2

)52)(32(cos
πp

xn            (15) 

Therefore, we have the 6-th order partial derivatives of 

),(1 yxf  at )2,3( , 

)2,3(
33

1
6

xy

f

∂∂
∂

)32sin(2
)!12(

)32()36()1(
8 66

1

3
3

1

+⋅⋅
−

+⋅−−⋅= −
∞

=

−
∑ n

n

nn n

n

n

(16) 

Next, we use Maple to verify our answer. 

>f1:=(x,y)->cos(4*(2*x-5))*sin(y^3*cos(2*x-5))*cosh(y^3
*sin(2*x-5))-sin(4*(2*x-5))*cos(y^3*cos(2*x-5))*sinh(y^3

*sin(2*x-5)); 

 

 

 

>evalf(D[1$3,2$3](f1)(3,2),14); 

 

>evalf(8*sum((-1)^(n-1)*product(6*n-3-j,j=0..2)*(2*n+3)^
3/(2*n-1)!*2^(6*n-6)*sin(2*n+3),n=1..infinity),14); 

 

The above answer obtained by Maple appears the im-

aginary number I (= 1− ), that is because Maple uses its 

own built-in special functions to calculate it. But the im-

aginary part is very small, so can be ignored. 

Example 2. Assume that the domain of  

),(2 yxf

)]35sin(sinh[)]35cos(cos[)]35(2cos[ 2/12/1 +⋅+⋅+= xyxyx

)]35sin(cosh[)]35cos(sin[)]35(2sin[ 2/12/1 +⋅+⋅++ xyxyx
 

is { }0),( 2 >∈ yRyx . Using Theorem 2, we obtain the 

following infinite series forms of any )( pq + -th order 

partial derivatives of ),(2 yxf   

),(2 yx
xy

f

pq

pq

∂∂
∂ +

⋅⋅
−

+⋅−−
⋅= −−

∞

=

−

∑ qn

n

p
q

n
p

y
n

nn 2/1

1

1

)!12(

)12()2/1()1(
5  






 +++
2

)35)(12(sin
πp

xn         (17) 

So we can evaluate the following 7-th order partial de-

rivatives of ),(2 yxf  at )4,1(−  

)4,1(
52

1
7

−
∂∂

∂
xy

f

)24cos(4
)!12(

)12()2/1()1(
5 2/5

1

5
2

1
5 +⋅⋅

−
+⋅−−⋅= −

∞

=

−
∑ n

n

nn n

n

n

(18) 

Also, we use Maple to verify our answer.   

>f2:=(x,y)->cos(2*(5*x+3))*cos(y^(1/2)*cos(5*x+3))*sinh
(y^(1/2)*sin(5*x+3))+sin(2*(5*x+3))*sin(y^(1/2)*cos(5*x

+3))*cosh(y^(1/2)*sin(5*x+3)); 

 

 

 

>evalf(D[1$5,2$2](f2)(-1,4),14); 

 

>evalf(5^5*sum((-1)^(n-1)*product(n-1/2-j,j=0..1)*(2*n+1
)^5/(2*n-1)!*4^(n-5/2)*cos(4*n+2),n=1..infinity),14); 

 

The above answer obtained by Maple also appears the 

imaginary number I, but the imaginary part is 0, so can be 

ignored. 

Example 3. If the domain of the two-variables function 

),(1 yxg

)]14sin(cosh[)]14cos(cos[)]14(7cos[ 22 −⋅−⋅−= xyxyx  

)]14sin(sinh[)]14cos(sin[)]14(7sin[ 22 −⋅−⋅−+ xyxyx  

is { }0),( 2 ≠∈ yRyx . Then by Theorem 3, the infinite 

series forms of any )( pq + -th order partial derivatives of 

),(1 yxg  is  
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),(1 yx
xy

g
pq

pq

∂∂
∂ +

⋅⋅
+⋅−

⋅= −
∞

=
∑ qn

n

p
q

n
p y

n

nn 4

0 )!2(

)72()4()1(
4  






 +−+
2

)14)(72(cos
πp

xn         (19) 

Thus, we obtain the following 5-th order partial deriva-

tives of ),(1 yxg  at 







3,

2

1
 










∂∂
∂

3,
2

1
23

1
5

xy

g

)72cos(3
)!2(

)72()4()1(
16 34

0

2
3 +⋅⋅+⋅−⋅−= −

∞

=
∑ n

n

nn n

n

n

(20) 

Using Maple to calculate the approximations of 










∂∂
∂

3,
2

1
23

1
5

xy

g
and its infinite series forms as follows. 

>g1:=(x,y)->cos(7*(4*x-1))*cos(y^2*cos(4*x-1))*cosh(y^
2*sin(4*x-1))+sin(7*(4*x-1))*sin(y^2*cos(4*x-1))*sinh(y^

2*sin(4*x-1)); 

 

 

 

>evalf(D[1$2,2$3](g1)(1/2,3),14); 

 

>evalf(-16*sum((-1)^n*product(4*n-j,j=0..2)*(2*n+7)^2/(2
*n)!*3^(4*n-3)*cos(2*n+7),n=0..infinity),14); 

 

The imaginary part of the above answer obtained by 
Maple is 0, so can be ignored. 

Example 4. Suppose that the domain of  

),(2 yxg

)]76sin(cosh[)]76cos(cos[)]76(5sin[ 44 −⋅−⋅−= xyxyx  

)]76sin(sinh[)]76cos(sin[)]76(5cos[ 44 −⋅−⋅−− xyxyx  

is { }0),( 2 ≠∈ yRyx . Using Theorem 4, the infinite se-

ries forms of any )( pq + -th order partial derivatives of 

),(2 yxg  is  

),(2 yx
xy

g

pq

pq

∂∂
∂ +

⋅⋅
+⋅−

⋅= −
∞

=
∑ qn

n

p
q

n
p

y
n

nn 8

0 )!2(

)52()8()1(
6  






 +−+
2

)76)(52(sin
πp

xn            (21) 

So we obtain the following 7-th order partial derivatives 

of ),(2 yxg  at )2,1(  

)2,1(
43

2
7

xy

g

∂∂
∂

)52sin(2
)!2(

)52()8()1(
6 38

0

4
34 +⋅⋅

+⋅−
⋅−= −

∞

=
∑ n

n

nn n

n

n

 (22) 

Also, we use Maple to verify our answer. 

>g2:=(x,y)->sin(5*(6*x-7))*cos(y^4*cos(6*x-7))*cosh(y^4

*sin(6*x-7))-cos(5*(6*x-7))*sin(y^4*cos(6*x-7))*sinh(y^4
*sin(6*x-7)); 

 

 

 

>evalf(D[1$4,2$3](g2)(1,2),14); 

 

>evalf(-6^4*sum((-1)^n*product(8*n-j,j=0..2)*(2*n+5)^4/(

2*n)!*2^(8*n-3)*sin(2*n+5),n=0..infinity),14); 

 

The imaginary part of the above answer obtained by 

Maple is 0, so can be ignored. 

4. Conclusion 

From the above discussion, we know that Theorems 1, 2, 

3, and 4 are the theoretical basis for solving the partial dif-

ferential problems we explored. And we see that differen-

tiation term by term theorem occupies the pivotal position in 

our theoretical derivation. In fact, the application of this 

theorem is very extensive, and use it many difficult prob-

lems can be solved, we will continue to publish papers in this 

regard. On the other hand, it can be seen that Maple plays an 

important role in the auxiliary problem solving, we can even 

use Maple to design some types of partial differential prob-

lems, and try to find the key to solve them. In the future, we 

will study other calculus and engineering mathematics 

problems, and take these results as good materials for cal-

culus and engineering mathematics on research and teach-

ing. 
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