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Abstract: In the present paper, we deal with two different existence results of solutions for a nonlocal elliptic Dirichlet 

boundary value problem involving p(x)-Laplacian. The first one is based on the Brouwer fixed point theorem and the Ga-

lerkin method which gives a priori estimate of a nontrivial weak soltion. The second one is based on the variational me-

thods. By using Mountain-Pass theorem, we obtain at least one nontrivial weak soltion. 
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1. Introduction 

We are concerned with the following problem 

     (P) 

 

Where  is a smooth bounded domain, 

( )p C∈ Ω  with ( )1 p x N< < for any x ∈ Ω , m  is a 

continuous function and f  is a Carathéodory function. 

Problem (P) is related to the stationary version of a mod-

el, the so-called Kirchhoff equation, introduced by [13]. To 

be more precise, Kirchhoff established a model given by 

the equation 
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where  are constants which extends the 

classical D'Alambert's wave equation, by considering the 

effects of the changes in the length of the strings during the 

vibrations. There are papers [4,11,15] in which the authors 

give the existence of solutions of Kirchhoff-type and 

p-Kirchhoff-type equations. Moreover, for 

p(x)-Kirchhoff-type equations see, for example, [2,5-7]. 

The p(x)-Laplace operator 

 

is a natural generalization of the p-Laplacian operator 

 

Where 

 

is a real constant. The main difference between them is 

that p-Laplacian operator is (p-1)-homogenous, but the 

p(x)-Laplacian operator, when p(x) is not constant, is not 

homogeneous. This causes many problems, some classical 

theories and methods, such as the Lagrange multiplier 

theorem and the theory of Sobolev spaces, are not applica-

ble. For p(x)- Laplacian operator, we refer the readers to 

[9,10,17,18] and references there in. Moreover, the nonli-

near problems involving the p(x)-Laplacian operator are 

extremely attractive because they can be used to model 

dynamical phenomenons which arise from the study of 

electrorheological fluids or elastic mechanics. Problems 

with variable exponent growth conditions also appear in the 

modelling of stationary thermo-rheological viscous flows 

of non-Newtonian fluids and in the mathematical descrip-

tion of the processes filtration of an ideal barotropic gas 

through a porous medium. The detailed application back-

grounds of the p(x)-Laplacian can be found in [1,3,19,22] 

and the references there in. 
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Recently, some interesting results were obtained by 

many authors. In [21], the authors studied a similar prob-

lem to (P) in the case of 

( ) 2p x =  

They established two different existence results of solu-

tions for a nonlocal elliptic equations with nonlinear boun-

dary condition by using the Galerkin method and the 

Mountain-Pass theorem. In [16], the authors dealt with 

problem (P) in the case of 

( ) 2p x =  

By using the Brouwer fixed point theorem and the Ga-

lerkin method, they proved the existence of a solution. 

Motivated by the above references, we deal with the ex-

istence of solutions for a nonlocal elliptic equation (P) with 

Dirichlet boundary condition involving the p(x)-Laplacian 

operator. The first result is obtained by the Brouwer fixed 

point theorem and the Galerkin method, whereas the others 

are obtained in view of variational approach using the 

Mountain-Pass theorem. 

2. Preliminaries 

First, we recall some basic properties of spaces 

( )( )p xL Ω  

And 

1, ( ) ( )p xW Ω  

(for details, see e.g., [8,14]). 
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Ω
Ω = Ω < ∞∫  

We define a norm, the so-called Luxemburg norm, on 

( ) ( )p xL Ω  

by the formula 
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and then 

( )( )( ) ( ),p x

p x
L Ω ⋅  

becomes a Banach space. 

Define the variable exponent Sobolev space by 

( ) ( ) ( ) ( ){ }1, ( ) ( ) ; ,
p x p xp xW u L u LΩ = ∈ Ω ∇ ∈ Ω  

then it can be equipped with the norm 
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The space 
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is defined as the closure of 

( )0C ∞ Ω  

In 

1, ( ) ( )p xW Ω  

with respect to the norm 

( )1, p x
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For 

1, ( )

0 ( )p xu W∈ Ω  

we can define an equivalent norm 

( ) ,
p x

u u= ∇  

since the well-known Poincaré inequality holds. 
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We say that 

( ) ( )1,

0

p x
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is a weak solution of (P) if 
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Where 
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0 .
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We associate to the problem (P) the energy functional, 
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We know that from (m1) and (f0) (see Section 3) I  is 

well defined and in a standard way we can prove that 
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3. Existence Results via Brouwer’s 

Fixed Point Theorem 
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Now, we are ready to set and prove the first main result 

of the present paper. 
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We look for solutions n n
u V∈  of the approximate 

problem 
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To solve this algebraic system, we now define the opera-
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By the condition (f0), the growth of function f  is sub-

critical, so ( ),u f u→ ⋅  defines a continuous Nemytskii 

mapping 

( ) ( ) ( ) ( )/

:
x x

f
N L L

β βΩ → Ω . 

We note that n
P  is continuous from continuity of m  

and ( ),f x u  with respect to u . Therefore, from (m0), 

(f0, (f1) and Poincaré inequality, for n
u V∈  with 
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This shows, from (3.1), the existence of 0R >  de-

pending only on , , ,k a C Ω  such that , 0nP u u ≥  if 

.u R=  Hence by consequence of Brouwer's fixed point 

theorem (Lemma 7), the system (3.2) has a solution 
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From the completeness of { }kw , the equality (3.3) 
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which means that u is a solution of (P). Finally, if u  is 

any solution of (P) and it is nontrivial, then 
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As a consequence, we have 
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The proof is completed. 

4. Existence Results via Variational 

Method 

In this section, we prove the existence of trivial and non-

trivial weak solutions of problem (P) by using the Moun-

tain-Pass lemma. 
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This shows the coerciveness of I . Furthermore, since 

I  is weakly lower semicontinuous, it has a critical point 

u  in 
( ) ( )1,

0

p x
W Ω , which is a weak solution of (P). The 

proof is completed. 
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To obtain the results of Theorem 10, we need to verify 

the following two lemmas. 
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0

p x q x
W LΩ → Ω  

we get 

( ) ( )( ) ,

. . .

q x

n

n

u u strongly in L

u u a e x

→ Ω
→ ∈Ω

           (4.2) 

By (4.1), we have 

( )/ , 0.n nI u u →  

Thus 

( )
( )

( )
( ) ( )

( )( )

/

2

,

, 0.

n n

p x

p xn

n n n

n n

I u u u

u
m dx u u u u dx

p x

f x u u u dx

−

Ω Ω

Ω

−

 ∇
 = ∇ ∇ ∇ − ∇
 
 

− − →

∫ ∫

∫

 

From (f0) and Proposition 1, it follows 

( ) ( )
( )

( ) ( )/

1

,

.

n n

q x

n n nq x
q x

f x u u u dx

c u u u c u udx

Ω

−

Ω

− ≤

− + −

∫

∫
 

If we consider the relations given in (4.2), we get 

( )( ), 0.n nf x u u u dx
Ω

− →∫  

Hence 

( )

( )
( ) ( )2

0.

p x

p xn

n n n

u
m dx u u u u dx

p x

−

Ω Ω

 ∇
  ∇ ∇ ∇ −∇ →
 
 
∫ ∫  

From (m1), it follows 

( ) ( )2
0.

p x

n n n
u u u u dx

−

Ω
∇ ∇ ∇ − ∇ →∫        (4.3) 

Since the functional (4.3) is of type ( )S+ (Proposition 5), 

we get 
( ) ( )1,

0( ) .
p x

nu u strongly inW→ Ω I  satisfies 

(PS) condition. 
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( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

1,

0

1,

0

12. 1 , , 0 3 .

:

0, ;

, 0.

p x

p x

Lemma Suppose m AR f and f hold

Thenthe following statements hold

i Thereexist two psitive real numbers and such that

I u u W with u

ii Thereexist a u inW such that u I u

δ µ

µ δ

δ

≥ > ∈ Ω =

Ω > <

 

Proof 

(i) Let us assume 

1u <  

Then by (m0), we have 

( )
( )

( ), .
pA

I u u F x u
p

λ
γ

γ

+

Ω+
= − ∫  

By the continuous embeddings 

( ) ( ) ( ) ( )1,

0

p x q x
W LΩ → Ω  

And 

( ) ( ) ( )1,

0

p x pW Lγ +

Ω → Ω , 

there exist some positive constants 0
c  and 1

c  such that,

( ) ( )1,

0

p x
u W∀ ∈ Ω , 

( ) 0q x
u c u≤  and 1p

u c uγ + ≤ ,           (4.4) 

Let 0ε >  be small enough such that 

( )1

2

p A
c

p

γ
γε

γ

+

+
< . 

Then, using (f0) and (f3), we get 

( ) ( ) ( ), , , .
p q x

F x t t c t x t
γ

εε
+

≤ + ∀ ∈ Ω ×ℝ  

Therefore, by (m1) and (4.4), it follows 

( )

( )
( )

( )

( )

1 0

1 .

p p q x

p p qp q

p qp

I u

A
u u dx c u dx

p

A
u c u c c u

p

A
c u c u

p

γ γ
εγ

γ γγ
εγ

γγ
γ

ε
γ

ε
γ

ε
γ

+ +

+ + −+ −

+ −+

Ω Ω+

+

+

≥ − −

≥ − −

 
 ≥ − −
 
 

∫ ∫

 

Since 1u <  and q pγ− +> , there exist positive real 

numbers δ  and µ  such that 

( ) ( ) ( )1,

00,
p x

I u u Wµ≥ > ∈ Ω  

With 

( )0,1 .u δ= ∈  

(ii) From (AR), one easily deduces 

( ), , . . .F x t c t t K a e x
θ≥ ≥ ∈ Ω  

Moreover, when 1t >  is large enough, from (m1), we 

obtain that 

( ) .pB B
M t t tγ γ

γ γ
+

≤ ≤  

Hence, for 
( ) ( )1,

0 , 0,
p x

Wω ω∈ Ω ≠  and 1t >  we 

have 

( )
( )

( ) ( )

( )

,

.

p x

pp

t
I t M dx F x t

p x

B
t ct dx c

p

θγγ θ
γ

ω
ω ω

ω ω
γ

++

Ω Ω

Ω−

 ∇
 = −
 
 

≤ − −

∫ ∫

∫
 

From (m1) and (AR), it can be obtained that pθ γ +> . 

Therefore 

( ) ( ).I t tω → −∞ → +∞  

Proof of Theorem 10. From Lemma 11, Lemma 12 and 

the fact that ( )0 0I = , I satisfies the Mountain Pass theo-

rem (see e.g.,[20]). Therefore, I has at least one nontrivial 

critical point, i.e., (P) has a nontrivial weak solution. We 

are done.  
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