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Abstract: A study is made of nuclear size corrections to the energy levels of single-electron atoms for the ground state of 

hydrogen like atoms. We consider Fermi charge distribution to the nucleus and calculate atomic energy level shift due to the 

finite size of the nucleus in the context of perturbation theory. The exact relativistic correction based upon the available 

analytical calculations is compared to the result of first-order relativistic perturbation theory and the non-relativistic 

approximation. We find small discrepancies between our perturbative results and those obtained from exact relativistic 

calculation even for large nuclear charge number Z. 
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1. Introduction 

As we know, the unphysical infinity in the1 r potential at 

the origin makes it necessary that this potential be modified 

for values of r inside a region about the origin that can be 

identified with the nucleus of the atom. Attributing finite size 

to the nucleus of the atom may be considered as a remedy. 

The resulting correction due to the finite size of the nucleus 

leads to the shift of atomic energy levels. From another point 

of view, there is isotope shift of atomic energy levels due to 

this kind of corrections. 

The dependence of the correction to the atomic energy 

level on the form of the potential energy inside the nucleus 

necessitates a choice of a model for the nuclear potential. For 

two common models, for nuclear potential function, which 

respectively simulate either a uniform charge distribution or a 

constant potential inside nucleus, the atomic energy level 

shift has been calculated [1]. 

Calculation of these type of corrections have attracted a lot 

of attention. For a review see Ref [2-7]. The exact treatment 

of the problem is based on a solution of the Dirac equation 

for all values of r . The method reduces the computation of 

the energies of the electron, in interaction with a finite size 

nucleus, to a boundary value problem involving a single 

unknown eigenvalue [1]. In the present paper, we adopt 

another two appropriate charge distribution to the nucleus: 

Fermi and 1 r chrge distributions; and calculate the 

correction for the ground state of electronic hydrogen like 

atom due to these charge distributions of nucleus (nuclear 

size). The main focus is on the comparison of the exact 

results with the results of two approximate methods. The 

approximate methods are perturbation theory and non-

relativistic treatment as described in Section 3. 

In Section 2, we briefly discuss the exact solution of Dirac 

equation in the presence of external potential. The 

approximate methods are described in Section 3. 

In Section 4, the numerical calculation in perturbation 

theory is discussed. Finally our numerical results are 

compared with the results obtained from perturbation theory 

using both relativistic and non-relativistic wave functions for 

two physical charge distribution models to the nucleus. 

2. Exact Calculation 

The solution of the Dirac equation in the presence of 

external potential leads to the coupled differential equations 

for the radial wave functions as [8] 
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Where (r)f  and (r)g  are the upper and the lower 

components of the radial eigenfunctions, respectively; E  is 

the energy 

eigenvalue and κ is the eigenvalue of the operator 

ˆˆ ˆ ℏ= ⋅ +Lκ σ . Here, for a given value of j , the quantum 

number κ has the possible values 
1
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± +j  corresponding to 

values of l  and ′l  equal to
1

2
±j  and 

1

2
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For values of radial coordinate r greater than or equal to a 

value R which defines the nuclear radius, we assume that the 

central potential has the coulomb form, 
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V
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                              (3) 

Solution of the radial Dirac equation for this region leads 

to the familiar formulae for the allowed energy eigenvalues 

of the electron given by 
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Where
2 1

137
ℏ= ≈e cα  is the fine-structure constant and 

1

2
′ = − −n n j  is defined from principal quantum number

1, 2,…=n . It can be shown that the functions (r)g  and (r)f  have the explicit forms [1] 
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Where Nβ represents a normalization constant and the energy parameter ′E  must be derived from the continuity conditions 

at =r R . Besides, we have used the following notation 
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For values of the radial coordinate less than the nuclear 

radius, the radial Dirac equations have been calculated 

analytically for two common models in [1], such as 1) 

uniformly charged nucleus and 2) constant potential inside 

nucleus. 

The solutions of the Dirac equation for values of r exterior 

and interior to the nucleus need to be made continuous at the 

boundary of the nucleus defined by =r R . The continuity 

requirement at =r R produces the simultaneous equations: 

interior interior(R) (R), (R) (R)= =exterior exteriorg g f f       (8) 

which can be conveniently combined into the “matching 

equation” as 

interior

interior

(R) (R)

(R) (R)
= exterior

exterior

g g

f f
                         (9) 

The equation has the effect of reducing the computation of 

the energies of the atomic electron in the case of a finite size 

nucleus to a boundary value problem involving a single 

unknown ′E , the solution of which determines the allowed 
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energy eigenvalues. 

3. Approximate Methods 

We can compare the energy eigenvalues derived from 

equation (9) with the corrected eigenvalues obtained from the 

first-order perturbation theory under the assumption that the 

change in the coulomb potential in the interior of the nucleus 

is treated as a perturbation to the Hamiltonian as, 
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In which we have substituted the well-known formulas for 

electric fields inside and outside the sphere: 
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Performing similar straightforward calculations for the 

constant potential inside the nucleus, (model 2), one gets 
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Ze Ze

r
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∆ = − +                    (13) 

Now we want to obtain the energy shift of the ground state 

( 0′ =n ) atomic electron, in which we have assumed uniform 
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perturbation theory
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On the other hand, (r)f and (r)g  are derived from relations (5) and (6) for ground state of atomic electron as 
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Where cλ is the Compton wavelength of the electron. From 

relations (11) and (15), ∆E  takes the form 

2
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Here the normalization constant can be obtained according to the prescription
† 1=∫ dVψ ψ . So one gets from relations (14), 

(16) and (19) 
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Substituting the expression (23) in relation (21), we obtain 
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In comparison, the non-relativistic calculation gives the 

result [9] 
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For small values of Z , in the approximation in which
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For constant potential inside nucleus, the approach is 

similar. In the present work, for comparison, we adopt 

another two models for nuclear charge distribution: 1 r  

charge distribution and Fermi charge distribution for <r R . 

With (r)∆  defined by either of the two formula 
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Along with the form for (r)∆ in equations (30-31), results in corrections to the energy of ground state given by the respective 

formulas 
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Clearly, relation (31) is being substituted for (r)∆V in the 

expression (34). Here, we consider 
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The two parameters c and k are determined, for instance, 

by fitting to densities derived from measured form factors 

[10-11]; and the factor 0ρ  is given by normalization 

condition 

0

(r)dr Ze=∫
R

ρ                              (36) 

4. Conclusions 

The dependence of the correction to the energy on the 

form of the potential energy inside the nucleus necessitates a 

choice of a model for the nuclear potential. For two common 

models, for nuclear potential function, which respectively 

simulate either a uniform charge distribution or a constant 

potential inside nucleus, ∆ exactE  and .∆ PertE  have been 

calculated [1]. 

Table 1. Values derived from the present calculation and from relativistic and non-relativistic perturbation theory for correction to the ground state energy of 
an hydrogenic atom produced by the finite size of a nucleus of charge Z. Models 1 and 2 assume a uniformly charged nucleus and a constant potential inside 

the nucleus, respectively [1]. Ground state: �� = 0, � = −1. 

Z A ∆ exactE (eV) 
∆ PerturbationE  (eV) 

(constant potential) 

∆ PerturbationE  (eV) 

(uniform charge dist.) 
∆ codeE  (eV) −∆ non relativisticE  

(eV) 

1 1 5.60 × 10
� 9.33 × 10
� 5.60 × 10
� 5.60 × 10
� 5.60 × 10
� 

1 2 8.89 × 10
� 14.82 × 10
� 8.89 × 10
� 8.89 × 10
� 14.81 × 10
� 

47 107 1.26755 2.21598 1.36265 1.26706 0.61558 

47 109 1.28288 2.24182 1.37854 1.28179 0.62323 

63 151 8.60942 15.75194 9.89420 8.60438 2.50026 

63 153 8.67636 15.87512 9.97157 8.67124 2.52228 

81 203 60.383 120.540 78.388 60.342 8.322 

81 205 60.698 121.177 78.802 60.658 8.377 

92 235 193.180 420.373 281.357 193.066 15.270 

92 238 194.376 423.016 283.126 194.260 15.400 
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Figure 1. Graphs versus Z of the nuclear size correction to the ground state energy of a hydrogenic atom obtained from matching condition in equation (8) 

(Curve A), and relativistic perturbation theory (Curve B) using model 1 [1]. 

For these two models, Table1 lists calculated values of the 

energy correction to the ground states of single-electron 

atoms corresponding to stable isotopes of the five elements

H ,U , Ag , Eu and Tl . In particular, the table compares the 

corrections, ∆E , derived from the matching condition in 

equation (9) with the values of ∆E obtained for the same 

model of the nuclear potential, using first-order perturbation 

theory based on both relativistic .∆ pertE  and non-relativistic 

wave functions .−∆ non relE The different values for ∆E as a 

function of Z predicted by the perturbation theory and exact 

theory, for these two models, are summarized by the graphs 

in figure 1. 

It is useful to compare the results derived from the 

matching condition in equation (9) with the results extracted 

from an atomic structure code for the same model. To do this, 

we include in table 1 the values of ∆E obtained from general 

purpose relativistic atomic structure program, GRASP [12], 

for the case of a uniformly charged nucleus. Comparison of 

these values, denoted by ∆ codeE with the values obtained 

from equation (9) shows that the two sets of values are in 

excellent agreement. 

In analogy with the results listed in table (1), we list in 

table (2) the calculated values of ∆E for the ground states of 

electronic atoms with Fermi and 1 r  charge distributions. As 

expected, results of these two models are in excellent 

agreement with ∆ codeE and .∆ pertE . In comparison with 

previous models, we find better results for .∆ pertE . 

The different values for ∆E as a function of Z predicted 

by the perturbation theory and exact theory (for 1 r and 

Fermi charge distributions) are summarized by the graphs in 

figure (2). In spite of the fact that the1 r charge distribution 

is not of much physical interest, the related results are in 

good agreement with ∆ codeE and ∆ exactE . 

In summary, for values of Z greater than 40 in the case of 

electronic atoms, we find large discrepancies between our 

results and those obtained from first-order perturbation 

theory using relativistic wave functions. But with considering 

physical model (Fermi charge distribution) to the nucleus we 

find small discrepancies between perturbative and exact 

results even for large nuclear charge number Z . 

Avoiding any complexity arising from quantum 

electrodynamics calculations, we could tackle the problem of 

atomic energy level shift due to the finite size of the nucleus. 

We reduced the calculations to a boundary value problem in 

which the exact solutions were obtained. However, the 

perturbation approach carried out to compare the two sets of 

results. One would gain even better results for the energy 

levels of the atoms by including the contributions that arise 

from higher order QED corrections, weak-strong interaction 

corrections and nucleus recoil corrections. Hence, our results, 

besides confirming the finite nuclear size effect, stimulate the 

possibility to generalize the calculations that is open to 

further investigations. 
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Table 2. Values derived from the present calculation and from relativistic and non-relativistic perturbation theory for correction to the ground state energy of a 

hydrogenic atom produced by the finite size of a nucleus of charge Z. Assuming 
�

�
 charged nucleus and a Fermi charge distribution inside the nucleus, 

respectively. Ground state:	�� = 0, � � �1. 

Z A 
∆ exactE (eV) 

(Uniform) 

∆ PerturbationE  (eV) 

(Uniform charge dist.) 

∆ PerturbationE (eV) 

1 r -charge dist. 

∆ PerturbationE (eV) 

(Fermi-charge dist.) 
∆ codeE  (eV) 

1 1 5.60 � 10
� 5.60 � 10
� 4.60 � 10
� 5.60 � 10
� 5.60 � 10
� 

1 2 8.89 � 10
� 8.89 � 10
� 7.41 � 10
� 8.89 � 10
� 8.89 � 10
� 

47 107 1.26755 1.36265 1.1443173 1.351 1.26276 

47 109 1.28288 1.37854 1.15761 1.362 1.28179 

63 151 8.60942 9.89420 8.357759 8.923 8.60438 

63 153 8.67636 9.97157 8.423116 9.021 8.67124 

81 203 60.383 78.388 47.771 71.62 60.342 

81 205 60.698 78.802 48.203 72.78 60.658 

92 235 193.180 281.357 25.3 242.51 193.066 

92 238 194.376 283.126 253.622 244.12 194.260 

 

Figure 2. Graphs versus Z of the nuclear size correction to the ground state energy of a hydrogenic atom obtained from matching condition in equation (9) 

(Curve A) and relativistic perturbation theory using model 1(Curve B). Curve C and Curve D attributed to 
�

�
 and Fermi charge distribution models 

respectively. 
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