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Abstract: The interconnection between the spin current and spin dynamics via the spin-dependent scattering and an 

accompanying by spin torque effect in ferromagnetic/normal metal based magnetic multilayer nanostructures is studied 

including a high fast out-of-equilibrium spin dynamics. Features of the spin transport through interfaces and its impact on spin 

dynamics are described on the base of the scattering matrix formalism for spin flows. The dependence of the spin torque effect 

on conductance character of the normal metal layers is considered. The exchange processes between the itinerant s and the 

localized d electrons are described by kinetic rate equations for electron-magnon spin-flop scattering. It is shown that the 

magnon distribution function remains nonthermalized on the relevant time scales of the demagnetization process, and the 

relaxation of the out-of-equilibrium spin accumulation among itinerant electrons provides the principal channel for dissipation 

of spin angular momentum from the combined electronic system. 

Keywords: Magnetic Nanostructures, Spin Transport, Scattering, Spin Torque Effect, Electron-Magnon Spin-flop Scattering, 

Nonequilibrium Spin Dynamics 

 

1. Introduction 

Stacks of alternating ferromagnetic and nonmagnetic metal 

layers exhibit giant magnetoresistance (GMR), because their 

electrical resistance depends strongly on whether the 

moments of adjacent magnetic layers are parallel or 

antiparallel. This effect has allowed the development of new 

kinds of field-sensing and magnetic memory devices [1]. The 

cause of the GMR effect is that conduction electrons are 

scattered more strongly by a magnetic layer when their spins 

lie antiparallel to the layer’s magnetic moment than when 

their spins are parallel to the moment. Devices with moments 

in adjacent magnetic layers aligned antiparallel thus have a 

larger overall resistance than when the moments are aligned 

parallel, giving rise to GMR. At the same time, there is the 

converse effect: just as the orientations of magnetic moments 

can affect the flow of electrons, a polarized electron current 

scattering from a magnetic layer can have a reciprocal effect 

on the moment of the layer. As shown in [2, 3], an electric 

current passing perpendicularly through a magnetic 

multilayer may exert a torque on the moments of the 

magnetic layers. This effect which is known as ‘‘spin 

transfer,’’ may, at sufficiently high current densities, alter the 

magnetization state. It is a separate mechanism from the 

effects of current induced magnetic fields. Experimentally, 

spin-current-induced magnetic excitations such as spin-

waves, [4-9] and stable magnetic reversal [6, 7] have been 

observed in multilayers, for current densities greater than 

10
7
A/cm

2
. 

The spin-transfer effect offers the promise of new kinds of 

magnetic devices and serves as a new means to excite and to 

probe the dynamics of magnetic moments at the nanometer 

scale. In order to controllably utilize these effects, however, it 

is necessary to achieve a better quantitative understanding of 

current-induced torques. A derivation of spin-transfer torques 

using a one-dimensional (1D) WKB approximation with 

spin-dependent potentials presented in [3] only take into 

account electrons which are either completely transmitted or 
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completely reflected by the magnetic layers. For real 

materials the degree to which an electron is transmitted 

through a magnetic/nonmagnetic interface depends 

sensitively on the matching of the band structures across the 

interface [10, 11]. It is important to incorporate such band 

structure information together with the effect of multiple 

reflections between the ferromagnetic layers, into a more 

quantitative theory of the torques generated by spin-transfer. 

This could be done using the formalism [12] based on kinetic 

equations for spin currents. Instead, it can be made by 

employ a modified Landauer-Bϋttiker formalism, in which 

the ferromagnetic layers are modeled as generalized spin-

dependent scatterers [13]. In this case, the calculations are 

carried out for a quasi-one-dimensional geometry, for which 

formulas for the torque generated on the magnetic layers are 

derived when a current is applied to the system, for either 

ballistic or diffusive nonmagnetic layers.  

Controlling spin flow in the mentioned magnetic 

nanostructures at ultrafast time scales using femtosecond 

laser pulses opens intriguing possibilities for spintronics [14]. 

These laser-induced perturbations [15, 16] stir up the most 

extreme regime of spin dynamics, which is governed by the 

highest energy scale associated with magnetic order: the 

microscopic spin exchange that controls the ordering 

temperature 
C

T . In contrast, at microwave frequencies the 

ferromagnetic dynamics in the bulk are well described by the 

Landau-Lifshitz-Gilbert (LLG) phenomenology [17], which 

has been successfully applied to the problem of the 

ferromagnetic resonance (FMR). At finite temperatures 

below 
C

T , the spin Seebeck and Peltier effects [18, 19] 

describe the coupled spin and heat currents across interfaces 

in magnetic heterostructures.  

Despite their different appearances, the microwave, 

thermal and ultrafast spin dynamics are all rooted in the 

exchange interactions between electrons. It is thus natural to 

try to advance a microscopic describing of the ultrafast 

dynamics based on the established phenomena at lower 

energies. Although some attempts have been made [20, 21] to 

extend the LLG phenomenology to describe ultrafast 

demagnetization in bulk ferromagnets, no firm connection 

exists between the ultrafast spin generation at interfaces and 

the microwave spin-transfer and spin-pumping effects [22] or 

the thermal spin Seebeck and Peltier effects.  

Solving the above-mentioned problem involves unification 

of the energy regimes of microwave, thermal, and ultrafast 

spin dynamics in magnetic heterostructures from a common 

microscopic point of view, so that the parameters that control 

the high and low energy limits of spin relaxation originate 

from the same electron-magnon interactions [23]. In addition 

to the unified framework, these unique contributions are the 

history-dependent, nonthermalized magnon distribution 

function and the crucial role of the out-of-equilibrium spin 

accumulation among itinerant electrons as the bottleneck that 

limits the dissipation of spin angular momentum from the 

combined electronic system.  

The paper is organized as follows. In Sec. 2, the 

interconnection between the spin current and spin dynamics 

via the spin-dependent scattering and an accompanying spin 

torque effect in ferromagnetic (F)/normal metal (N) based 

magnetic multilayer nanostructure is studied. Section 3 is 

devoted to description of the impact of electron-magnon 

spin-flop scattering on out-of-equilibrium spin dynamics in 

F/N based magnetic nanostructures. 

2. Spin-Dependent Interface  

Scattering-Induced Torques in 

Magnetic Multilayer Nanostructures 

2.1. Features of Spin Transfer Effect 

In this section, a simple intuitive picture of the physics 

behind the spin-transfer effect is considered. The connection 

between current-induced spin-transfer torques and the spin-

dependent scattering that occurs when electrons pass through 

a magnetic-nonmagnetic interface can be illustrated most 

simply by considering the case of a spin-polarized current 

incident perpendicularly on a single thin ferromagnetic layer 

F, as shown in Figure 1. The layer lies in the y-z plane, with 

its magnetic moment uniformly pointed in the z  direction, 

and it is assumed that the current is spin-polarized in the 

−z x  plane at an angle θ  to the layer moments. The 

incoming electrons can therefore be considered as a coherent 

linear superposition of basis states with spin in the z+  

direction (amplitude cos / 2θ ) and z−  direction (amplitude

sin / 2θ ). At first, it is assumed that the layer is a perfect spin 

filter, so that spins aligned with the layer moments are 

completely transmitted through the layer, while spins aligned 

antiparallel to the layer moment are completely reflected. For 

incident spins polarized at an angle θ , the average outgoing 

current will have the relative weights 2
cos / 2θ  polarized in 

the +z  direction and transmitted to the right and 2
sin / 2θ  

polarized in the −z  direction and reflected to the left. 

Consequently, both of the outgoing electron spin fluxes 

(transmitted and reflected) lie along the z  axis, while the 

incoming (incident) electron flux has a component 

perpendicular to the magnetization, along the x  axis, with 

magnitude proportional to sin θ . This x component of 

angular momentum must be absorbed by the layer in the 

process of filtering the spins.  

Because the spin-filtering is ultimately governed by the s-d 

exchange interaction between the conduction electrons and 

the magnetic moments of the layer, the angular momentum is 

imparted to the layer moments and produces a torque on 

them. This exchange torque [24], which is proportional to the 

electron current through the layer and to sin θ , is in the 

direction to align the moments with the polarization of the 

incident spin current. The symmetry of this model precludes 

any generation of torque from the spin filtering of a current 

of unpolarized electrons. To generate the effect, then, a 

second ferromagnetic layer is needed to first spin polarize the 

current (Figure 2). In that case, spin angular momentum is 

transferred from one layer to the flowing electrons and then 

from the electrons to the second layer. 
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Figure 1. Schematic of exchange torque generated by spin filtering. Spin-

polarized electrons are incident perpendicularly on a thin ideal 

ferromagnetic layer. Spin filtering removes the component of spin angular 

momentum perpendicular to the layer moments from the current; this is 

absorbed by the moments themselves, generating an effective torque on the 

layer moments. 

 

Figure 2. Qualitative picture of asymmetry of spin-transfer torque with 

respect to current bias in a F//NF junction. For left-going electrons (a), 

initially polarized by a magnetic layer
a

F , the moments of layer 
b

F  

experience a torque so as to align them with layer
a

F . The electron current 

reflected from layer 
b

F , in turn, exerts a torque on layer 
a

F  so as to 

antialign it with the moment of layer
b

F . Subsequent reflections between the 

layers reduce but do not eliminate this torque. If the current is reversed (b) 

the overall sign of the torque is reversed, encouraging the moment of layer 

b
F  to align antiparallel with layer

a
F . 

The presence of this second layer has the additional effect 

of allowing for multiple scattering of the electrons between 

the two layers, which gives rise to an explicit asymmetry of 

the torque with respect to current direction. This asymmetry 

is an important signature which can be used to distinguish 

spin-transfer-induced torques from the torques produced by 

current-generated magnetic fields. To see how the asymmetry 

arises, consider the ferromagnet–normal-metal– ferromagnet 

(F/N/F) junction shown in Figure 2. It consists of two 

ferromagnetic layers aF  and bF , with moments pointing 

in directions am  and bm , separated by a normal metal 

spacer N. Normal metal leads on either side of the trilayer 

inject an initially unpolarized current into the system. When 

the current enters the sample from the left (Figure 2(a)), 

electrons transmitted through aF  will be polarized along 

a
m . As long as the normal metal spacer is smaller than the 

spin-diffusion length (100 nm for Cu), this current will 

remain spin-polarized when it impinges on
b

F and will exert a 

torque on the moment of bF in a direction so as to align bm

with am .  

Repeating the argument for 
b

F , we find that the spin of 

the electrons reflected from layer 
b

F  is aligned antiparallel 

to 
b

m , and, hence in turn, exerts a torque on the moment of 

a
F  trying to align 

a
m  antiparallel with 

b
m . Subsequent 

multiple reflections of electrons between 
a

F  and 
b

F  can 

serve to reduce the magnitudes of the initial torques, but they 

do not eliminate or reverse them, as the electron flux is 

reduced upon each reflection. If there were no anisotropy 

forces in the sample, the net result would be a motion with 

both moments rotating in the same direction (clockwise in 

Figure 2(a)), as described previously in [3]. When the current 

is injected from the right, the directions of the torques are 

reversed. The flow of electrons exerts a torque on 
a

F  trying 

to align its moment parallel with 
b

m , while it exerts a torque 

on 
b

F  so as to force the moment in layer 
b

F  antiparallel 

with 
a

m . 

In [3, 6], the layer 
a

F  was taken to be much thicker than 

b
F , so that intralayer exchange and anisotropy forces will 

hold the orientation of 
a

m  fixed. In that case, one is only 

interested in the torque on 
b

F , which serves to align 
b

m  

either parallel or antiparallel with the fixed moment 
a

m  

depending on the current direction. This asymmetric current 

response has been employed in both a point-contact geometry 

[7] and in a thin-film pillar geometry 8 to switch the 

moments in F/N/F trilayers from a parallel to an antiparallel 

configuration by a current pulse in one direction, and then 

from antiparallel to parallel by a reversed current. For weakly 

interacting layers, either orientation can be stable in the 

absence of an applied current, so that the resistance versus 

current characteristic is hysteretic, and the devices can 

function as simple current-controlled memory elements. 

Often, the transport properties of magnetic multilayers are 

described using ‘‘two-current’’ models [8], in which one 

assumes that the effects of spin-polarized currents can be 

described completely in terms of incoherent currents of spin-

up and spin-down electrons. Normally, only the cases of 

purely parallel or purely antiparallel magnetic layers are 

considered, and the spin currents are conserved upon passing 

through each normal-metal–ferromagnet interface. 

In the mentioned case there can be no current-induced 

torque on either magnetic layer. It is important to recognize 

that such two-current models are not appropriate to calculate 

current-induced torques for the more general case of arbitrary 

tilt angle between the moments in a magnetic multilayer, as 

the simple example discussed in this section demonstrates. 

Tilting of the spin axis is an essential point of the physics [9], 

and this must be described in terms of a coherent sum of 

spin-up and spin-down basis states. In the general case, the 

spin flux is not conserved upon passing through a magnetic 

layer, so that a torque is applied to each magnetic layer. As it 

turned out, this is a simple consequence of different 

transmission amplitudes for the spin-up and spin-down 

components of the electron flux. 

2.2. Spin Flux and Torque in the Scattering Approach 

Treating the ferromagnetic layers as perfect spin filters 
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provides important qualitative insights into spin transfer, but 

for a complete qualitative and quantitative picture, a more 

general approach is required. This can be realized by 

introduction a scattering matrix description of the F/N/F 

junction which allows to deal with nonideal (magnetic and 

nonmagnetic) layers. It is important to relate the torque τ
b
 

exerted on layer 
b

F  by an unpolarized incident electron 

beam to the scattering properties of the layers. Although 

restriction by formulas to the F/N/F junction (see Figure 3), 

the mentioned method is applicable for an arbitrary array of 

magnetic-nonmagnetic layers. 

The spin flux J  In the x direction (the direction of current 

flow) can be written in the form [13] 

( )
2

†
( ) Im ( ) ( )

2
J φ φ= ∫

ℏ
x dydz x x

m
σσσσ              (1) 

where ( )φ x  is a spinor wave function and σσσσ  is the vector of 

Pauli matrices 

( )
( ) ,

( )

σφ
φ σ

φ
σ

↑

↓

= =
 

   
      

 

x

y

z

x
x

x
σσσσ . 

Note that no local equation of conservation can be written 

for the spin flux, since in general, the Hamiltonian (of the 

itinerant electrons) does not conserve spin. Specifically, the 

magnetic layers can act as sources and sinks of spin flux, so 

that the spin flux on different sides of a F layer can be 

different. When the angle θ  is 0 or π  (typical situation for 

GMR), the commutativity between the Hamiltonian and the 

(electron) spins is restored (in the absence of spin-flip 

scattering). It should be stressed that the Hamiltonian of the 

full system (electrons plus local moments of the ferromagnets 

plus the environment) does commute with the total spin. 

Therefore the spin lost by the itinerant electrons has to be 

gained by the other parts of the system. 

 

Figure 3. Schematic of the setup used for the definition of the scattering 

matrices of the F and N layers. The two layers 
b

F  and 
a

F  are 

ferromagnetic layers whose magnetic moment is oriented as shown in the 

bottom of the figure. The layer N is a nonmagnetic metal spacer. Amplitude 
of left and right moving propagating waves are defined in fictitious ideal 

leads 0, 1, 2, and 3 between the layers and between the layers and the 

reservoirs. 

Figure 3 shows the F/N/F junction where (fictitious) 

perfect leads (labeled 0, 1, 2, and 3) have been added in 

between the layers F and N and between the F layers and the 

electron reservoirs on either side of the sample. The 

introduction of these leads allows for a description of the 

system using scattering matrices. In the perfect leads, the 

transverse degree of freedom is quantized, giving 
ch

N  

propagating modes at the Fermi level, where 
2

ch / λ∼ FN A , A  

being the cross section area of the junction and 
F

λ  the Fermi 

wave length. Expanding the electronic wave function in these 

modes, we can describe the system in terms of the projection 

, jiΨ  of the wave function onto the left ( 1=j ) or right ( 2=j ) 

going modes in the region (0,1, 2,3)=i . The Ψij is 
ch

2N -

component vector, counting the 
ch

N transverse modes and 

spin. The amplitudes of the wave function in two neighboring 

ideal leads are connected through the scattering matrices

1
=

a
S S , 

2
=

N
S S  and 

3
=

b
S S  that relate amplitudes of 

outgoing modes and incoming modes at the layer (see [25]) 

by the relation. 

,1 ,2

1,2 1,1

, (1,2,3)
− −

Ψ Ψ
= =

Ψ Ψ
   
   
   

i i

i
i i

S i            (2) 

The scattering matrix iS  is ch ch4 4×N N  unitary matrices. 

The generalized matrix iS  is decomposed into ch ch2 2×N N  

reflection and transmission matrices. 

'

'
=  
 
 

i i
i

i i

r t
S

t r
                      (3) 

Normalization is done in such a way that each mode 

carries unit current. Due to the spin degree of freedom, 

, ' |||| σσ=i ir r  and , ' ( , )σ σ = ↑ ↓ , where the reflection and 

transmission matrices can be written in terms of four 

ch ch×N N  blocks: where the subscripts ,↑ ↓  refer to spin up 

and down in the z-axis basis. The scattering matrix of the 

magnetic layers depends on the angle θ  the moments may 

make with the z axis. The matrix ( )θiS  is related to (0)iS

through a rotation in spin space: 

( ) (0) , ' ( ) ' (0)θ θ θ θθ θ− −= =i i i ir R r R r R r R , 

( ) (0) , ' ( ) ' (0)θ θ θ θθ θ− −= =i i i it R t R t R t R              (4) 

where 

cos sin
2 2 1

sin cos
2 2

θ

θ θ

θ θ

−
= ⊗

 
 
 
 
 

NR                  (5) 

The nonmagnetic metallic layer will not affect the spin 

states, i.e., 0↑↓ ↓↑= =
N N

r r  and ↑↑ ↓↓=
N N

r r . We need to keep 

track of the amplitudes within the system in order to calculate 

the net spin flux deposited into each magnetic layer. 

Therefore, we define ch ch2 2×N N  matrices ijΓ  and Λij  

( (0,1, 2,3)=i ) so that all the , jΨi  can be expressed as a 

function of the amplitudes incident from the two electrodes 

(regions 0 and 3): 

,1 0,11 1

2 2,2 3,1

Ψ ΨΓ Λ
=

Γ ΛΨ Ψ
    

    
    

i i i

i ii

             (6) 
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with the convention that 
01 32

1Γ = Λ =  and 
32 01

0Γ = Λ = . In 

order to calculate the torque exercised on layer F
b

 for a 

current entering from the left, we need the matrix
21

Γ , which 

for simplify is denoted as Ω (
21

Ω = Γ ). The matrix  Ω  

relates the amplitudes 
21

Ψ  to the incoming amplitudes
01

Ψ . 

Putting that 
32

0Ψ =  and using (2), the matrix of the equation 

(6) can be explicitly expressed via elements of the scattering 

matrices
i

S . Consequently, the following expression can be 

obtained for the matrix Ω : 

1 1
' '

1 ' 1 ' (1 ' ) ' '
Ω =

− − − −n a

n b a n b n b n a n

t t
r r r t r t r t t r

       (7) 

which will enter in determination of the torque on the 

moment of the ferromagnetic layer 
b

F . 

If the system is connected to two unpollarized electron 

reservoirs on its two sides, then in equilibrium, the modes in 

the reservoirs are filled up to the Fermi level 
F

ε . The spin 

current through the system is generated when the chemical 

potential in the left (right) reservoir is slightly increase by

3 0
( )δµ δµ . The spin current 

i
J  in each region 0,1, 2, 3i =  is 

the difference of the left going and right going contributions. 

In according to (1) and (6). 

† †

0

1
Re Tr - Tr

4
σ σ

µ π

∂
= Γ Γ Γ Γ

∂
  

i
iR iR iR iR

J
          (8) 

† †

3

1
Re Tr - Tr

4
σ σ

µ π

∂
= Λ Λ Λ Λ

∂
  

i
iL iL iL iL

J
.         (9) 

Since the spin flux on both sides of 
b

F  is different, 

angular momentum has been deposited in the 
b

F . This 

creates a torque 
3 2

τ = −
b

J J  on the moment of the 

ferromagnet. Setting 
0 0

δµ = eV  gives 

† †

2

0

†
Re Tr , '' ' ' '

4
σ σ σ

π

∂
= − ΣΩ Ω Σ = − −

∂
  

b
N b b b b

ch

r e
t t r r

V
  (10) 

This equation can be simplified further if the spin-transfer 

effect is due entirely to spin filtering (as argued in [3]) as 

opposed to spin-flip scattering of electrons from the magnetic 

layers. That is at ( 0) ( 0) 0τ τ τ θ τ θ↑↓ ↓↑ ↑↓ ↓↑= = = = = =
b b a a

, 

then  

( )† †

0

Re Tr
4π ↑↑ ↓↑ ↑↓ ↓↓

∂
= − Ω Ω + Ω Ω

∂


b
N

ch

r e

V
  

( )† †
1 ' ' ' '

b b b b
r r r r↑↑ ↓↓ ↑↑ ↓↓× − −  ,           (11) 

where off-diagonal spin-flip terms are related to spin-flip 

scattering both in normal and magnetic layers. There is no 

spin flux conservation in this system, 3/ µ∂ ∂iJ  can be 

different from 0/iJ µ∂ ∂  and, hence, there can be a nonzero 

spin flux even when the chemical potentials are identical in 

the two reservoirs. 

The existence of a zero-bias spin flux and the resulting 

torques reflect the well-known itinerant-electron-mediated 

exchange interaction (also known as the RKKY interaction) 

between two ferromagnetic films separated by a normal-

metal spacer. This interaction can in fact be described within 

a scattering framework [26–29]. The zero-bias torque has to 

be added to the finite-bias contribution (given by (11)). Since 

the former is typically a factor 
1

chN
−

 smaller and vanishes 

upon ensemble averaging [25]. Therefore, the zero-bias 

contribution to the torque can be neglected compared to the 

bias induced torque, for which 0 3/ /∂ ∂ = ∂ ∂b br V r V . 

2.3. Averaging over the Normal Metal Layer 

The torque on the moments of the ferromagnetic layers aF

and bF  not only depends on the scattering matrices aS  and 

bS  of these layers, but also of the scattering matrix NS  of 

the normal metal layer in between. If the normal layer is 

disordered, aτ  and bτ  depend on the location of the 

impurities; if N is ballistic the torque depend sensitively on 

the electronic phase shift accumulated in N. In general, 

sample to sample fluctuations of the torque will be a factor 
1

chN
−

 smaller than the average [25]. Hence, if chN  is large, 

the torque is well characterized by its average. After 

averaging, the zero-bias spin transfer current, corresponding 

to the RKKY interaction described above, vanishes, and only 

the torque caused by the electron current remains. Because 

all effects of quantum interference in the N  layer will 

disappear in the process of averaging, the derived results are 

unchanged if the reflection and transmission matrices include 

processes in which the energy of the electron changes during 

scattering [30]. 

2.3.1. The Torque for Disordered Normal Metal Layers 

The scattering matrix of the normal layer can be written 

using the standard polar decomposition [25] 

0 1 ' 0

0 ' 01

−
=

−

    
    
    

a

U T i T U
S

V Vi T T
         (12) 

where U , V , 'U  and 'V  are 2 2×ch chN N  unitary matrices 

and T  is a diagonal matrix containing the eigenvalues of 
†

n nt t  . Since nS  is diagonal in spin space, matrices we find 

that U , 'U , V  and 'V are block diagonal: 

( ') 0
( ')

0 ( ')

u u
U U

u u
=  
 
 

 and  similar definitions for v  and 'v . 

The outer matrices in (12) thus mix the modes in a ergodic 

way while the central matrix contains the transmission 

properties of the layer, which determine the average 

conductance of N. 

It is necessary to average (11) over both the unitary matrices 

and T . A diagrammatic technique for such averages has 

already been developed in [31] and can be used to calculate 

0/b Vρ∂ ∂  in leading order in 1 / chN . It is a general property of 

such averages that the fluctuations are a factor of order chN  
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smaller than the average. This justifies the statement above, 

that the ensemble averaged torque is sufficient to characterize 

the torque exerted on a single sample. 

The resulting expression for 
0

/
b

Vρ∂ ∂ can be written in a 

form very similar to the one for (11) if one uses a notation 

that involves 4 4×  matrices. Then, the average over the 

transmission eigenvalues T  can be obtained taking into 

account that the average of a function is the function of the 

average, to leading order in1 /
ch

N . Thus the average over T

amounts to the replacement 

4 4l , 1 l= = −
 
 
 

ɵ ɵN N
nn

ch ch

g g
t r

N N
,            (13) 

where Ng  is the conductance of the normal layer and 4l  is 

the 4 4×  unit matrix. Entering the 4 4×  block matrix ɵΣ   

with the first and fourth rows equal to ( )↑↑ ↑↓ ↓↑ ↓↓Σ Σ Σ Σ  

and the zero second and third rows, it can be obtained that 

� †

4

0

Re Tr
4π

Σ
∂

= − Ω
∂

  
br e

V
               (14) 

where ɵΣ  coincide with Ω  after the formal replacements 

nnn rr → ɵ  and nnt t→ ɵ . In the absence of spin-flip scattering 

(14) reduces to 

� �( )3,1 3,4

0

Re
2

br e

V π
Ω Ω

∂
= − +

∂
  

( )† †
tTr 1 ' ' ' '↑↑ ↓↓ ↑↑ ↓↓× − − 

N b b b bch
r r t         (15) 

The same formalism can be used to calculate the 

conductance g  of the system using the Landauer formula. 

One gets ( )/chg N h=  
1,1 1,4 4,1 4,4' ' ' '× + + +  
ɵ ɵ ɵ ɵt t t t , where 't  

being the total matrix ' 'bt t= Ω . 

It would like to note that, while our theory started from a 

fully phase coherent description of the F/N/F trilayer, 

including the full 4 4ch chN N×  scattering matrices of the FN 

interfaces, the final result can be formulated in term of 2 4×  

parameters, represented by the matrices arɵ  and 'brɵ ( 2 16×

parameters in the case of spin-flip scattering). This confirms 

the statement that for a diffusive normal-metal spacer all 

effects of quantum interferences are washed out [25]. 

The torque is characterized by symmetry properties. Due 

to the conservation of current, the total torque deposited on 

the full system is antisymmetric with respect to current 

direction and the equation 

0 0 3 3/ / [ / / ]b a b aV V V Vτ τ τ τ∂ ∂ + ∂ ∂ = − ∂ ∂ + +∂ ∂
 

must be held before averaging. The averaging results in

0/b Vτ∂ ∂  3
/

b
Vτ= ∂ ∂ . Thus, for 1≫chN , the linear response 

of the torque to a small bias voltage is described by the 

expression. 

( )0 3

0

β
τ

τ
∂

= −
∂

b
V V

V
.                 (16) 

In the given geometry, where aF  and bF  are in the x-z 

plane, the only nonzero component of the torque is 
x

bτ . The 

torque vanishes when the moments are completely aligned or 

antialigned (all the matrices are diagonal in spin space and 

therefore no x  component of the spin can be found). Around 

these two limits, the torque is symmetric in respect to the 

angle θ θ→ −  and π θ π θ− → + ). There is no symmetry 

between θ  and π θ− . In addition, the two layers are not 

equivalent and exchanging the scattering matrices of aF  and 

bF  also changes the torque. 

The equation (14) can be simplified in some particular 

cases. In the case of ideal spin filter, so that majority 

(minority) spins are totally transmitted (reflected) by either 

layer, it reduces to 

0

sin tan / 2

2 3 cos 4 2

θ θ

π θ π

∂
= − = −

∂ +

x

b Nr ge h
g

V e
,       (17) 

where 
2 2

4( / ) cos / (3 cos )
N

g e h g θ θ= +  is the average 

magnetoconductance. As expected, for left-going electrons 

( 0 0V < ) the torque is positive, so it acts to align the moment 

of the magnetic layer bF  toward the one of aF . 

In the considered case of weak s-d exchange coupling, i.e., 

when the scattering coefficients depend only weakly on spin, 

with no spin-flip scattering in the ferromagnetic layers, ag  

and bg  can be defined as the average conductance per spin 

of the two layers (in unit of 2
/e h ). Then, the conductance of 

aF  alone is a ag gδ+  and a ag gδ−  for, respectively, the 

majority and minority spins, which defines the spin scattering 

asymmetry agδ . In that case, in lowest nontrivial order in 

agδ  and bgδ : 

0

sin

2 2(1 / )

x

b

b ch

e

V g N

τ θ

π

∂
=

∂ −
 

( )

2 2

2
( 2 /

δ δ
×

+ + −

N a b

a b N a b a b ch

g g g

g g g g g g g N

.      (18) 

This formula shows that the torque is always non zero for 

arbitrary small spin scattering asymmetry. This proves the 

statement, that multiple reflections between the F  layers, 

fully taken into account here, cannot completely eliminate 

the torque. The torque is not symmetric with respect to 

interchanging the layer aF  and bF , in contrast to the 

conductance. If one changes agδ  to agδ− , the sign of the 

torque is reversed. However, 
2

0/
x

b bV gτ δ∂ ∂ ∝ , so if one 

changes bgδ  to bgδ− , the sign of the torque is unchanged. 

The sign of the torque on a ferromagnetic layer therefore 

depends on whether the other layer is a positive or negative 

polarizer, but not on the sign of filtering for the layer 
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experiencing the torque. This is true also in the general case. 

The quantity 
2

Ng  appears through its square. Indeed, in order 

for some spin to be deposited in the layer 
b

F , some left 

going electrons have to be reflected by 
b

F  and exit the 

system from the right hand side. Therefore these electrons 

cross the normal layer at least twice and this leads to the 

factor 
2

Ng . On the other hand the conductance is linear in 

N
g . Therefore in order to maximize the torque deposited per 

current, one has to use the cleanest possible normal metal 

spacer. This statement is true in this limit of weak filtering, 

but not in general. Note that in the previous case (perfect spin 

filtering) the torque is proportional to 
N

g  instead of the 

expected 
2

Ng . Indeed, in that case, once the electron has been 

reflected by the layer 
b

F , it cannot go through 
a

F  which 

works as a perfect wall for it. Therefore current conservation 

implies that it goes out of the system through the right. For 

N ch
g N≪ , the torque is actually proportional to 

2

Ng  for 

arbitrary spin asymmetry (except perfect filtering), and one 

gets 

2

0

sin ,
τ

θ
∂

∝
∂

≪

x

b
N N chg g N

V
             (19) 

where the factor of proportionality being a complicated 

function of the transmission robabilities of the layers. 

2.4. Current-Driven Magnetic Switching 

Application to current-driven magnetic switching involves 

calculation of torques for scattering parameters which are 

more appropriate for the transition metal trilayers. In this 

case, the torque per unit current I , / (1 / ) /
x x

b bI g Vτ τ= × ∂ ∂ . 

The main features of the mentioned system are that the θ  

dependence of the torque is not of a simple sin θ  form, and 

that the torque per unit current diverges at 0θ = .  

The main feature of this system is that the θ  dependence 

of the torque is not of a simple sinθ  form, and that the 

torque per unit current diverges at 0θ = . In the imperfect case, 

when one of the layer ( bF ) is a nearly perfect polarizer while 

the other one is not, the character behavior of the torque is 

represented in Figure 4.  

As can be seen in Figure 4 on the left, although the 

divergence at θ π=  is regularized, /
x

b Iτ  remains sharply 

peaked near θ π= . This is relevant for the critical current 

needed to switch the magnetization of bF  from θ π=  to 

0θ = . The switching of the domains follows from a 

competition between the spin-transfer torques on the one 

hand and restoring forces from local fields, anisotropy, 

exchange coupling, etc.  

The competition between these forces has been considered 

phenomenologically [7, 32] using a Landau-Lifschitz-Gilbert 

equation. The torques for θ  close to 0 and π  determine the 

critical currents to overturn a metastable parallel (antiparallel) 

alignment of the moment in aF  and bF . Hence the critical 

current should be different at 0θ =  and θ π= . 

Features of the dependence of the derivative of the torque 

(with respect to θ  closely to 0) on the conductance of the 

normal layer Ng  in the same system with one perfectly 

polarizing F  layer and one partially polarizing layer, is 

represented in Figure 4 on the right.  

 

 

Figure 4. The normalized torque as a function of θ  (on the left) and its 

derivative as a function the normalized conductance Ng  at 0θ =  (on the 

right) per unit current for the case, where bF  is a nearly perfect polarizer 

(
2

| | 0.999
b

t ↑ = , 
2

| | 0.001
b

t ↓ =  and aF  is not (
2

| | 0.3
a

t ↑ = , 
2

| | 0.01
a

t ↑ = ) 

(solid line). On the left, the case of perfect polarizers is described by the 

equation (17) (dashed line). On the right, the dashed line corresponds to the 

case, when 
a

F  is a nearly perfect polarizer and bF  is not. 

Switching the two layers has a drastic effect on the torque, 

even at a qualitative level. In the case where aF  is the nearly 

perfect layer (dashed line), a maximum of the torque is found 

for / 1≪N chg N , i.e., in that case, a dirty metal spacer would 

give a higher torque (per unit of current) than a clean one. 

In the above mentioned description, the scattering matrices 

of the ferromagnetic layers appear as free input parameters. 

However, it can be calculated from first principle calculations 

for specific materials. Such an approach has been taken in 
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[10, 11] and the results can be used to give some estimates of 

torques that can be expected in realistic systems. 

3. Out-of-Equilibrium Spin Dynamics in 

F/N Based Structures 

3.1. Features of Out-of-Equilibrium Spin Dynamics 

The first reports on ultrafast demagnetization in Ni [33] 

challenged the conventional view of low-frequency 

magnetization dynamics at temperatures well below
C

T . A 

multitude of mechanisms and scenarios have been suggested 

to explain the observed quenching of the magnetic moment. 

Some advocate direct coherent spin transfer induced by the 

irradiating laser light as the source of demagnetization [34]. 

Alternative theories argue that ultrafast spin dynamics arise 

indirectly through incoherent heat transfer to the electron 

system [35]. Recent experiments have demonstrated that 

nonlocal laser irradiation also induces ultrafast 

demagnetization, and atomistic modeling supports the view 

that heating of magnetic materials is sufficient to induce 

ultrafast spin dynamics [16, 36]. 

Terahertz (THz) magnon excitations in metallic 

ferromagnets have recently been proposed as an important 

element of ultrafast demagnetization [37, 38]. The 

elementary interaction that describes these excitations is the 

electron-magnon scattering. The proposed approach is based 

on kinetic equations, which were used for the low-frequency 

spin and charge transport associated with the microwave 

magnetization dynamics in heterostructures [39] and with the 

linear spin-caloritronic response [19, 40]. One treats far-

from-equilibrium spin dynamics, in which transport is 

dominated by magnons and hot electrons. Electron-magnon 

scattering plays a critical role in this regime. Description of 

this interaction is related to the transverse spin diffusion in 

the bulk and the spin-mixing physics, e.g., spin transfer and 

spin pumping [40], at the interfaces. 

3.2. A Model of the Out-of-Equilibrium Ultra-Fast Spin 

Dynamics 

Characteristic properties of the out-of-equilibrium ultra-

fast spin dynamics are described by the quantum-mechanical 

model bilayer system comprising ferromagnetic ( F ) and 

normal metal layers, in which the localized spins are distinct 

from the itinerant electrons at the energy scales of interest. 

According to the accepted description of relaxation in 

ferromagnetic metals, the loss of energy and angular 

momentum from localized d electrons is mediated by the 

exchange interaction to the itinerant s electrons. The spin 

transfer from d to s states is accompanied by the relaxation of 

the s electron spins to the lattice through an incoherent spin-

flip process caused by the spin-orbit coupling. 

Ultra-fast spin dynamics in bulk ferromagnetic metal is 

described by the quantum kinetic equations. The F|N 

interfacial spin transport due to electron-magnon interactions 

follows a similar essential structure, unifying the bulk and 

interfacial spin dynamics in magnetic heterostructures. The 

Hamiltonian that describes F is
0 sd

H H H= + , where 
0

H  

consists of decoupled s- and d- electron energies, including 

the kinetic energy of the itinerant electron bath, the d-d 

exchange energy, dipolar interactions, and the crystalline and 

Zeeman fields. The s-d interaction is 

( )S s r= ∑
d

sd sd j j
j

H J                    (20) 

where 
sd

J  is the exchange energy and ( )( )
d

j jS s r  is the d- 

electron (s-electron) spin vector (spin density) at lattice point 

j. The s-d interaction can be expressed in terms of bosonic 

and fermionic creation and annihilation operators: 

†

' '
'

H.c.↑ ↓ += ∑sd qkk q k k
qkk

H V a c c               (21) 

where †
( )q qa a  is the Holstein-Primakoff creation 

(annihilation) operator for magnons with wave number q  

and 
†

kc σ  ( )kc σ  is the creation (annihilation) operator for s  

electrons with momentum k and spin σ. sdH  describes how 

an electron flips its spin while creating or annihilating a 

magnon with momentum q and spin σ . The scattering 

strength is determined by the matrix element 'qkkV . 

In (21), terms of the form † †

' 'σ σq q k ka a c c , which describe 

multiple-magnon scattering and do not contribute to a net 

change in magnetization along the spin-quantization axis 

have disregarded. It also is disregarded higher-order terms 

associated with the Holstein-Primakoff expansion. Fully 

addressing magnonic correlation effects in the ultrafast 

regime would require a rigorous approach, e.g., using 

nonequilibrium Keldysh formalism [41]. However, when the 

s-d coupling (20) is not the dominant contribution to H , a 

mean-field approach and Fermi’s golden rule were used to 

compute the spin transfer between the s and d subsystems. 

Additionally, it is assumed that all relevant energy scales are 

much smaller than the Fermi energy B Fk Tε =  of the itinerant 

s electrons. In this limit, the electronic continuum remains 

largely degenerate, with electron-hole pairs present 

predominantly in the vicinity of the Fermi level. 

In the given bilayer system, localized spin density points in 

the negative z direction at equilibrium, with saturation value 

S (in units of ℏ ). In the presence of a magnon density dn , the 

longitudinal spin density becomes z dS n S= − . The magnons 

are assumed to follow a quadratic dispersion relation
2

0q Aqε ω ε= = +ℏ , where 0ε  is the magnon gap and A

parametrizes the stiffness of the ferromagnet. 
†

' '( )q q q qqa a n ε δ= defines the magnon distribution function

( )qn ε , which is related to the total magnon density through 

0

( ) ( )
b

d q q qn d D n

ε

ε
ε ε ε= ∫ , where 

2 3/2

0( ) / (4 )q qD Aε ε ε π= −  is the 

magnon density of states. The integral over ( )qD ε  is cut off 

at an energy corresponding to the bandwidth, b B Ck Tε = , which 

is the magnon energy at the edge of the Brillouin zone. 
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Because of the s-d interaction (20), the itinerant s electrons 

have a finite spin density at equilibrium (see Figure 5). One 

of the key driving forces of the out-of-equilibrium spin 

dynamics is the spin accumulation sµ δµ δµ↑ ↓= − . The bands 

for spin-up and spin-down electrons are split by 
3

xc sdJ Sa∆ ∼ , 

where a  is the lattice constant of F . Introducing a 

dynamical exchange splitting results in the relation

/
s s xc

n Dµ δ= − ∆  [42], where 
s

nδ  is the out-of-equilibrium 

spin density of the s electrons, 2 / ( )D D D D D↑ ↓ ↑ ↓= + , and 

( )
D↑ ↓  is the density of states for spin-up (spin-down) 

electrons at the Fermi level. Because the mean-field band 

splitting due to the s-d exchange vanishes when the d orbitals 

are fully depolarized, / /
xc xc d

n Sδ∆ ∆ = ± , where the sign 

determines whether the s and d orbitals couple 

ferromagnetically (-) or antiferromagnetically (+). 

The rate of spin transfer (per unit volume) between the s 

and d subsystems due to electron-magnon spin-flop processes 

is determined from (21) by Fermi’s golden rule [40]: 

( )( ) ( ) ( ) ( )

ε

ε
ε ε ε µ ε ε µ ε= Γ − − −∫   

b

sd q q q s q BE q s q

a

I d D n n    (22) 

where ( )
q

εΓ  parametrizes the scattering rate at energy q
ε . 

In the derivation of (22) it have assumed that the kinetic 

energy of the itinerant electrons and the empty states (holes) 

thermalize rapidly due to Coulombic scattering and that they 

are distributed according to Fermi-Dirac statistics. 

Correspondingly, it can be shown that the electron-hole pairs 

follow the Bose-Einstein (BE) distribution function, 

{ } 1

( ) exp ( ) 1
BE q s s q s

n ε µ β ε µ
−

− = − −    at the electron temperature 

1 / ( )
s B s

T k β= . The number of available scattering states is 

influenced by the spin accumulation 
s

µ . 

 

Figure 5. (a) Sketch of the density of s electron states in a ferromagnetic 

metal with saturation spin density S . At equilibrium, the exchange splitting 

xc
∆  shifts the bands for spin-up and spin-down electrons. (b) A laser pulse 

heats the s electron bath. The out-of-equilibrium spin accumulation  

s
µ δµ δµ↑ ↓= −  results from two different mechanisms:  electron-magnon 

scattering induces a spin density among the s electrons, and the meanfield 

exchange splitting is shifted by
xc

δ∆  by the induced magnon density
d

n . 

In contrast to the low-energy treatment in [40], the 

derivation of (22) does not constrict the form of the 

magnonic distribution ( )
q

n ε  to the thermalized BE 

distribution function. When the time scale of the s-d 

scattering is faster than the typical rates associated with 

magnon-magnon interactions, magnons are not internally 

equilibrated shortly after rapid heating of the electron bath, as 

also predicted by atomistic modeling [43]. Consequently, the 

occupation of the magnon states can deviate significantly 

from the BE distribution on the time scale of the 

demagnetization process. Such treatment differs from that, in 

which the excited magnons are assumed to be instantly 

thermalized with an effective spin temperature and zero 

chemical potential and the thermally activated electron bath 

is assumed to be unpolarized. 

3.3. Heat Pulse-Induced Out-of-Equilibrium Spin 

Dynamics 

The s-d scattering rate can be phenomenologically 

expanded as ( )0 0( )q qε χ ε εΓ = Γ − − , where 
0

Γ  (which 

vanishes in the simplest Stoner limit parametrizes the 

scattering rate of the long-wavelength magnons and 

( ) 2

0q qχ ε ε− ∝  describes the enhanced scattering of higher-

energy magnons due to transverse spin diffusion [44]. In 

general, one might expect other terms of higher order in q to 

be present in this expansion as well. The quantity ( )qεΓ  is 

extrapolated up to the bandwidth bε that should be sufficient 

for qualitative purposes. Neglecting any direct relaxation of 

magnons to the static lattice or its vibrations (i.e., phonons),

/t d sdn I∂ = ℏ . The equations of motion for the s-electron spin 

accumulation and the d-electron magnon distribution 

function are 

µ ρ
µ

τ
∂ = − +

ℏ

s
t s sd

s

I  ,                    (23) 

( )( )
( ) ( ) ( )

ε
ε ε µ ε µ ε

Γ
∂ = − − −  ℏ

q

t q q s BE q s qn n n     (24) 

where ρ determines the feedback of the demagnetization on 

sµ  and sτ  is the spin-orbit relaxation time for the s electron 

spin density relaxing to the lattice. Here, sτ  is typically on 

the order of picoseconds [45] and represents the main 

channel for the dissipation of angular momentum out of the 

combined electronic system. In general, τ s also depends on 

the kinetic energy of the hot electrons after laser-pulse 

excitation. However, it is assumed that sτ  is independent of 

energy. 1 / /ρ ρ ρ∆= + = − + ∆D xcD S includes effects arising 

from both the out-of-equilibrium spin density and the 

dynamic exchange splitting. For ferromagnetic (−) s-d 

coupling, these effects add up, whereas for antiferromagnetic 

(+) coupling, they compete. 

At low temperatures, low-frequency excitations result in 

purely transverse spin dynamics. In the classical picture of 

rigid magnetic precession, the transverse relaxation time 
2

τ  
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is determined by the longitudinal relaxation time
1

τ  via the 

relation,
2 1

1 / 1 / (2 )τ τ αω= = , where α is the Gilbert damping 

parameter and ω is the precession frequency. Indeed, in the 

limit )( , 0
s

q T →
0

( / )
t d d
n nε∂ → Γ ℏ , which is identical to the 

LLG phenomenology, indicating that 
0

ε ω= ℏ and thus

0
2αΓ = . This result establishes the important link between 

the scattering rate
0

Γ  in this treatment and the Gilbert 

damping parameter that is accessible through FMR 

experiments.  

In the opposite high-frequency limit, pertinent to ultrafast 

demagnetization experiments, the layer F to be in a low 

temperature equilibrium state before being excited by a THz 

laser pulse at t = 0, upon which the effective temperature of 

the itinerant electron bath instantly increases such that 

s C
T T≥ . This regime is clearly beyond the validity of the LLG 

phenomenology, which is designed to address the low energy 

extremum of magnetization dynamics. Dissipation in the 

LLG equation, including relaxation terms based on the 

stochastic Landau-Lifshitz-Bloch treatment [46], is subject to 

a simple Markovian environment without any feedback or 

internal dynamics. This perspective must be refined for high 

frequencies when no subsystem can be viewed as a 

featureless reservoir for energy and angular momentum. 

The nonthermalized nature of the excited magnons can be 

appreciated in the limit in which µ
s
 is small compared with 

0
ε  and no magnons are excited (

0
( 0)n ε = ) for t < 0. After 

rapid heating of the itinerant electrons at 0t = , the time 

evolution of the magnonic distribution follows 

( )( , ) ( , ) 1 exp ( , /ε ε ε≈ − Γ  ℏq BE q qn t n t t           (25) 

This result implies that, initially, the high-energy states are 

populated much faster than low-energy states. When 
s

µ  

becomes sizable, the coupled equations (23) and (24) must be 

solved subject to a suitable ( )
s

T t . Figure 6(a,b) presents 

numerical solutions of (23) and  

 

Figure 6. Numerical solutions of the system (32) and (33) after 
s

T  is increased from 
2

10  to 
3

10  K (
C

T ) within 50 fs with a decay time of 2 ps.
0

ε = 5 meV, 

A = 0.6 meV/nm2, ρ = 6 meV/nm3, 
s

τ  = 2 ps, and * 10 0.1α α= = . (a) The itinerant electron-hole pair distribution ( )
BE s

n ε µ−  is rapidly depleted by the 

spin accumulation 
s

µ  that is built up via electron-magnon scattering. (b) In the magnon distribution ( )qn ε  the high-energy magnon states are rapidly 

populated, whereas the low-energy states remain unaffected on short time scales. (c) Time evolution of the spin accumulation ( )s tµ and (d) the longitudinal 

spin density ( )zS t−  with different decay times of sT : 0.15, 0.5, and 2 ps. 

(24) when sT  is increased from 2
10  to 3

10  K within 50 fs 

with a decay time of 2 ps. By comparison, internal magnon-

magnon interactions equilibrate the distribution function on 

the time scale ( )31 1
/ ( )eq m m B Ck Tτ ε ε− −

∼ ℏ  [40], where mε  is a 

characteristic energy of the thermal magnon cloud. For short 

times, sdI  (see (22)) dominates the magnon dynamics, and 

the magnon population is significantly differ from the 

thermalized BE distribution.  

When s CT T>  , the thermally excited electron-hole pairs are 

populated in accordance with the classical Rayleigh-Jeans 

distribution, ( ) / ( )ε µ ε µ− → −BE q s B s q sn k T . Assuming, for 

simplicity, that the expansion for ( )qεΓ  is valid throughout 

the Brillouin zone, (22) yields 

( )0 0 0
| (0) / 3 ( ) / 5 /

t d t s b B s
n I k Tχ ε ε→∂ = = Γ + −ℏ ℏ

 

Thus, the demagnetization rate is initially proportional to 

the temperature of the electron bath but is reduced by the 

lack of available scattering states for high energy magnons 

within the time scale of the demagnetization process. Figure 

6(c,d) illustrates the time evolution of the out-of-equilibrium 

spin accumulation ( )s tµ and the longitudinal spin density 

( )zS t− for different decay times of sT . 

In the ultrafast regime, the electron-magnon spin-flop 

scattering is governed by the effective Gilbert damping 
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parameter
0

* ( )
b

α χ ε ε= − . Experimental investigations of the 

magnon relaxation rates on Co and Fe surfaces confirm that 

high-q magnons have significantly shorter lifetimes than low-

q magnons [38]. It is reasonable to assume that the same 

effects are also present in the bulk. The initial relaxation time 

scale in the ultrafast regime is ( ) 1
1

*i B sk Tτ α
−−

∼ ℏ . This 

generalizes the result of [20] for the ultrafast relaxation of the 

longitudinal magnetization to arbitrary *α  based on the 

transverse spin diffusion [44].  

The notion of magnons becomes questionable when the 

intrinsic linewidth approaches the magnon energy, which 

corresponds to * 1α ∼ . 

Staying well below this limit and consistent with [40], it is 

assumed that * 0.1α = . For 
C

T = 3
10 K the initial relaxation 

time scale 
i

τ ∼ 2
10  ( /

C
T Ts ) fs, which is generally consistent 

with the demagnetization rates observed for ultrafast 

demagnetization in Fe [47]. 

It can be shown that the interfacial scattering follows a 

structure similar to that of the bulk scattering in a unified 

description based on the electron-magnon interaction. Figure 

7 presents a schematic illustration of an F|N interface. In 

magnetic heterostructures and for stand-alone ferromagnets 

on a conducting substrate, the demagnetization dynamics of 

F are also affected by the spin accumulation in N ( )
N

xµ , 

which can impact how nonlocal laser irradiation (e.g., the 

heating of N alone) induces ultrafast demagnetization of F 

[15]. By adding terms of the form 

 

Figure 7. Sketch of a metallic ferromagnet (F) coupled to a normal metal 

(N). In the ultrafast regime, both the rapid heating of s electrons in F by
s

T∆  

(labeled (1)} and the heating of N by
N

T∆ (labeled (2)) can demagnetize F. 

sd
I  (see (31)) induces the spin accumulation 

s
µ  in F, whereas 

i
I  (8) 

induces the spin accumulation 
0

Nµ at the F|N interface. Subsequently, 

( )N xµ diffuses into N until it vanishes due to spin-flip dissipation to the 

lattice. The additional interfacial spin current sNI , due to the 

thermodynamic biases 
0

s Nδµ µ µ= − and s NT T Tδ = − , can be described 

by conventional thermoelectric parameters for longitudinal spin-dependent 

transport. 

†

' '
'

qkk q k k
qkk

U a c c↑ ↓∑∼  to sdH , where †

k
c ↑ (

'k
c ↓ ) describes the 

creation (annihilation) of an electron with spin up (down) at 

the F|N interface, the interfacial spin transfer (per unit area) 

due to electron-magnon spin-flop scattering is [40] 

( )0 0

0

( ) ( ) ( ) ( )

ε

ε
ε ε ε µ ε ε µ ε= Γ − − −∫   

b
i

i q q q N q BE q N qI d D n n    (26) 

where 
0

(0)N Nµ µ=  is the spin accumulation at the interface 

and ( )
i

qεΓ  parametrizes the interfacial scattering rate. 

The scattering of coherent long-wavelength magnons at 

the F|N interface can be described in the language of spin 

pumping/spin Seebeck effects [40], parametrized by the spin 

mixing conductance g↑↓  (per unit area) [39]. Motivated by 

( )qεΓ  in the bulk, the interfacial scattering rate can be 

written as *
( ) ( ) / ( )

i

q qg Sε ε π↑↓Γ = , where *
g↑↓  reduces to g↑↓

for low energy scattering, 0qε ε→ . The interface scattering 

(see (26)) dominates the microwave spin relaxation in thin 

ferromagnetic layers of thickness 10Fd ≤ nm [39, 48]. This 

trend should continue for higher frequencies and is relevant 

for ultrafast spin dynamics in thin magnetic layers in 

heterostructures. 

The energy dependence of the effective spin-mixing 

conductance to be relatively weak compared to that of the 

bulk scattering ( )qεΓ , which can be severely constrained at 

low energies due to momentum conservation. For a finite 

temperature bias Tδ  across the interface and for magnons 

thermalized at the temperature CT T< , the connection to the 

thermal spin Seebeck and Peltier effects is made by 

identifying t iS I= ∂  and TSΠ =  [49] as the Seebeck and 

Peltier coefficients, respectively. 

4. Conclusions 

The spin-transfer-induced torques on the magnetic 

moments of F/N/F systems caused by a flowing current has 

described in the framework of the scattering matrix 

formalism. This description deals with the effects of multiple 

scattering between the layers using the scattering matrices of 

the F|N interfaces as input parameters. Both the cases of a 

diffusive and ballistic normal metal spacer are considered. In 

the diffusive case, the high-dimensional scattering matrices 

of the F|N interfaces only appear through the averaging over 

the normal metal layers. This allows to make qualitative 

predictions about the role of the interface transparency, 

normal metal resistance, etc., without detailed knowledge of 

the microscopic details of the system.  

The description has focused on the effects of ‘‘spin 

filtering’’ as the mechanism for current-induced torque, i.e., 

the difference in the transmission and reflection probabilities 

for electrons with spins parallel and antiparallel to the 

moments of the ferromagnetic layers (the diagonal terms in 

the matrices for the reflection and transmission amplitudes). 

A different source of spin-dependent scattering related to 

spin-flip scattering is described by the off diagonal terms in 

the scattering matrices. Its effect can be twofold. In the normal 
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spacer, it would decrease the effective polarization, and therefore 

the torque. However, in the ferromagnet, the rate of spin-flip 

scattering is symmetric with respect to minority and majority 

spins, and therefore spin-flip scattering may also be an 

additional source of torque.  

The concepts of transverse spin diffusion in bulk 

ferromagnets and the interfacial spin-mixing physics have 

extended to address the ultrafast spin dynamics observed in 

rapidly heated magnetic heterostructures. In the ultrafast regime, 

the relative importance of the bulk scattering and the interfacial 

scattering can be extracted from measurements of 

demagnetization strength and spin currents in magnetic 

heterostructures. For metallic ferromagnets in the bulk, treating 

the magnonic subsystems as quasiequilibrated and parametrized 

by an effective temperature is insufficient to describe the far-

from-equilibrium spin dynamics induced by pulsed laser heating. 

The magnon distribution function remains nonthermalized on 

the relevant time scale of the demagnetization process, in which 

the relaxation of the out-of-equilibrium spin accumulation limits 

the dissipation of spin angular momentum from the combined 

electronic system. 
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