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Abstract: Numerous models of mathematics have existed to pronounce the immunological response to contagion by human 

immunodeficiency virus (HIV-1). The models have been used to envisage the regression of HIV-1 in vitro and in vivo 

dynamics. Ordinarily the studies have been on the interface of HIV virions, CD4+T-cells and Antiretroviral (ARV). In this 

study, time delay, chemotherapy and role of CD8+T-cells is considered in the HIV-1 in-vivo dynamics. The delay is used to 

account for the latent time that elapses between exposure of a host cell to HIV-1 and the production of contagious virus from 

the host cell. This is the period needed to cause HIV-1 to replicate within the host cell in adequate number to become 

transmittable. Chemotherapy is by use of combination of Reverse transcriptase inhibitor and Protease inhibitor. CD8+T-cells is 

innate immune response. The model has six variables: Healthy CD4+T-cells, Sick CD4+T-cells, Infectious virus, Non-

infectious virus, used CD8+T-cells and unused CD8+T-cells. Positivity and boundedness of the solutions to the model 

equations is proved. In addition, Reproduction number (R0) is derived from Next Generation Matrix approach. The stability of 

disease free equilibrium is checked by use of linearization of the model equation. We show that the Disease Free Equilibrium is 

locally stable if and only if R0<1 and unstable otherwise. Of significance is the effect of CD8+ T- cells, time delay and drug 

efficacy on stability of Disease Free Equilibrium (DFE). From analytical results it is evident that for all τ > 0, Disease Free 

Equilibrium is stable when τ =0.67. This stability is only achieved if drug efficacy is administered. The results show that when 

drug efficacy of α1=0.723 and α2=0.723 the DFE is achieved. 
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1. Introduction 

Human immunological disorder Virus (HIV) is one of the 

transmittable diseases thought to significantly cause death in 

developing countries like Kenya. HIV is categorized into two 

namely; HIV-1 and HIV-2. This paper will only focus on 

HIV-1 which is often chargeable for the bulk of HIV 

contagions worldwide. Radical point of HIV contagion is 

Acquired Immuno Deficiency virus (AIDs) which is 

contracted over direct contact with HIV-disease-ridden body 

fluids that include blood, semen, and reproductive organ 

secretions, or from HIV-infected mother to child through 

gestation, delivery or breastfeeding [10, 12]. T-helper is a 

type of the white blood cell that is targeted mainly by the 

HIV as soon as it enters the human body. Once it binds itself 

to this cell, the HIV life cycle immediately begins. HIV viral 

replication is rampant in the first stage of contagion [14]. 

Many scholars in the field of biological mathematics have 

designed models that explain the HIV-1 in vivo dynamics [1, 

7, 11, 18]. A new HIV viral material submits to seven steps 

namely; binding, fusion, reverse transcription, integration, 

replication, assembly and budding [2-3, 8-10, 17]. The basic 

reproduction number ��  is the most substantial measure in 

contagious disease epidemiology such as HIV. This 

parameter is one of the measures projected for emergent 

contagious diseases in outbreak state of affairs and its 

significance provide discernment when designing control 



16 Cherono Pela et al.:  Modelling the Effects of Immune Response and Time Delay on HIV-1 in Vivo  

Dynamics in the Presence of Chemotherapy 

interventions for established contagions. ��	 is the typical 

amount of new cases of contagion caused by one distinctive 

disease-ridden person in a population comprising of 

vulnerable only. ��, forms a threshold value for most models 

of infectious diseases since for �� < 1, the disease-free 

equilibrium point is stable [5, 13, 15]. Various mathematical 

models have been developed to explain internal viral 

dynamics of HIV. In [6] intracellular delay in virus 

production at the side of the delay in immunologic response 

is studied where it is shown that the contagion free balanced 

state is steady when ��	 < 1. This means that the contagion 

are often cleared if ARVs medical care is administered. In [4] 

a mathematical model that studies underlying transmission 

mechanisms of HIV infections is established and it is shown 

that when �� > 1	 the disease free equilibrium state is 

asymptotically unstable and hence unwellness persist. In [7] 

a model that looks into the consequences of time delay on 

HIV undercurrents in the existence of ARVs ill-treatment 

delay differential equations is considered where it is shown 

that CD4+T-cells stay inactive for a short time and the HIV 

infective agent materials do not seem to be reproduced and 

that the system at the side of treatment gets enough time to 

clear the infective agent material within the blood hence 

maintaining the Endemic Equilibrium Point. However, in 

their study the used and unused CD8+T-cells were not 

considered. In [10] in-vivo dynamics of HIV subjected to the 

influence of CD8+T-cells is considered. It is proved that the 

virions free equilibrium state is domestically stable if Ro<1 

and unstable otherwise. In their study however, they did not 

take into account effects of time delay on HIV-1 dynamics. 

In this paper, we have formulated deterministic 

mathematical Susceptible Infectious Recovered (SIR) models 

has described the HIV-1 in vivo dynamics in presence of 

chemotherapy using delay differential equations. The model 

has six variables: Healthy CD4+T-cells (	), Sick CD4+T-

cells (
), Infectious virus (�), Non-infectious virus (�), used 

CD8+T-cells (
) and un-used CD8+T-cells (�). 

2. Methods of Solution 

The stability of the model has been approached from 

Jacobian matrix method of checking stability of Disease Free 

Equilibrium (DFE) and numerical simulations have been 

done using MATLAB to validate the analytic results. 

2.1. Model Equations 

The healthy CD4+T-cells (	) is produced at a rate �, die at 

a rate	�� and become infected at a rate �.	Sick CD4+T-cells 

( 
 ) die at a rate 	��  and are cured of virus due to 

chemotherapy at a rate	�. Free virus is produced by infected 

cells at a rate �  The control function ��  represents the 

efficacy of Reverse Transcriptase Inhibitor (RTI) 

chemotherapy in blocking new infection, so that infection in 

the presence of chemotherapy is �1 −	����.	The control 

function �� represents the efficacy of Protease Inhibitor (PI) 

chemotherapy to hinder viral production such that the viral 

production rate under chemotherapy is �1 −	����.  The 

parameters and the model assumptions above together will 

lead to the following differential equations for chemotherapy. 

���
��
���
 !�!" 	= �	 − ��			 − �1 − �����$	 + ��
!�!" 	= �1 − �����$	 − ��	
 − ��
 − &
$�!'!" 	= �1 − ����1 − ����
$ 	− �'�!(!" 	= �1 − �����	�
$	 	− �(�	!)!" 	= 	&
$� − �)
!*!" 	= 	+ −	�*�

         (1) 

Here, ,	 > 0 is the time lag required by the host cell to 

produce infectious virus. It will also represent the time 

needed for infected cells to be treated by chemotherapy. 

Theorem 

Let ∁	= �/0	−,, 0	1, ℝ3� be a Banach space of continuous 

functions mapping the interval 0−,, 01  into ℝ3  with the 

topology of uniform convergence. 

According to fundamental theory of differential equations 

it can be shown that there exists a unique solution 4	�5�, 
�5�, ��5�, ��5�, 
�5�, ��5�6  of the system (1), with 

initial data 

�	�0� > 0, 
�0� > 0,��0� > 0, ��0� > 0, 
�0� > 0, ��0� > 0� ∈ ∁	 [7, 10]                                 (2) 

In addition, we assume that the initial data for the system (1) satisfies 	���� ≥ 0, 
���� ≥ 0,����� ≥ 0, ����� ≥ 0, 
���� ≥ 0, ����� ≥ 0,� ∈ 0−,, 01                         (3) 

The following theorem establishes the positivity and 

boundedness of solution with initial functions satisfying (2) 

and (3) 

Theorem 2.1.2 let �	, 
, �, �, 
, ��  be the solution of 

system (1) satisfying conditions (2) and (3) then 	, 
, �, �, 
 

and � are all positive and bounded for all 5 > 0 at which the 

solutions exist  

Proof 

From system (1) we have; 

	�5� = 	�0�9:; <=>��:?@�A�B:$�!BCD + ; 0��
�E� + �19:; <=>��:?@�A'�B:$�!BCF GE"�                              (4) 


�5� = 
�0�9:; �<H>?@:I�J)�!BCD + ; 0�1 − ������E − ,�	�E�19:; <H>?@:I@�J)��!BCF GE"�                        (5) 
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��5� = ��0�9:; <K!BCD + ; 0�1 − ����1 − ����
�E − ,�19:; <K!BCF GE"�                                             (6) 

��5� = ��0�9:; <L!BCD + ; 0�1 − ������
�E − ,�19:; <L!BCF GE"�                                                   (7) 


�5� = 
�0�9:; �I�J:<M	��!BCD                                                                                     (8) 

��5� = ��0�9:; �:<N	�!BCD                                                                                        (9) 

Positivity immediately follows from (2) and (3) 

For boundedness we define: 

	O�5� = 	�5� + 
�5� + ��5� − �:?P?P ��5� + 	
�5� + ��5�                                                  (10) 

Let Q = min	���	; �*	;�)	; ��	; �'	; �(	 V�:?P?P W� then: 

!!"O�5� = !!" 	�5� + !!" 
�5� + !!"��5� − �:?P?P !!" ��5� + 	 !!" 
�5� + !!" ��5�                           (11) 

Thus: GG5 O�5� ≤ � − QO�5�where	� = � + + 

Implying that ( )N t is bounded, and so are 	�5�, 
�5�, ��5�, ��5�, 
�5�, ��5�. This completes the proof. 

2.2. Computation of Basic Reproduction Number 	]^ 

In this paper, we adopt next generation matrix approach in 

computation of ��, such that ��	 = _�`a:�� where _ is the 

spectral radius of next generation matrix, while 	`  is the 

matrix of the infection and a	 is the matrix of transfer of 

individuals out of the compartment by other means. To obtain �� the dominant eigenvalue of the NGM is considered [9, 16, 

18]. In system (1), there are two infection classes, hence, at 

disease free equilibrium the matrix of new infection is given 

by; matrix ` and a 

Matrix b̀  obtained by considering the rate of new 

infections entering compartment c,  
b̀ =

dee
eef

0�1 − �����$	�1 − ����1 − ����
$000 ghh
hhi                           (12) 

The matrix that represents the rate of transfer into and out 

of compartment i by any other means at DFE is given by 

matrix V; 

ab =
dee
eef

0��� + j�� + ��&
�'�000 ghh
hhi                               (13) 

Clearly,  

` = k 0�1 − ����1 − ����9:l$ �1 − ���9:l$ m<=0 n           (14) 

a = k��� + �� + & o<N 9:l$0 0�'n               (15) 

Then, the inverse of a is given by; 

a:� = p 1��� + �� + & +�* 9:l$0
01�'q 

The next generation matrix `a:� is given by: 

`a:� = r 0��:?@���:?P�stuvJ�<H>?@>I wxNtuvJ
��:?@�tuvJm<=<K0 y            (16) 

The eigenvalues of the matrix (16) can be obtained as; 

z 0 − {∗�1 − ����1 − ����9:l$��� + �� + & +�* 9:l$�
�1 − ���9:l$����'0 − {∗ } 

Characteristic equation is of the above matrix is given by; 

{∗� − ��1 − ����1 − ����9:l$��� + �� + & +�* 9:l$� ��
�1 − ���9:l$����' � = 0 

whose roots are: 

{∗�,� = ±���:?@�P��:?P�stuPvJ�<H>?@>I wxNtuvJ� �� m<=<K�                   (17) 

{∗� = ���:?@�P��:?P�stuPvJ�<H>?@>I wxNtuvJ� �� m<=<K�                  (18) 
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{∗� = −���:?@�P��:?P�stuPvJ�<H>?@>I wxNtuvJ� �� m<=<K�                 (19) 

Thus the �� which is given by the greatest eigenvalue is: 

�� = ���:?@�P��:?P�stuPvJ�<H>?@>I wxNtuvJ� �� m<=<K�                   (20) 

Remark 2.1.3 

Equilibrium Points and Their Stability 

Here, we study the stability of model (1). In mathematical 

epidemiology we usually consider two equilibria points that 

is, Disease Free Equilibrium Point (DFE) and the Endemic 

Equilibrium Point (EEP). We analyze the stability of system 

(1) by estimating the ��  using Next Generation Matrix 

approach and then check its stability using Jacobian matrix. 

Remark 2.1.4 

Disease Free Equilibrium 

Disease free equilibrium point is a viable region in the 

solution set of system (1) in the absence of viral infections. 

For our model, the disease free equilibrium (DFE) is the set 

of points �	�, 
�, ��, ��, 
�, ���=	� m<=	 	 ,0,0,0,0, o<N	� , obtained 

by simple algebraic computation in the absence of the virus. 

Remark 2.1.5 

Stability of Disease Free Equilibrium 

The disease free equilibrium is the state of variable of the 

model in the absence of disease. Its stability can be tested 

using the eigenvalues of the Jacobian matrix obtained at 

DFE, where at this point 	�� < 1. The linearization matrix of 

system (1) at DFE is given by;  

�	 =
de
eee
ef−��00000

��−�� − �� − &� o<N 9:l$�1 − ����1 − ����9:l$�1 − ������9:l$−& wxNtuvJ0

−�1 − ����9:l$ m<=�1 − ����9:l$ m<=−�'000

0�1 − ����9:l$ m<=0−�(00

0000−�)0

00000−�*gh
hhh
hi
                             (21) 

The system (1) is locally asymptotically stable if all the eigenvalues of linearization matrix of system (1) are negative. 

Clearly, the eigenvalues of (21) are: {∗� = −��	, {∗� = −�(	, {∗� = −�)	, {∗� = −�*                                                              (22) 

{∗�,3 = −�'��� + �� + & +�* 9:l$� ± ���' V�� + �� + & +�* 9:l$W�� − 4���'��� + �� +& +�* 9:l$�� − ��1 − �����1 − �����9:�l$��� ��
2  

From (22) it is evident that {∗�, {∗�,{∗�,{∗�, {∗�are all negative. The stability of our model will be determined by the sign of {∗3. 

{∗3 =	−�'��� + �� + & o<N 9:l$� + ���' V�� + �� + & o<N 9:l$W�� − 4���'��� + �� +& o<N 9:l$�� − ���:?@�P��:?P�AstuPvJm<= �� < 0    (23) 

If − �'��� + �� +& +�* 9:l$� > 	���' ��� + �� + & +�* 9:l$��
� − 4���'��� + �� + & +�* 9:l$�� − ��1 − �����1 − �����9:�l$��� �� 

then it follows that; 

��:?@�P��:?P�stuPvJ�<H>?@>I@ wxNtuvJ � V m<=<KW 	< 1	or	���:?@�P��:?P�stuPvJ�<H>?@>I wxNtuvJ� �� m<=<K� < 1                                                (24) 

Therefore, �� < 1 is attained for DFE to be stable. 

3. Main Results 

Analytic solutions can be demonstrated using analytic 

results with specific numerical examples. The model 

equation (1) is considered. Numerical simulations of the 

model is calculated using list of parameters and their 

estimated values given in the table 1 & 2. The values have 

been obtained from [1, 7, 10]. In simulation of the model 

system (1), the following initial values in each compartment 

at the onset of infection is assumed to apply; 	�0�, 
�0�,��0�, ��0�, 
�0�, ��0� = 	 �1000, 0, 0.01, 0.01, 500,30�  
on the interval 0−,, 01. 

Table 1. Table of Variable, Variable description and Value. 

Variables Variable description Value 	 Healthy CD4+ T- cells  1000 
 Sick CD4+ T- cells  0 � Infectious virus 0.001 � Non-infectious virus 0.001 
 CD8+ T-cells used 500 	� CD8+ T-cells un-used 30 
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Table 2. Table of Parameters, Parameter description and Value. 

Parameters Parameter description Value � 
Production rate of healthy CD4+T 

cells (	) 

15 
cells/mm3/day �� Death rate of healthy CD4+T cells (	) 0.06/day �� Efficacy of RTI 0 X �� X 1 

�� Efficacy of PI 0 X �� X 1 

� Force of infection 0.53 

� 
Budding size of free virus from sick 

CD4+T cells 
13 

�� Death rate of sick CD4+T cells 0.26 

�' 
Natural death rate of infectious virus 
from the body 

2.4 

�( 
Natural death rate of non-infectious 

virus from the body 
2.4 

�) 
Natural death rate of used CD8+ T-

cells 
0.06/day 

�* 
Natural death rate of un-used CD8+ T-
cells 

0.06/day 

+ Production rate of CD8+ T-cells 0.004/day 

, Time delay  
To be 

determined 

 & Rate at which CD8+ T-cells are used 20cell/mm3/day 

 

Figure 1. Figure showing �� with respect to Time Delay. 

 

Figure 2. A figure showing �� with respect to bursting size. 

 

Figure 3. Figure showing �� with respect to Drug Efficacy. 

Figure 1 A figure showing Reproduction number with 

respect to time delay. It is evident that if time delay is large 

viral replication is high. It is clear that �� � 1 for 0 � , � 1. 

Therefore Disease Free Equilibrium is stable for , � 1. 

Figure 2 A figure showing Reproduction number with 

respect to bursting size. It is evident that ��  is directly 

proportional to the bursting size. It is clear that �� � 1 if 

0 � � � 200. For DFE to be stable � � 200. 

Figure 3 A figure showing Reproduction number with 

respect to drug efficacy at 80% efficacy. It is evident that 

DFE is achieved when drug efficacy is at	80%. Therefore, 

chemotherapy played a major role in reducing the viral 

replication for stability to be achieved at �� � 1. 

Figure 4 A figure showing Reproduction number with 

respect to immune response (CD8+T-cells). It is evident that 

immune response plays a role in reducing viral replication. 

Clearly, for �� X 1  for CD8+ T cells X 30.	 Stability of 

Disease Free Equilibrium is achievable in the presence of 

CD8+ T cells. 

 

Figure 4. Figure showing �� with respect to CD8+T-cells. 
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Figure 5 A figure showing the dynamics population of 

CD4+T-cells and contagious viral cells with neither 

treatment nor immune response. It is evident that initially the 

contagious virus was at zero and immediately its number 

shots to 4000/mm
3
 due to rapid viral replication. As a result 

CD4+T-cells count goes down. 

 

Figure 5. Dynamics population of CD4+T-cells and contagious cells with 

neither treatment nor immune response. 

Figure 6 A figure showing the dynamics population of 

CD4+T-cells with 20% drug efficacy and immune response. 

It is evident that CD4+ T-cells count is at 2500/mm
3 

after 

some time which is a value lower than 4000/mm
3
 that was 

evident when there were no treatment and immune response. 

This implies that chemotherapy and immune response played 

a major role in reducing the replication of the contagious 

virus and delaying it to happen.  

 

Figure 6. Dynamics population of CD4+T-cells and contagious cells with 

20% drug efficacy and immune response with respect to time. 

Figure 7 A figure showing dynamic population of CD4+T-

cells and contagious viral cells with 80% drug efficacy and 

immune response. It is evident that contagious viral 

replication rises slowly to a value slightly above 200/mm
3
. 

The CD4+T-cells are maintained at a value above 

200cell/mm
3
. 

 

Figure 7. Dynamics population of CD4+T-cells and contagious cells with 

80% drug efficacy and immune response with respect to time. 

4. Conclusion 

In this paper, the main objective is to study the dynamics 

of HIV-1 in-vivo in the presence of time delay, chemotherapy 

and role of CD8+ T-cells. Disease Free Equilibrium is 

attained when �� � 1. This reproduction number has been 

obtained using NGM and Jacobian matrix and it is clearly 

seen that ��  is affected by delay, immune response and 

chemotherapy of both RTI and PI. The study found out that if 

all other factors are kept constant then DFE is achieved when 

drug efficacies for RTI and PI are at 0.723. Any values of 

efficacies above this value has no change in dynamics 

whereas any value below this may be as good in decreasing 

the reproduction number. It is also clear that for , � 0 DFE is 

stable and unstable otherwise. Time delay, immune response 

and chemotherapy plays an important role in reducing the 

replication of HIV virus and stability at DFE. Thus 

elimination of HIV contagious virus are achieved through use 

of chemotherapy, time delay and CD8+T-cells from the 

contagion (entering of virus into the cell) to bursting of the 

contagious virus. Prolonging this time, then the drop in 

CD4+T-cells count will not deplete within a shorter period. 

5. Suggestions for Further Research 

This study has not explored all about HIV-1 In vivo 

dynamics. Sensitivity analysis and Hopf bifurcation is not 

captured in the study. Also, Studies on chemotherapy using 

Structured Treatment Interference (STI) regime by narrowing 

to the delay for stabilities at EEP is not captured. 
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