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Abstract: This article presents a geometrically nonlinear formulation of a two node axisymmetric shell element. The 

geometrically nonlinear formulation is based on the Total Lagrangian approach and the material behavior is assumed to be 

linearly elastic. The spherical arc-length procedure is used to obtain the pre-buckling, buckling and post-buckling deformation 

path. Some numerical examples are solved to demonstrate geometrically nonlinear behavior of elastic thin spherical shells 

subjected to various loads.  
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1. Introduction 

The analysis of shells always presents a challenge because 

of difficulties in formulation as well as numerical calculation. 

Moreover, shells of revolution have received considerable 

attention for applications such as underwater pressure hulls, 

space vehicles, pressure vessels, and pressure tanks. The 

most frequently investigated structures are cylindrical, 

conical, and spherical shells and their combinations [1, 2]. 

The prediction of buckling loads and deformation paths of 

structural members is important in the design of various 

engineering components [3]. Many researches have been 

made on buckling of axisymmetric thin spherical shells under 

various loading and boundary conditions, such as, [4-8].  

In the linear analysis, displacements and strains developed 

in a structure are small. Namely, the structure geometry 

remains unchanged during the loading process and therefore, 

linear strain approximations can be used. However, the 

structure geometry changes continuously during the loading 

process, and this fact is taken into account in geometrically 

nonlinear analysis. Generally, two types of buckling analyses 

methods which are linear and nonlinear are used in the finite 

element methods. Linear buckling analysis is also called 

eigenvalue buckling analysis because it gives rise to an 

algebraic eigenvalue problem. Eigenvalue buckling analysis 

method has two versions, classical and fully linearized 

buckling analysis. Linear buckling analysis gives good 

prediction of buckling loads if the prebuckling rotations are 

negligible. However, shell structures have considerable 

prebuckling rotations and linear or eigenvalue buckling 

analysis alone is not sufficient to predict the stability limit of 

these structures [9]. In order to correctly predict the load 

carrying capacity of a structure, the buckling and post 

buckling behavior of structures should be obtained.  

Three Lagrangian kinematic descriptions are usually used 

for finite element analysis of geometrically nonlinear 

structures: The Total Lagrangian (TL), the Updated 

Lagrangian (UL) and the Co-Rotational (CR) formulations. 

Both the Total Lagrangian and the Updated Lagrangian 

formulations include all kinematic nonlinear effects due to 

large displacements, large rotations and large strains, but 

whether the large strain behavior is modeled approximately 

depends on the constitutive relations specified. The only 

advantage of using one formulation rather than the other lies 

in its greater numerical efficiency. The Co-Rotational 

formulation is the most recent of the three and the least 

developed one. Unlike the others, its domain of application is 

limited by a priori kinematic assumptions: displacements and 

rotations may be arbitrarily large, but deformations must be 

small. Because of this restriction, the CR has not penetrated 

the major general-purpose FEM codes that provide to 

nonlinear analysis [10-12].  

In this study a geometrically nonlinear formulation of 

axisymmetric shells is given. The element has two nodes and 
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three degrees of freedom per each node. The Total 

Lagrangian method, all static and kinematic variables at the 

current state are referred to the initial configuration, is used. 

To maintain slope and displacement continuity, the 

displacements within the element have to be uniquely 

determined by the nodal displacements and the position.  

The incremental equilibrium equations are solved using 

the spherical arc-length method with automatic load 

increments. The choice of the incremental load factor sign in 

the predictor phase of arc-length methods is known to be of 

paramount importance in determining the success of such 

procedures in tracing unstable equilibrium paths [13]. Feng et 

al. (1996) have proposed a direction prediction criterion 

whereby the sign of the predictor load factor is made 

consistent with the sign of the internal product between the 

previous converged incremental displacement and the current 

tangential solution. This criterion is insensitive to the 

presence of bifurcations [14, 15]. 

Some numerical examples are performed by a computer 

program which is written by the author in MATLAB 

software. The buckling and post buckling behaviors of elastic 

spherical shells subjected to different loads are demonstrated. 

2. Formulation  

2.1. Element Geometry, Stresses and Strains 

An axisymmetric shell element subjected to bending and 

membrane forces is given in Figure 1. The strain vector ε  

can be written using the Kirchhoff-Love assumptions which 

excludes transverse shear deformations, i. e. the angle ϕ  

does not vary, as 
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where 0ε  and Lε  are the linear and nonlinear strain vectors, 

respectively [16]. In this equation first two terms denote 

membrane strains and second two terms denote bending 

strains, respectively. For such elements the element geometry 

is described in terms of the coordinates of middle surface 

nodes. 

The stress vector can be related to the strain vector using 

an elasticity matrix D  
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For an isotropic shell the elasticity matrix is 
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where E is elasticity modulus, ν  is Poisson ratio and t is 

shell thickness [17].  

 

Figure 1. Stress resultants in an axisymmetric shell. 

Figure 2 shows a two-noded straight element which can be 

used to analyze the axisymmetric shells. The element has the 

radial and axial displacements, u  and w , and a rotation, 

/dw dsβ = , at each node. Then, the local displacements of a 

node i can be defined as 
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The two-noded element has 6 dofs and they are determined 

by the element node displacements as 
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Figure 2. The two node axisymmetric shell element. 

To maintain slope and displacement continuity, the 

displacements within the element have to be uniquely 

determined by the nodal displacements a  and the position s. 

Thus, the element displacements in local coordinates can be 

written as 
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where N  is the matrix that contains the shape functions. At 

the node i, the following equation can be written between 

local and global displacements 
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where Τ  is the transformation matrix [18].  

2.2. Stiffness Matrix  

Equilibrium conditions between internal and external 

forces must be satisfied. Thus, the equilibrium equation of 

the nonlinear system can be written as  

T

V

R(a) = F - P = B σdV - P = 0∫                         (8) 

where R , F  and P  represent the out-of-balance force 

vector, the internal force vector and the externally applied 

load vector respectively [19]. The strain-displacement matrix 

B  is obtained from the strain definition as 

a]BB[ 0daBd dL+==ε                          (9) 

where 0B  and LB  represents linear and nonlinear strain-

displacement matrices, respectively. 

Taking the variation of Eq. (8) and using Eqs. (2 and 9), 

we have 

∫ ∫ =++=σ+σ=
V V

T
TT ddddVdV aKaKK(aKdBdBdR L0 )σ  (10) 

in which the matrix σK is known as initial stress matrix. 

And 0K  represents small displacement stiffness matrix, i. e., 

T
0 0 0

V

K = B D B dV∫                             (11) 

The matrix LK  is known as large displacement matrix and 

is given by 

T T T
L 0 L L L L 0

V

K = (B D B + B D B + B D B )dV∫              (12) 

Consequently, the tangent stiffness matrix TK  can be 

given as 

T σ 0 LK = K + K + K                        (13) 

2.3. Solution Method 

The equilibrium equation of the nonlinear system can be 

written as 

T (i)

V

R(u) = B σ dV - P = F - ∆λ P∫                  (14) 

where R , F  and P  represent the out-of-balance force 

vector, the internal force vector and the externally applied 

load vector respectively, and ( )iλ∆  is the load-level 

parameter 

In order to compute the nodal displacements, it is 

necessary to solve the system of nonlinear equilibrium 

equations using an incremental/iterative method. The load 

controlled Newton–Raphson method is the earliest method 

that is used to trace the equilibrium path. This method is 

based on the linearization of the equilibrium equations at a 

prescribed load level, that is, ( )iλ∆  in Eq. (14) is kept 

constant during iterations. The iterations are performed until 

the residual is smaller than a prescribed tolerance. This 

method can trace the load–displacement curve before the 

occurrence of a limit point, but generally it will fail to 

converge beyond this point. 

In order to compute the nodal displacements, the spherical 

arc-length algorithm is used. The convergence criterion is 

chosen as 

-5
G Gδu < 10 ∆u                            (15) 

where δ  and ∆  parameters indicate iterative and 

incremental quantities, respectively. The choice of the sign of 

the incremental load factor in the predictor phase of arc-

length methods is significant for tracing unstable equilibrium 

paths. If the wrong sign is predicted, the solution sequence 

‘‘doubles back” on the original load–detection curve and the 

arc-length method fails to trace the complete path. Moreover, 

in the case of sharp snapback situations, the predictor 

criterion also becomes very important. It is seen that using 

the predictor criterions of Feng et al. [14] can overcome these 

problems successfully. 

3. Numerical Application 

3.1. A clamped Axisymmetric Shell Under Ring Load 

Figure 3 shows the description of spherical cap which is 

subjected to the ring load with variable radius. The cap is 

clamped at its border. Load location is determined by load 

location ratio, e /θ θ= . In this ratio, θ and θ represent 

angles of the cap support and the ring loads according to the 

vertical line intersecting the apex, respectively. In this 

manner, load location ratio may take values from 0 to 1. As 

the ratio increases the ring load approaches to the cap 

support. Geometric and material properties are also given in 

the figure. The behaviors of the spherical cap for varying 

location of the ring load are given in Figures 4–9. In these 

figures, vA  and vL  denotes vertical deflections of the apex 

and the loaded node, respectively. To mesh the spherical cap 

20 and 40 elements are used for e=0.00-0.80 and e=0.90, 

respectively. The element matrices and the load vectors are 

formed using 2x2 Gauss quadrature rule. It is clearly seen 

that the snap-through behavior begins when e=0.30 

approximately and, in addition to snap-through behavior also 

snapback behavior occurs when location ratio close to 
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e=0.50. Moreover, number of limit points increase as the load 

location ratios increase, after e=0.60 especially.  

 

Figure 3. Geometric and material properties of the axisymmetric shell under 

ring load. 

 

Figure 4. The load–deflection curve for e = 0.00. 

 

Figure 5. The load–deflection curve for e = 0.20. 

 

Figure 6. The load–deflection curve for e = 0.40. 

 

Figure 7. The load–deflection curve for e = 0.60. 

 

Figure 8. The load–deflection curve for e = 0.80. 
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Figure 9. The load–deflection curve for e = 0.90. 

3.2. A Hinged Axisymmetric Shell Under Ring LOAD  

The previous axisymmetric shell under ring load is 

analyzed for a different boundary condition, that is, the cap is 

assumed hinged at its border. The load-displacement curves 

of spherical cap for different location of the ring loads are 

given in Figures 10–15. Unlike the clamped condition, both 

snap-through behavior and snapback behavior occurs even 

e=0.00. Moreover, number of limit points increase and curves 

become very complex as the load location ratios increase. In 

these figures, also vA  and vL  denotes vertical deflections of 

the apex and the loaded node, respectively. To mesh the 

spherical cap 20 and 40 elements are used for e=0.00-0.80 

and e=0.90, respectively.  

 

Figure 10. The load–deflection curve for e = 0.00. 

 

Figure 11. The load–deflection curve for e = 0.20. 

 

Figure 12. The load–deflection curve for e = 0.40. 

 

Figure 13. The load–deflection curve for e = 0.60. 
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Figure 14. The load–deflection curve for e = 0.80. 

 

Figure 15. The load–deflection curve for e = 0.90. 

4. Conclusion 

In this paper, a geometrically nonlinear formulation based 

on the Total Lagrangian approach for a conical frustum 

element was given assuming the material behavior to be 

linearly elastic. The Arc-length method was used to analyze 

the post-buckling behavior. The behaviors of the spherical 

cap for varying location of the ring load and different 

boundary conditions were studied. Numerical examples 

showed that the snap-through and snapback behaviors of the 

cap vary depending on the load location. The complexity of 

the structure’s behavior increases as the ring load moves 

from the apex to the cap support and also boundary condition 

of the cap effects the behavior significantly. 
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