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Abstract: The present work investigates the accuracy of the Multiple-relaxation-time Lattice Boltzmann Method (MRT 

LBM) in the simulation of flows with circulation. The flow in a 2Dlid-driven cavity is simulated using MRT LBM for a wide 

range of Reynolds numbers (100-1000) to assess its accuracy. The lid-driven cavity flow is selected because it is the standard 

benchmark problem for the testing of numerical methods. The calculated locations of the primary vortex center in addition to 

those of the two side vortices (lower-left and lower-right) are compared to the previously published results using different 

numerical techniques such as finite difference, finite element and single-relaxation-time LBM. The horizontal and vertical 

velocity profiles are also calculated. The results show that the MRT LBM has a superior accuracy compared to other numerical 

techniques especially for circulating flows. 
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1. Introduction 

Computational fluid dynamics (CFD) numerical 

techniques has changed and varied dramatically in the past 

few years [1]. The reason for this is the diversity in the 

applications of the CFD [2-6]. Although continuum based 

CFD approaches like finite difference, finite volume and 

finite element relay on the solution of continuum governing 

equations (i.e. macro scale), other emerging techniques are 

looking at the same problems from a different scale. These 

can range from the micro-scale based methods like molecular 

dynamics to macro-scale ones like finite volume. 

The Lattice Boltzmann Method (LBM) has emerged as a 

numerical technique dealing with the problems at the meso-

scale [7]. This allowed the LBM to retain the advantages of 

the two scales (i.e. macro and micro) while avoiding their 

short comings. The LBM has been widely used for many 

applications including fluid flow [7,8], heat and mass transfer 

[9], multi-phase [10] and multi-component [11], non-

Newtonian fluids [12, 13], fluid-structure interaction [14] and 

flow in porous media [12, 15] problems. The LBM has many 

variants according to the target application. The two-

relaxation-time (TRT) LBM and multiple-relaxation-time 

(MRT) LBM were invented to overcome the shortcomings of 

the standard single-relaxation-time (SRT) LBM [16-19]. 

For each emerging new computational technique, a set of 

benchmark cases has to be used to test the new model 

accuracy. The lid-driven cavity flow is the most widely used 

case for benchmarking numerical methods [20-23]. It 

involves high velocity gradients and strain rates in addition to 

circulation. Circulating flow is encountered in many 

applications and its modeling is more challenging than the 

unidirectional flow [24, 25]. For this reason, new numerical 

methods have to be tested for their accuracy using the lid-

driven cavity flow case before being used for applications 

involving circulation. 

The main goal of the present work is to assess the accuracy 

of the MR TLBM in modeling circulating flow. This is 

achieved by simulating the flow inside a 2D lid-driven cavity 

at a wide range of Reynolds numbers and comparing the 

results to the published ones in literature. 
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2. TheMultiple-Relaxation-Time LBM 

The standard LBM relies on solving the Boltzmann 

equation in a discretized form using a limited set of velocity 

directions. The discrete Boltzmann equation can be written as 

follows: 

����� � �Δ�, � � Δ�
 � ���� , �
 � Ω��
          (1) 

�� is the particle distribution function along direction�,�is 

the lattice speed� � Δ� Δ��  and Ω��
 is the collision operator. 

For the used D2Q9 lattice the directional velocities ��  are 

given by: 
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For the SRT LBM Ω��
  is replaced by the Bhatnagar–

Gross–Krook (BGK) collision operator [26]. Due to many 

limitation of the standard SRT LBM, the MRT LBM is used 

instead. In the MRT LBM the collision operator is expressed 

as follows: 

Ω��
 � ����. �. �� � � !"                      (3) 

�  is a transformation matrix to transform the particle 

distribution function �	from the velocity space to the moment 

space � � �. �. The equilibrium distribution function � ! 	is 

also transformed to � ! � �. � ! . �  is the diagonal 

relaxation matrix. 
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For the used D2Q9 lattice, the sonic speed is given by: 

�2 � 3√5                                  (6) 

The kinematic viscosity 6 is related to  -1  by the following 

relation: 

6 � �2. 7 �28 � �.9                          (7) 

The equilibrium particle distribution function � !  is given 

by: 

�� ! � :�; <1 � 3=.>3?@ � �3=.>
@.3?A � >.>.3?@B              (8) 

And the macroscopic density ; and velocity C  are given 

by: 
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3. The Lid-Driven Cavity Flow 

The lid-driven cavity flow case is used as a benchmark 

problem to test the accuracy of the MRT LBM. The modeled 

geometry shown in Figure 1 consists of a square cavity with 

the top side moving to the right. The rest of the sides are 

stationary. The movement of the top surface causes a vortex 

to develop inside the cavity whose size, strength and location 

depend on the flow Reynolds number. At the two lower 

corners (left and right) two small vertices with a circulation 

in an opposite direction to that of the main vortex also 

develop. Their characteristics also depend on the flow 

Reynolds number. The location of the three vortices centers 

is used as a benchmark for the accuracy of the numerical 

method used to solve the problem. 

 

Figure 1. The lid-driven cavity geometry and boundary conditions. 

4. Results and Discussion 

The MRT LBM is used in the simulation of steady viscous 

incompressible flow in a 2D lid-driven cavity at a range of 

Reynolds number between 100 and 1000. The flow Reynolds 

number is calculated based on the cavity width and the 

velocity of the top lid as a characteristic velocity. The 

streamlines for some of the cases are shown in Figure 2. 

 

(a) Re =100. 
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(b) Re=200. 

 

(c) Re=400. 

 

(d) Re=600. 

 

(e) Re=800. 

 

(f) Re=1000. 

Figure 2. The steady state streamlines for different Re=100, 200, 400, 600, 

800 &1000. 

The figure shows the variation in the size and location of 

the vortices with the Reynolds number. The main vortex 

tends to move to the center of the cavity with the increase in 

Re number while the two side vortices increase in size. The 

streamlines at the top of the cavity also show a high gradient 

of the tangential velocity which is a characteristic of the lid-

driven cavity flow. Tangential velocity profiles at x=50 for 

different Reynolds numbers are shown in Figure 3. The 

figure confirms the high gradient of the tangential velocity 

component near the top lid region. 
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Figure 3. Tangential velocity profiles at x=50. Starting at the red semi-

horizontal line for Re=100, 300, 500, 700 & 900. 

 

Figure 4. Vertical velocity profiles at y=50. Starting at the red semi-

horizontal line for Re=100, 300, 500, 700 & 900. 

The vertical velocity component profiles at y=50 are 

shown in Figure 4. 

To test the accuracy of the simulation results, the location 

of the main vortex and the two side vortices are compared 

against published results. Table 1 shows this comparison for 

selected Reynolds numbers. 

Table 1. The location of the primary vortex and the two side vortices for 

Re=100 &1000 using the MRT LBM (present) compared to published results 

(Ref. [27-31]). 

Re 100 1000 

Primary X Y X Y 

[27] 0.6188 0.7375 0.5438 0.5625 

[28] 0.6172 0.7344 0.5313 0.5625 

[29] 0.6196 0.7373 0.5333 0.5647 

[30] 0.6167 0.7417 0.5286 0.5643 

[31] 0.6125 0.7375 0.5250 0.5625 

Present 0.6210 0.7420 0.5330 0.5645 

(a) Primary vortex. 

Re 100 1000 

Right X Y X Y 

[27] 0.9375 0.0563 0.8625 0.1063 

[28] 0.9453 0.0625 0.8594 0.1094 

[29] 0.9451 0.0627 0.8667 0.1137 

[30] 0.9417 0.0500 0.8643 0.1071 

[31] 0.9375 0.0625 0.8625 0.1125 

Present 0.9460 0.0570 0.8676 0.1126 

(b) Lower right vortex. 

Re 100 1000 

Left X Y X Y 

[27] 0.0375 0.0313 0.0750 0.0813 

[28] 0.0313 0.0391 0.0859 0.0781 

[29] 0.0392 0.0353 0.0902 0.0784 

[30] 0.0333 0.0250 0.0858 0.0714 

[31] 0.0375 0.0375 0.0875 0.0750 

Present 0.0330 0.0332 0.0820 0.0756 

(c) Lower left vortex. 

As the table shows, the predicted vortices locations are in a 

perfect match to the published results using other numerical 

methods which confirms the accuracy of the used MRT 

LBM. 

5. Conclusion 

The accuracy of the Multiple-relaxation-time Lattice 

Boltzmann Method for the simulation of incompressible 

viscous circulating flow is assessed. The method results are 

compared against published results for some benchmark 

problems. The lid-driven cavity flow is chosen as the 

benchmark case for circulating flow. The MR TLBM is used 

to model the 2D lid-driven cavity flow for a range of 

Reynolds numbers between 100 and 1000. The simulation 

results included the velocity profiles of the horizontal and 

vertical velocity components at different sections inside the 

cavity. The streamlines are also presented for a number of 

cases. The location of the primary central vortex in addition 

to the two side vortices are also calculated and compared to 

the published results. There is a perfect match between the 

results of the MRT LBM and the published ones. This 

confirms the ability and accuracy of the MRT LBM in 

simulating circulating flows. 
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