

Machine Learning Research
2020; 5(1): 10-17

http://www.sciencepublishinggroup.com/j/mlr

doi: 10.11648/j.mlr.20200501.12

ISSN: 2637-5672 (Print); ISSN: 2637-5680 (Online)

Timing and Parameter Optimization for One-time Motion
Problem Based on Reinforcement Learning

Boxuan Fan, Guiming Chen, Hongtao Lin
*

Xi’an Research Inst. of High-tech, Xi’an, China

Email address:

*Corresponding author

To cite this article:
Boxuan Fan, Guiming Chen, Hongtao Lin, Timing and Parameter Optimization for One-time Motion Problem Based on Reinforcement

Learning. Machine Learning Research. Vol. 5, No. 1, 2020, pp. 10-17. doi: 10.11648/j.mlr.20200501.12

Received: February 17, 2020; Accepted: March 3, 2020; Published: March 24, 2020

Abstract: Baseball hitting, swatter swing and football catching, there are many tasks can be seen as a one-time action, whose

goal is to control the timing and parameters of the action to achieve optimal results. Many one-time motion problems are difficult

to obtain the optimal policy through model solving, and model-free reinforcement learning has advantages for such problems.

However, although reinforcement learning has developed rapidly, there is currently no universal one-time motion problem

algorithm architecture. Decomposing the one-time motion problem into the action timing problem and the action parameter

problem, we construct a suitable reinforcement learning method for each of them. We design a combination mechanism that

allows the two modules to learn simultaneously by passing the estimated value between the two modules while interacting with

the environment. We use REINFORCE + DPG to solve the problem of continuous motion parameter space, and use

REINFORCE + Q learning to solve the problem of discrete motion parameter space. To testing the algorithm model, we designed

and realized an aircraft bombing simulation environment. The test results show that the algorithm can converge quickly and

stably, and is robust to different time step and observation errors.

Keywords: One-time Motion, Reinforcement Learning, Motion Control

1. Introduction

One-time motion problem, i.e., choosing a time and a set of

parameters to perform the action according to the varying state,

is a common and fundamental problem. When hitting a tennis

ball, it is necessary to decide when to swing and the direction

of the hit according to the state of the ball and the position of

both sides; when hunting flies, the timing and the location of

the swatting should be determined according to the position

and speed of the fly. These all can be seen as a one-time

motion, and there are many such one-time motions in a match

or a mission. Generally, people perform actions with the best

combination of timing and motion parameters, relying on their

own experience.

There are two kinds of approaches to the one-time motion

problem with continuous space motion parameter space. First,

discretize the motion parameters and merge with motion

timing decisions as one discrete control problem – at each time

step, decide not to perform motion at current time or to select a

motion parameter for execution. This causes a problem. If

discretize less values, the final reward may be different from

the optimal strategy [1]. However, if the discretization takes

more values, it is not easy to learn. Second, decompose the

problem into a timing control problem and a parameter

optimization problem, each controlled by an agent separately.

The timing control agent only determines whether the action is

currently performed, if yes, the action parameter is given by

the parameter control agent. Control systems typically employ

this solution, but used to be artificially segmented by model

analysis. Generally, the optimal parameters for performing the

action in each state are first determined, and then the timing of

performing the action with the optimal parameters to obtain

the optimal action effect is calculated according to the state

change rule. This approach does not always work. On the one

hand, a premise of this method is that the model is known, so it

is unsuitable for the problem with unknown model; on the

other hand, it may not be easy to artificially set the timing of

the action and ensure its optimality. In this paper, we designed

a reinforcement learning method to solve this problem.

Reinforcement learning, as a model-free method, can learn

 Machine Learning Research 2020; 5(1): 10-17 11

the best control policy autonomously by interacting with the

simulation environment without manual setting. The current

development of a variety of intensive learning methods

provides a number of tools to support this problem through a

machine learning approach [2, 3]. There are many successful

applications reinforcement learning in autonomous

decision-making and automatic control. It is well-known that

DeepMind has used deep reinforcement learning methods to

raise the agent ability beyond humanity in playing Atari video

games [4] and playing chess [5]. The rest of this paper is

organized as follows. We introduce the related background in

section 2. Section 3 describe how to combine the

REINFORCE and DPG (or Q learning) algorithm to realize a

one-time motion reinforcement learning algorithm (OTMRL),

the model structure and learning mechanism are described.

The aircraft bombing problem which is design for algorithm

test is introduced in Section 4. The simulation experiments

and analyses are shown in section 5. Finally we give a

summary and discuss the future improvement direction in

Section 6.

2. Background

Instead of calculating with model directly, the

reinforcement learning problem is to accumulate experience

and learning an optimal policy by interacting with the

environment [6].

Treat the one-time motion problem as a reinforcement

learning problem: Discretize the continuous time into

sequential time steps. At each time step, the agent determines

the control signal that whether performs the motion and the

motion parameters (if the motion is performed) based on the

current state of observation, with the goal of maximizing the

reward getting after the motion. In this section, related

reinforcement learning algorithms will be introduced.

2.1. Value-based Methods

Agent using value-based method learns the value ����, ��
of each state-action pair (or state) and selects actions based on

its estimation. Action value ����, �� is the expected return

starting from state �, taking action �, and thereafter following

policy �.

����, �� =
��, �� + � ����
, �
� (1)

State-action pair value estimation based on temporal

difference (TD) is a fundamental reinforcement learning

method. It updates estimates directly with raw experience and

value estimates of other states. Sarsa [7, 8] and Q-learning [9]

are its two main algorithm types.

In Sarsa, at each time step, the action �� is selected based

on �-greedy policies which behave to get the maximum return

most of the time, but instead select an action completely

randomly with small probability �, then the training sample

��� , �� , ����,
���� is obtained, and the Q-value is updated

according to formula (2). The Q-values in Sarsa are the action

value estimates for �-greedy policies.

���� , ��� ← ���� , ��� + ��
��� + �������, ����� −
���� , ����	 (2)

In Q-learning, the agent behaves same policies with Sarsa,

but updates Q-values by a different calculation shown as

formula (3). The Q-values in Q-learning are the action value

estimates for pure greedy policies.

���� , ��� ← ���� , ��� + ��
��� + �max	������, �� −
���� , ���� (3)

The policy used to generate data in Sarsa learning, which be

termed as behavior policy, is same with the target policy which

is for evaluation. This is called on-policy method. In

Q-learning, they are different. The behavior policy tends to

explore new states, while the target policy tends to exploit

existing experience. So Q-learning is classified as an

off-policy method.

In one-time motion problem, it returns a reward only after

the motion is completed, which is more suitable for using the

Monte Carlo (MC) method—everytime an episode using the

�-greedy policy is done, update ���� , ��� by formula (4) for

each experienced state action pair ��� , ��� appearing in the

episode according to the return �� , which is defined as

formula (5), obtained after �.
���� , ��� ← ���� , ��� + ���� − ���� , ����		 (4)

�� =
���. + �
�� + �
��! +⋯	 (5)

Dealing with the problem with continuous state space, an

approximation method is needed. Common approximation

methods include linear methods such as polynomial and

Fourier basis, and nonlinear methods represented by neural

networks. The recent influential deep reinforcement learning

method, DQN [10, 4, 5], represents the state action value

estimation based on the neural network approximation, and

updates the value network by learning the gradient of TD error

to the network parameters.

2.2. Policy-based Method

Although DQN rise to fame with human-level control in

Atari games, the value-based learning method cannot solve

the reinforcement learning problem with continuous action

space. It should use the policy-based learning method, which

parameterizes the action selecting function directly as

���|�, $� = Pr'(� = �|)� = �, Θ� = $+ . A policy-based

method does not use value functions to select actions,

although might use them in policy parameters learning. For

discrete motion space problems, policy approximation also

has advantages in some aspects, such as the ability to obtain

deterministic strategies, the ability to assign probabilities to

actions arbitrarily, the approximation function to be simpler,

and the ease of embedding prior knowledge [11].

REINFORCE [12] is a widely used policy gradient method. It

belongs to the MC method because the strategy parameters are

updated after each simulation. The parameter update formula is:

$���= $�. + ��� ,��-.|/.,0.���-.|/.,0.� (6)

12 Boxuan Fan et al.: Timing and Parameter Optimization for One-time Motion Problem Based on

Reinforcement Learning

where �� is the return.

As a stochastic gradient method, the REINFORCE method

has a good theoretical convergence property. By constructing

the update formula, the desired update direction can be

consistent with the gradient direction of the evaluate function,

which ensures that the policy can converge to a local optimum

with a small parameter � . However, update using

REINFORCE lead to large variances and a slow learning

speed. Adding a baseline is a commonly used improvement.

The update formula is as follows:

$���= $�. � ���� � 1����� ,��-.|/.,0.���-.|/.,0.� (7)

The baseline can be any function, even random. If only

independent with the action, the expected value for learning

would not be affected. Learning the state value estimates

23�)� , 4� while performing the policy-based method and use it

as the baseline, the variances of the update parameters can be

greatly reduced.

Algorithms in the MC form tends to learn slowly and

inconvenient to online implementing or for continuing problems.

Actor-Critic [13, 14] methods are a kind of TD policy gradient

methods, which can eliminate these inconveniences. It uses the

advantage function rather than �� � 1���� to help determine the

direction and scale of the policy update. The advantage function

is defined as formula (8), the return increment for �� performed

under state �� compared to the current policy. The value estimate

not only be used as a baseline 5����, but also provide ���� , ���,
so it be called Critic.

(��� , ��� 	 ���� , ��� � 5���� (8)

The policy-based method provides a way to solving

reinforcement learning problems in continuous action spaces.

Instead of computing the probability of each action, we learn

statistics of the probability distribution. For example, a

parameterization policy with Gaussian distribution on

one-dimensional action space as formula (9), the mean and

standard deviation depend on a function of the state � and the

policy parameter $:

���|�, $�	 �
6�/,0�√ �
. exp :� �-;<�/,0��=

 6�/,0�= > (9)

Silver et al.[15] proposes the deterministic policy gradient

(DPG) method that defines policy function as a map from

states to actions in continuous spaces, and update by learning

the gradient of the action value with respect to the action. The

deterministic policy gradient is feasible as long as the policy

function is derivable everywhere, and its learning converges

faster than Actor-Critic methods. Deterministic strategy

gradients are convenient for off-policy learning. Another

advantage of the DPG method is it can be used as an off-policy

learning method without importance sampling.

3. OTMRL Algorithm

In order to learn an approximate optimal control policy fast

while guaranteeing the process convergent, it is necessary to

carefully design the learning and control methods consisting

of motion timing model (MTM) and motion parameter model

(MPM).

The motion parameter control is a one-time deterministic

problem in each episode, which is equivalent to the

deterministic continuous/discrete action space contextual

bandits problem [14, 15]. The agent only needs to select the

motion parameters according to the state, and then the

environment immediately returns the bonus value without

considering the result state. This part can be easily processed

using the DPG method, and the return estimates with the

optimal parameters which be computed by its Critic network

can be used as the return for the behavior policy of the MTM.

The motion timing control is a reinforcement learning

problem with continuous states and binary actions, and the

termination state is reached immediately when deciding to

execute motion. This problem is a nonrecurrent Markov

process problem, so using the Monte Carlo method avoids the

non-convergence effect caused by bootstrap, without

influencing the learning speed. However, the final reward is

affected by the motion parameters which are selected by the

MPM, instead of depending on the current timing control

policy only, so even if the MTM uses the Monte Carlo method,

the gradients for update is not calculated from actual return of

the MTM’s policy with best motion parameter.

Fortunately, on the one hand, if the parameter value

estimates can quickly converge to relatively accurate level in

learning, it can be ensured that the MTM policies converge

robustly by using state-value estimates from the MPM as the

MTM’s rewards. On the other hand, the sample correlation

can be reduced by adopting multi-thread parallel learning. Its

samples for learning simultaneously are produced from

multiple episodes.

In this chapter we will detail the composition and operation

of the MTM and the MPM.

3.1. Model Construction

Figure 1. The OTMRL agent.

As showed in Figure 1, reinforcement learning agent

consists of two modules: the motion timing module (MTM)

and the motion parameter module (MPM). The MTM

 Machine Learning Research 2020; 5(1): 10-17 13

determines whether to act motion at the current moment

according to the current state (observation). If do (i.e. �� 	 1),

a set of motion parameters � is given by the MPM. The

simulation environment runs step by step according to the

action of the agent and returns the state observation � at the

next moment to the agent. When a simulation episode is

completed, reward
 is returned.

Figure 2. MTM architecture.

3.1.1. Motion Timing Module (MTM)

The motion timing problem is regarded as a discrete control

problem in the continuous state space. The MTM has a neural

network Actor-Critic structure as Figure 2.

Figure 3. Continuous MPM architecture.

Actor: A three-layer fully connected neural network with

parameters denoted by $, and the number of three-layer nodes

is the state observation dimension @/, A, 2 respectively. The

hidden layer uses the rectified linear unit (ReLU) function as

the activation function, and the output layer activation

function is a softmax function. The input is the observation �.

Outputs the probability value B���|�� of whether to act a

motion at this moment.

Critic: A neural network with parameters denoted by $C,

contains a fully connected hidden layer using ReLU activation

functions, and a linear output layer with a single output node.

Input the observation �, output the state value 2��� of �.

The Actor network determines whether the action should be

performed �� at each moment according to the input state �.

The Critic network computes its return estimates 2��� to the

given state � under current policies. The Critic network is

used for evaluating the merits of the action �� according to

the state before and after the action ��, to adjust the Actor

parameters $.

3.1.2. Continuous Motion Parameter Module (Continuous

MPM)

The continuous motion parameter problem is a continuous

control problem in the continuous state space. We use the DPG

method in the MPM whose structure is also Actor-Critic. The

structure is shown as Figure 3.

Actor: A neural network with parameters denoted by D

fully connected by three layers: input layer, hidden layer, and

output layer. The activation function of the hidden layer units

is the ReLU function. The output layer activation function is

the tanh function, and the output is a continuous variable in the

range of ��1, 1�. When giving the observation �, the motion

parameter � is calculated. As an off-policy algorithm, �

with noise is used as the behavior policy action, � without

noise is used as the target policy action.

Figure 4. Discrete MPM architecture.

Critic: A three-layer fully connected neural network with

parameters denoted by DC. The hidden layer uses the ReLU

function as the activation function. The output layer unit is a

linear activation unit. The network estimate the return

��, � � by the observation s and the motion parameter � .

The Actor network decides the motion parameter �

according to the input state �. A noise is added on the Actor’s

output for better exploration. There are two purposes of

training the Critic network. One is to estimate the rewards by

choosing � in state s to optimize behavioral policies.

Another is to provide return estimates for the MTM learning

progress.

3.1.3. Discrete Motion Parameter Module (Discrete MPM)

As shown in Figure 4, we use the Q-learning method with

artificial neural network approximation in the MPM for the

discrete motion parameter problem.

The Q network is a three-layer fully connected neural

network with parameters denoted by D , which contains a

hidden layer using ReLU activation functions, and a linear

output layer. The Q network fits the return of motion

parameter � on the input state �. The target policy action is

the corresponding motion parameter of the Q network’s

maximum output node. For exploration, the MTM uses

�-greedy policy as the behavior policy.

3.2. Model Mechanism

The MTM uses REINFORCE method, an on-policy

14 Boxuan Fan et al.: Timing and Parameter Optimization for One-time Motion Problem Based on

Reinforcement Learning

reinforcement learning method, which learn policy with current

policy experience. Motion parameter module uses an off-policy

DPG method, which can make full use of historical experience

to converge rapidly. The two modules are not completely

independent of one another and need to be coordinated carefully.

This section describes the coordinate mechanism.

3.2.1. Operational Mechanism of MTM

Initialize the simulation environment. In each step, the

MTM Actor decides �� with �. If �� 	 0, the agent won’t

act any motion at this moment, and then it would get a new

observation �
. If �� 	 1, the MPM Actor decides � with �.

The agentwould act a motion with parameter � , and then the

episode would terminate with reward
.

3.2.2. Operational Mechanism of Motion Timing Module

Critic: Update $C using TD method. The policy and the

value function are updated after every �FGHIJK time-step or

when a terminal state is reached. If �FGHIJK takes infinity, it

will become a Mont Carlo method. In a one-time motion

problem, the agent with non-terminal action won’t get reward.

So, To updates in a terminal state after acting a motion, we use

the value estimate from MPM as the reward
 of the last

state-action pair; the value of the state @ step before,

5����;L�, can be estimated as �L
. If the episode has not

terminated when updating $C , then 5����;L� can be

estimated as �L5���; $C�, by the value estimate of current

state 5���; $C�. We update $C by gradient descent:

Δ$C = O�P;Q�/.;0R��=
O0R = 2�5���; $C� − T� OQ�/.;0R�O0R (10)

where, T is estimated by

T = U �L
, for	terminal	��
�L5���; $C�, for	non − terminal	�� (11)

Actor: Update the policy referring to the Actor-Critic

method. In this problem, the advantage function is

(��� , ��; $, $C� = T − 5���; $C�. The update gradient can be

written as

Δ$ = �T − 5���; $C��\0 log	 � ���|��; $) (12)

Multithreading mechanism: For faster training and realizing

stable on-policy reinforcement learning, we apply the

asynchronous reinforcement learning framework.

Asynchronous actor-learners run in parallel environments to

explore separately. Each learner calculates Δ$ and Δ$^, and

update the global parameters by

$_`ab-` ← $_`ab-` + �-c�adΔ$ef (13)

$C
_`ab-` ← $C

_`ab-` + �cdg�gcΔ$C
ef (14)

And then pull the global parameters back to the local

parameters:

$ef ← $_`ab-` (15)

$C
ef ← $C

_`ab-`
 (16)

3.2.3. Operational Mechanism of MPM

The operating mechanism of the MPM is a simplified

reinforcement learning mechanism. For a one-time action

problem, an episode will terminate after the motion parameter

module gives the action parameters. Whether the motion

parameter space is continuous or discrete, there is no need for

TD calculation, because the value of the state-action pair is

equal to the reward obtained at the next moment.

For continuous MPM, we update DC by

ΔDC = ∇iR(
 − 5(�� , ��; DC))
 (17)

In this equation,
 is the actual return of 	{�� , ��} ,

independent with policies, environment or other factors.

Therefore, DC tends to converge quickly.

As to policy function learning, we tune D to maximize the

expected return	5	(�� , j	(��; D); DC).

ΔD	 = ∇i	5(�� , j(��; D); DC) (18)

For discrete MPM, we update D by reduce the Q value

estimation error.

ΔD	 = ∇i	(
 − �(�� , ��; D))
 (19)

Both DPG and DQN are off-policy reinforcement learning

algorithm that can learn from the experience not produced by

the current behavioral policy. During interacting with the

environment, state, action and reward are stored in the form of

triples in the Memory. With samples chosen randomly from

the memory, MPM parameters are trained with stochastic

gradient ascent algorithm.

3.2.4. Learning Procedure

See Pseudocode 1.

Pseudocode 1 OTMRL

Initialize thread step counter	� ← 1	

Initialize global step counter	k ← 1	

repeat

Reset gradients: ∆$	 ← 0 and ∆$C ← 0.

Synchronize thread-specific parameters $’ = $ and

$’C = $C

�nJIoJ = �
Get state ��

repeat

if ��� = 0 according to policy �(���|��; $)

Perform no motion

else

Perform a motion with parameter according to policy

p(� �|��; D)
Receive reward
�, restore < �� , � � ,
� > in memory

Update D and DC with memory

Calculate expected reward r with the MPM target policy.

end if

Receive new state �� + 1

� ← � + 1

k ← k + 1

until terminal �� or � − �/�-d� = �sIt

R =

 Machine Learning Research 2020; 5(1): 10-17 15

U 	
	for	terminal	�� 	
	5��� , $C�	for	non-terminal	�� 	//Bootstrap	fromlast	state	

for	x ∈ '� � 1, . . . �nJIoJ+	do

Accumulate gradients

wrt	$:	∆$ ← ∆$ � h$’log���g|�g; $��T � 5��g; $C��
Accumulate gradients wrt $C’:	∆$C 	← 	∆$C �∂�T � 5��g ; $�� / ∂$

end for

Perform asynchronous update of $ using ∆$ and of $C

using ∆$C.

until k r ksIt

4. Aircraft Bombing Problem

Although one-time motion is common in the real world,

there is no simulation environment can be used to test

algorithm directly. So we built an aircraft bombing

environment for algorithm testing.

The problem of aircraft bombing can be described as

follows: the aircraft flies to the target area, and the timing of

the bombing and the direction of the bomb dropping are

decided during the uniform linear flight. The goal is to make

the impact point as close as possible to the specified target

point. For easy to understand and discuss, we define the

bombing parameters as the relative position of the impact

point and the projectile position.

We designed two types of one-time motion problem. The

first type is the problem with continuous bombing vector

space. For example, in example 1, the bombing parameters

can take any two-dimensional vector with a length less than 1.

In this problem, the best policy is to drop the bomb toward the

target point in a distance less than 1 from the target point. If

the closest distance between the route and the target point is

greater than 1, the best policy is to drop with the maximum

vector toward the target point at the closest point in the track.

The other type is the problem with discrete bombing vector

parameter space, that is, the bombing parameters can only be

selected from several vectors.

In order to formalize aircraft bombing into reinforcement

learning tasks, we define a four-dimensional state space

� 	 �B, 2� , where B is a two-dimensional vector of the

aircraft position, whose value range is in a circle centered on

�0, 0�, and 2 is a two-dimensional vector of aircraft speed, a

unit vector with arbitrary direction. At each decision-making

moment, whether to drop a bomb at this moment should be

decided, written as �� (a 0-1 variable). If “yes”, the bombing

parameter � should also be given. We define two aircraft

bombing problems, named them the continuous bombing

parameter space �'� + = '∥ � ∥q 1+� problem and the

discrete bombing parameter space

�'� + 	 '�1, 0�, ��1, 0�, �0, 1�, �0, �1�+� problem. The

observation ~ is equal to the actual state � plus error �. The

reward is always zero, except in the end of the episode, it is the

negative distance between the dropping point and the target

point, i.e.
 	 ��B � ��. The episode will terminate in two

cases, one is that the aircraft performing a bombing action, and

the other is that the aircraft flying out of the bombing area.

5. Experiment

The initial position of the aircraft in the experiment is

randomly set in an annulus whose center is at the origin, with an

inner radius of 4 and an outer radius of 10. The flight direction

is toward a point randomly chosen on a circle centered on the

origin with a radius of 1. The aircraft speed is set to 1.

5.1. The Continuous Motion Space Problem

Figure 5. Performance curves for OTMRL in different step length. For each

we average over 10 experiments with learning rates α = 0.001.

16 Boxuan Fan et al.: Timing and Parameter Optimization for One-time Motion Problem Based on

Reinforcement Learning

Figure 6. Performance curves for OTMRL in different observation error.

First, we tested the cases with no observation error. The

decision-making step length takes various values. The error of

observation ~ is set to � 	 0 , and the delay from the

observation to the execution of the action is set to 1.5 s. The

reinforcement learning tasks are run using an agent composed

with the MTM and the Continuous MPM in step length of

d�=0.1 s, 0.2 s, 0.5 s, and 1 s, respectively. As shown in Figure

5, the agent can always learn a near optimal policy in

10,000episodes.

Figure 7. Comparison of Discrete OTMRL and A3C.

However, the MTM’s optimality is not as good as the MPM

which can quickly converge to the optimal policy. The reason

for the high accuracy of the MPM convergence is that the

sample distribution is concentrated and the return value is not

uncertain. The logic behind the MTM is more complicated.

The optimal policy is that the probabilities of executing

motion before the optimal timing are 0, and the probability at

the optimal timing is 100%. While, on the one hand, learning

to adjust the neural network parameters will affect the policies

in the entire space, making it impossible to converge to a

complex step function. On the other hand, judging whether it

is the optimal timing requires learning in the trial and error of

reinforcement learning, and the approximation and

self-expansion error in learning bring difficulties to learning

the optimal timing.

In the condition of d�=0.1 s, we set the observation errors

to � = 0, 0.1, 0.2. The errors of the estimation network are

shown in Figure 6. This also has an impact on the optimal

timing of the action and parameters. However, policies can

still converge to a near optimal one within 10,000 simulations,

as shown in Figure 5. It shows that the OTMRL method is

robust to observed noise.

5.2. The Discrete Motion Space Problem

We use the agent composed of the MTM and the Discrete

MPM to learn the task and compare it with the A3C algorithm.

The experimental results are shown in the Figure 7. Both the

two methods can converge to an approximate optimal policy,

while A3C requires more learning times to converge than the

method proposed in this paper. We believe that the main

reason may be that A3C treats doing nothing and executing

motion with a set of parameter equally. Its policy exploration

is blinder.

This structure conforms to the general idea of complex

control—hierarchical decomposition. For the control of the

one-time action, since the episode is terminated as soon as the

action is performed, the sample accumulated by the MPM

memory can accurately reflect the action value, and the

evaluation network can generally converge quickly.

6. Conclusion

Because both the timing and action parameters of the

motion are important, methods with manually splitting the

control element will cause problems. The OTMRL method

combines the motion timing decision of 0-1 variable with the

motion parameter decision of continuous variable to optimize

together and realize fast and stable convergence to an optimal

policy.

Reinforcement learning is currently the only machine

learning method that can directly learn optimal control

(function extreme value problem). However, the convergence

of reinforcement learning to continuous functional has not

been proved, and the method of adjusting parameters has not

been fully studied.

The design of the reward function, the inherent difficulty of

this reinforcement learning, will have an important impact on

the OTMRL learning. The basic requirement for the design of

reward functions is that there is a learnable gradient in the

state space. In this problem, on the one hand, the closer the

point is to the target point, the larger the reward, on the other

hand, the modulus of the action parameter is used as a penalty

factor to avoid the gradient disappearing within the large

optimal action timing, resulting in instability of policies.

Because of the bootstrapping nature of reinforcement

learning, using a neural network to express timing policies,

each time the parameter adjustment for one experiment will

affect the decision in other states. The initial state of each

episode is quite different, which makes the learning process

always attend to one thing and lose another. The smaller the

 Machine Learning Research 2020; 5(1): 10-17 17

step size is, the smaller the difference in returns between

adjacent steps, which makes it impossible to converge to the

optimal policy.

Acknowledgements

This work was supported in part by the National Natural

Science Foundation of China under Grant 61403397 and

Grant 61202332.

References

[1] Wen-yan Pang. Optimal Output Regulation of Partially Linear
Discrete-Time Systems Using Reinforcement Learning. CPCC
2019. 2019: 252.

[2] J. Jabłońska, Ł. Szumiec, J. R. Parkitna. Reinforcement
learning in a probabilistic learning task without time
constraints. Pharmacological Reports. 2019, 71 (6).

[3] Paulo C. Heredia, Shaoshuai Mou. Distributed Multi-Agent
Reinforcement Learning by Actor-Critic Method. IFAC Papers
On Line. 2019, 52 (20).

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M.
G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G.
Ostrovski. Playing Atari with Deep Reinforcement Learning.
Nature. 518 (7540), 529 (2015).

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, d. D. G.
Van, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M.
Lanctot. Human-level control through deep reinforcement
learning. Nature. 529 (7587), 484 (2016).

[6] Zhen-peng Zhou, K. Steven, Li Li, Z. Richard N, R. Patrick.
Optimization of Molecules via Deep Reinforcement Learning.
Scientific reports. 2019, 9 (1).

[7] G. A. Rummery, M. Niranjan. On-line Q-learning using
connectionist systems. vol. 37 (University of Cambridge,
Department of Engineering Cambridge, England, 1994).

[8] R. S. Sutton. Generalization in Reinforcement Learning:
Successful Examples Using Sparse Coarse Coding. in
International Conference on Neural Information Processing
Systems (1995). pp. 1038–1044.

[9] C. J. C. H. Watkins, P. Dayan. Q -learning. Machine Learning.
8 (3-4), 279 (1992).

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, M. Riedmiller. Playing Atari with Deep
Reinforcement Learning. Computer Science (2013).

[11] R. S. Sutton, A. G. Barto. Reinforcement learning: An
introduction (MIT press, 2018).

[12] R. J. Williams. Simple statistical gradient-following algorithms
for connectionist reinforcement learning. Machine Learning. 8
(3-4), 229 (1992).

[13] I. H. Witten. An adaptive optimal controller for discrete-time
Markov environments. Information & Control. 34 (4), 286
(1977).

[14] Sutton, Richard. Temporal credit assignment in reinforcement
learning. Phd Thesis University of Massachusetts. 34 (5), 601
(1984).

[15] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M.
Riedmiller. Deterministic policy gradient algorithms. in ICML
(2014).

