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Abstract: Baseball hitting, swatter swing and football catching, there are many tasks can be seen as a one-time action, whose 

goal is to control the timing and parameters of the action to achieve optimal results. Many one-time motion problems are difficult 

to obtain the optimal policy through model solving, and model-free reinforcement learning has advantages for such problems. 

However, although reinforcement learning has developed rapidly, there is currently no universal one-time motion problem 

algorithm architecture. Decomposing the one-time motion problem into the action timing problem and the action parameter 

problem, we construct a suitable reinforcement learning method for each of them. We design a combination mechanism that 

allows the two modules to learn simultaneously by passing the estimated value between the two modules while interacting with 

the environment. We use REINFORCE + DPG to solve the problem of continuous motion parameter space, and use 

REINFORCE + Q learning to solve the problem of discrete motion parameter space. To testing the algorithm model, we designed 

and realized an aircraft bombing simulation environment. The test results show that the algorithm can converge quickly and 

stably, and is robust to different time step and observation errors. 

Keywords: One-time Motion, Reinforcement Learning, Motion Control 

 

1. Introduction 

One-time motion problem, i.e., choosing a time and a set of 

parameters to perform the action according to the varying state, 

is a common and fundamental problem. When hitting a tennis 

ball, it is necessary to decide when to swing and the direction 

of the hit according to the state of the ball and the position of 

both sides; when hunting flies, the timing and the location of 

the swatting should be determined according to the position 

and speed of the fly. These all can be seen as a one-time 

motion, and there are many such one-time motions in a match 

or a mission. Generally, people perform actions with the best 

combination of timing and motion parameters, relying on their 

own experience. 

There are two kinds of approaches to the one-time motion 

problem with continuous space motion parameter space. First, 

discretize the motion parameters and merge with motion 

timing decisions as one discrete control problem – at each time 

step, decide not to perform motion at current time or to select a 

motion parameter for execution. This causes a problem. If 

discretize less values, the final reward may be different from 

the optimal strategy [1]. However, if the discretization takes 

more values, it is not easy to learn. Second, decompose the 

problem into a timing control problem and a parameter 

optimization problem, each controlled by an agent separately. 

The timing control agent only determines whether the action is 

currently performed, if yes, the action parameter is given by 

the parameter control agent. Control systems typically employ 

this solution, but used to be artificially segmented by model 

analysis. Generally, the optimal parameters for performing the 

action in each state are first determined, and then the timing of 

performing the action with the optimal parameters to obtain 

the optimal action effect is calculated according to the state 

change rule. This approach does not always work. On the one 

hand, a premise of this method is that the model is known, so it 

is unsuitable for the problem with unknown model; on the 

other hand, it may not be easy to artificially set the timing of 

the action and ensure its optimality. In this paper, we designed 

a reinforcement learning method to solve this problem. 

Reinforcement learning, as a model-free method, can learn 
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the best control policy autonomously by interacting with the 

simulation environment without manual setting. The current 

development of a variety of intensive learning methods 

provides a number of tools to support this problem through a 

machine learning approach [2, 3]. There are many successful 

applications reinforcement learning in autonomous 

decision-making and automatic control. It is well-known that 

DeepMind has used deep reinforcement learning methods to 

raise the agent ability beyond humanity in playing Atari video 

games [4] and playing chess [5]. The rest of this paper is 

organized as follows. We introduce the related background in 

section 2. Section 3 describe how to combine the 

REINFORCE and DPG (or Q learning) algorithm to realize a 

one-time motion reinforcement learning algorithm (OTMRL), 

the model structure and learning mechanism are described. 

The aircraft bombing problem which is design for algorithm 

test is introduced in Section 4. The simulation experiments 

and analyses are shown in section 5. Finally we give a 

summary and discuss the future improvement direction in 

Section 6. 

2. Background 

Instead of calculating with model directly, the 

reinforcement learning problem is to accumulate experience 

and learning an optimal policy by interacting with the 

environment [6]. 

Treat the one-time motion problem as a reinforcement 

learning problem: Discretize the continuous time into 

sequential time steps. At each time step, the agent determines 

the control signal that whether performs the motion and the 

motion parameters (if the motion is performed) based on the 

current state of observation, with the goal of maximizing the 

reward getting after the motion. In this section, related 

reinforcement learning algorithms will be introduced. 

2.1. Value-based Methods 

Agent using value-based method learns the value ����, �� 
of each state-action pair (or state) and selects actions based on 

its estimation. Action value ����, �� is the expected return 

starting from state �, taking action �, and thereafter following 

policy �. 

����, �� = 
��, �� + � ����
, �
�       (1) 

State-action pair value estimation based on temporal 

difference (TD) is a fundamental reinforcement learning 

method. It updates estimates directly with raw experience and 

value estimates of other states. Sarsa [7, 8] and Q-learning [9] 

are its two main algorithm types. 

In Sarsa, at each time step, the action �� is selected based 

on �-greedy policies which behave to get the maximum return 

most of the time, but instead select an action completely 

randomly with small probability �, then the training sample 

��� , �� , ����, 
����  is obtained, and the Q-value is updated 

according to formula (2). The Q-values in Sarsa are the action 

value estimates for �-greedy policies. 

���� , ��� ← ���� , ��� + ��
��� + �������, ����� −
���� , ����	                  (2) 

In Q-learning, the agent behaves same policies with Sarsa, 

but updates Q-values by a different calculation shown as 

formula (3). The Q-values in Q-learning are the action value 

estimates for pure greedy policies. 

���� , ��� ← ���� , ��� + ��
��� + �max	������, �� −
���� , ����                  (3) 

The policy used to generate data in Sarsa learning, which be 

termed as behavior policy, is same with the target policy which 

is for evaluation. This is called on-policy method. In 

Q-learning, they are different. The behavior policy tends to 

explore new states, while the target policy tends to exploit 

existing experience. So Q-learning is classified as an 

off-policy method. 

In one-time motion problem, it returns a reward only after 

the motion is completed, which is more suitable for using the 

Monte Carlo (MC) method—everytime an episode using the 

�-greedy policy is done, update ���� , ��� by formula (4) for 

each experienced state action pair ��� , ��� appearing in the 

episode according to the return �� , which is defined as 

formula (5), obtained after �. 
���� , ��� ← ���� , ��� + ���� − ���� , ����		  (4) 

�� = 
���. + �
�� + � 
��! +⋯	    (5) 

Dealing with the problem with continuous state space, an 

approximation method is needed. Common approximation 

methods include linear methods such as polynomial and 

Fourier basis, and nonlinear methods represented by neural 

networks. The recent influential deep reinforcement learning 

method, DQN [10, 4, 5], represents the state action value 

estimation based on the neural network approximation, and 

updates the value network by learning the gradient of TD error 

to the network parameters. 

2.2. Policy-based Method 

Although DQN rise to fame with human-level control in 

Atari games, the value-based learning method cannot solve 

the reinforcement learning problem with continuous action 

space. It should use the policy-based learning method, which 

parameterizes the action selecting function directly as 

���|�, $� = Pr'(� = �|)� = �, Θ� = $+ . A policy-based 

method does not use value functions to select actions, 

although might use them in policy parameters learning. For 

discrete motion space problems, policy approximation also 

has advantages in some aspects, such as the ability to obtain 

deterministic strategies, the ability to assign probabilities to 

actions arbitrarily, the approximation function to be simpler, 

and the ease of embedding prior knowledge [11]. 

REINFORCE [12] is a widely used policy gradient method. It 

belongs to the MC method because the strategy parameters are 

updated after each simulation. The parameter update formula is: 

$���= $�. + ��� ,��-.|/.,0.���-.|/.,0.�           (6) 
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where �� is the return. 

As a stochastic gradient method, the REINFORCE method 

has a good theoretical convergence property. By constructing 

the update formula, the desired update direction can be 

consistent with the gradient direction of the evaluate function, 

which ensures that the policy can converge to a local optimum 

with a small parameter � . However, update using 

REINFORCE lead to large variances and a slow learning 

speed. Adding a baseline is a commonly used improvement. 

The update formula is as follows: 

$���= $�. � ���� � 1����� ,��-.|/.,0.���-.|/.,0.�      (7) 

The baseline can be any function, even random. If only 

independent with the action, the expected value for learning 

would not be affected. Learning the state value estimates 

23�)� , 4� while performing the policy-based method and use it 

as the baseline, the variances of the update parameters can be 

greatly reduced. 

Algorithms in the MC form tends to learn slowly and 

inconvenient to online implementing or for continuing problems. 

Actor-Critic [13, 14] methods are a kind of TD policy gradient 

methods, which can eliminate these inconveniences. It uses the 

advantage function rather than �� � 1���� to help determine the 

direction and scale of the policy update. The advantage function 

is defined as formula (8), the return increment for �� performed 

under state �� compared to the current policy. The value estimate 

not only be used as a baseline 5����, but also provide ���� , ���, 
so it be called Critic. 

(��� , ��� 	 ���� , ��� � 5����          (8) 

The policy-based method provides a way to solving 

reinforcement learning problems in continuous action spaces. 

Instead of computing the probability of each action, we learn 

statistics of the probability distribution. For example, a 

parameterization policy with Gaussian distribution on 

one-dimensional action space as formula (9), the mean and 

standard deviation depend on a function of the state � and the 

policy parameter $: 

���|�, $�	 �
6�/,0�√ �
. exp :� �-;<�/,0��=

 6�/,0�= >     (9) 

Silver et al.[15] proposes the deterministic policy gradient 

(DPG) method that defines policy function as a map from 

states to actions in continuous spaces, and update by learning 

the gradient of the action value with respect to the action. The 

deterministic policy gradient is feasible as long as the policy 

function is derivable everywhere, and its learning converges 

faster than Actor-Critic methods. Deterministic strategy 

gradients are convenient for off-policy learning. Another 

advantage of the DPG method is it can be used as an off-policy 

learning method without importance sampling. 

3. OTMRL Algorithm 

In order to learn an approximate optimal control policy fast 

while guaranteeing the process convergent, it is necessary to 

carefully design the learning and control methods consisting 

of motion timing model (MTM) and motion parameter model 

(MPM). 

The motion parameter control is a one-time deterministic 

problem in each episode, which is equivalent to the 

deterministic continuous/discrete action space contextual 

bandits problem [14, 15]. The agent only needs to select the 

motion parameters according to the state, and then the 

environment immediately returns the bonus value without 

considering the result state. This part can be easily processed 

using the DPG method, and the return estimates with the 

optimal parameters which be computed by its Critic network 

can be used as the return for the behavior policy of the MTM. 

The motion timing control is a reinforcement learning 

problem with continuous states and binary actions, and the 

termination state is reached immediately when deciding to 

execute motion. This problem is a nonrecurrent Markov 

process problem, so using the Monte Carlo method avoids the 

non-convergence effect caused by bootstrap, without 

influencing the learning speed. However, the final reward is 

affected by the motion parameters which are selected by the 

MPM, instead of depending on the current timing control 

policy only, so even if the MTM uses the Monte Carlo method, 

the gradients for update is not calculated from actual return of 

the MTM’s policy with best motion parameter. 

Fortunately, on the one hand, if the parameter value 

estimates can quickly converge to relatively accurate level in 

learning, it can be ensured that the MTM policies converge 

robustly by using state-value estimates from the MPM as the 

MTM’s rewards. On the other hand, the sample correlation 

can be reduced by adopting multi-thread parallel learning. Its 

samples for learning simultaneously are produced from 

multiple episodes. 

In this chapter we will detail the composition and operation 

of the MTM and the MPM. 

3.1. Model Construction 

 

Figure 1. The OTMRL agent. 

As showed in Figure 1, reinforcement learning agent 

consists of two modules: the motion timing module (MTM) 

and the motion parameter module (MPM). The MTM 
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determines whether to act motion at the current moment 

according to the current state (observation). If do (i.e. �� 	 1), 

a set of motion parameters �  is given by the MPM. The 

simulation environment runs step by step according to the 

action of the agent and returns the state observation � at the 

next moment to the agent. When a simulation episode is 

completed, reward 
 is returned. 

 

Figure 2. MTM architecture. 

3.1.1. Motion Timing Module (MTM) 

The motion timing problem is regarded as a discrete control 

problem in the continuous state space. The MTM has a neural 

network Actor-Critic structure as Figure 2. 

 

Figure 3. Continuous MPM architecture. 

Actor: A three-layer fully connected neural network with 

parameters denoted by $, and the number of three-layer nodes 

is the state observation dimension @/, A, 2 respectively. The 

hidden layer uses the rectified linear unit (ReLU) function as 

the activation function, and the output layer activation 

function is a softmax function. The input is the observation �. 

Outputs the probability value B���|�� of whether to act a 

motion at this moment. 

Critic: A neural network with parameters denoted by $C, 

contains a fully connected hidden layer using ReLU activation 

functions, and a linear output layer with a single output node. 

Input the observation �, output the state value 2��� of �. 

The Actor network determines whether the action should be 

performed �� at each moment according to the input state �. 

The Critic network computes its return estimates 2��� to the 

given state � under current policies. The Critic network is 

used for evaluating the merits of the action �� according to 

the state before and after the action ��, to adjust the Actor 

parameters $. 

3.1.2. Continuous Motion Parameter Module (Continuous 

MPM) 

The continuous motion parameter problem is a continuous 

control problem in the continuous state space. We use the DPG 

method in the MPM whose structure is also Actor-Critic. The 

structure is shown as Figure 3. 

Actor: A neural network with parameters denoted by D 

fully connected by three layers: input layer, hidden layer, and 

output layer. The activation function of the hidden layer units 

is the ReLU function. The output layer activation function is 

the tanh function, and the output is a continuous variable in the 

range of ��1, 1�. When giving the observation �, the motion 

parameter �  is calculated. As an off-policy algorithm, �  

with noise is used as the behavior policy action, �  without 

noise is used as the target policy action. 

 

Figure 4. Discrete MPM architecture. 

Critic: A three-layer fully connected neural network with 

parameters denoted by DC. The hidden layer uses the ReLU 

function as the activation function. The output layer unit is a 

linear activation unit. The network estimate the return 


��, � � by the observation s and the motion parameter � . 

The Actor network decides the motion parameter �  

according to the input state �. A noise is added on the Actor’s 

output for better exploration. There are two purposes of 

training the Critic network. One is to estimate the rewards by 

choosing �  in state s to optimize behavioral policies. 

Another is to provide return estimates for the MTM learning 

progress. 

3.1.3. Discrete Motion Parameter Module (Discrete MPM) 

As shown in Figure 4, we use the Q-learning method with 

artificial neural network approximation in the MPM for the 

discrete motion parameter problem. 

The Q network is a three-layer fully connected neural 

network with parameters denoted by D , which contains a 

hidden layer using ReLU activation functions, and a linear 

output layer. The Q network fits the return of motion 

parameter �  on the input state �. The target policy action is 

the corresponding motion parameter of the Q network’s 

maximum output node. For exploration, the MTM uses 

�-greedy policy as the behavior policy. 

3.2. Model Mechanism 

The MTM uses REINFORCE method, an on-policy 



14 Boxuan Fan et al.:  Timing and Parameter Optimization for One-time Motion Problem Based on  

Reinforcement Learning 

reinforcement learning method, which learn policy with current 

policy experience. Motion parameter module uses an off-policy 

DPG method, which can make full use of historical experience 

to converge rapidly. The two modules are not completely 

independent of one another and need to be coordinated carefully. 

This section describes the coordinate mechanism. 

3.2.1. Operational Mechanism of MTM 

Initialize the simulation environment. In each step, the 

MTM Actor decides �� with �. If �� 	 0, the agent won’t 

act any motion at this moment, and then it would get a new 

observation �
. If �� 	 1, the MPM Actor decides �  with �. 

The agentwould act a motion with parameter � , and then the 

episode would terminate with reward 
. 

3.2.2. Operational Mechanism of Motion Timing Module 

Critic: Update $C  using TD method. The policy and the 

value function are updated after every �FGHIJK  time-step or 

when a terminal state is reached. If �FGHIJK takes infinity, it 

will become a Mont Carlo method. In a one-time motion 

problem, the agent with non-terminal action won’t get reward. 

So, To updates in a terminal state after acting a motion, we use 

the value estimate from MPM as the reward 
 of the last 

state-action pair; the value of the state @  step before, 

5����;L�, can be estimated as �L
. If the episode has not 

terminated when updating $C , then 5����;L�  can be 

estimated as �L5���; $C�, by the value estimate of current 

state 5���; $C�. We update $C by gradient descent: 

Δ$C = O�P;Q�/.;0R��=
O0R = 2�5���; $C� − T� OQ�/.;0R�O0R   (10) 

where, T is estimated by 

T = U �L
, for	terminal	��
�L5���; $C�, for	non − terminal	��   (11) 

Actor: Update the policy referring to the Actor-Critic 

method. In this problem, the advantage function is 

(��� , ��; $, $C� = T − 5���; $C�. The update gradient can be 

written as 

Δ$ = �T − 5���; $C��\0 log	 � ���|��; $)  (12) 

Multithreading mechanism: For faster training and realizing 

stable on-policy reinforcement learning, we apply the 

asynchronous reinforcement learning framework. 

Asynchronous actor-learners run in parallel environments to 

explore separately. Each learner calculates Δ$ and Δ$^, and 

update the global parameters by 

$_`ab-` ← $_`ab-` + �-c�adΔ$ef       (13) 

$C
_`ab-` ← $C

_`ab-` + �cdg�gcΔ$C
ef     (14) 

And then pull the global parameters back to the local 

parameters: 

$ef ← $_`ab-`               (15) 

$C
ef ← $C

_`ab-`
             (16) 

3.2.3. Operational Mechanism of MPM 

The operating mechanism of the MPM is a simplified 

reinforcement learning mechanism. For a one-time action 

problem, an episode will terminate after the motion parameter 

module gives the action parameters. Whether the motion 

parameter space is continuous or discrete, there is no need for 

TD calculation, because the value of the state-action pair is 

equal to the reward obtained at the next moment. 

For continuous MPM, we update DC by 

ΔDC = ∇iR(
 − 5(�� , ��; DC))
       (17) 

In this equation, 
  is the actual return of 	{�� , ��} , 

independent with policies, environment or other factors. 

Therefore, DC tends to converge quickly. 

As to policy function learning, we tune D to maximize the 

expected return	5	(�� , j	(��; D); DC). 

ΔD	 = ∇i	5(�� , j(��; D); DC)       (18) 

For discrete MPM, we update D by reduce the Q value 

estimation error. 

ΔD	 = ∇i	(
 − �(�� , ��; D))
        (19) 

Both DPG and DQN are off-policy reinforcement learning 

algorithm that can learn from the experience not produced by 

the current behavioral policy. During interacting with the 

environment, state, action and reward are stored in the form of 

triples in the Memory. With samples chosen randomly from 

the memory, MPM parameters are trained with stochastic 

gradient ascent algorithm. 

3.2.4. Learning Procedure 

See Pseudocode 1. 

Pseudocode 1 OTMRL 

Initialize thread step counter	� ← 1	 

Initialize global step counter	k ← 1	 

repeat 

Reset gradients: ∆$	 ← 0 and ∆$C ← 0.  

Synchronize thread-specific parameters $’ = $  and 

$’C = $C 

�nJIoJ = � 
Get state �� 

repeat 

if ��� = 0 according to policy �(���|��; $) 

Perform no motion 

else 

Perform a motion with parameter according to policy 

p(� �|��; D) 
Receive reward 
�, restore < �� , � � , 
� > in memory 

Update D and DC with memory 

Calculate expected reward r with the MPM target policy. 

end if 

Receive new state �� + 1 

� ← � + 1 

k ← k + 1 

until terminal �� or � − �/�-d� = �sIt 

R = 
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U 	
	for	terminal	�� 	
	5��� , $C�	for	non-terminal	�� 	//Bootstrap	fromlast	state	 

for	x ∈ '� � 1, . . . �nJIoJ+	do  

Accumulate gradients 

wrt	$:	∆$ ← ∆$ � h$’log���g|�g; $��T � 5��g; $C�� 
Accumulate gradients wrt $C’:	∆$C 	← 	∆$C �∂�T � 5��g ; $�� / ∂$ 

end for 

Perform asynchronous update of $  using ∆$  and of $C 

using ∆$C. 

until k r ksIt 

4. Aircraft Bombing Problem 

Although one-time motion is common in the real world, 

there is no simulation environment can be used to test 

algorithm directly. So we built an aircraft bombing 

environment for algorithm testing. 

The problem of aircraft bombing can be described as 

follows: the aircraft flies to the target area, and the timing of 

the bombing and the direction of the bomb dropping are 

decided during the uniform linear flight. The goal is to make 

the impact point as close as possible to the specified target 

point. For easy to understand and discuss, we define the 

bombing parameters as the relative position of the impact 

point and the projectile position. 

We designed two types of one-time motion problem. The 

first type is the problem with continuous bombing vector 

space. For example, in example 1, the bombing parameters 

can take any two-dimensional vector with a length less than 1. 

In this problem, the best policy is to drop the bomb toward the 

target point in a distance less than 1 from the target point. If 

the closest distance between the route and the target point is 

greater than 1, the best policy is to drop with the maximum 

vector toward the target point at the closest point in the track. 

The other type is the problem with discrete bombing vector 

parameter space, that is, the bombing parameters can only be 

selected from several vectors. 

In order to formalize aircraft bombing into reinforcement 

learning tasks, we define a four-dimensional state space 

� 	 �B, 2� , where B  is a two-dimensional vector of the 

aircraft position, whose value range is in a circle centered on 

�0, 0�, and 2 is a two-dimensional vector of aircraft speed, a 

unit vector with arbitrary direction. At each decision-making 

moment, whether to drop a bomb at this moment should be 

decided, written as �� (a 0-1 variable). If “yes”, the bombing 

parameter �  should also be given. We define two aircraft 

bombing problems, named them the continuous bombing 

parameter space �'� + = '∥ � ∥q 1+�  problem and the 

discrete bombing parameter space 

�'� + 	 '�1, 0�, ��1, 0�, �0, 1�, �0, �1�+�  problem. The 

observation ~ is equal to the actual state � plus error �. The 

reward is always zero, except in the end of the episode, it is the 

negative distance between the dropping point and the target 

point, i.e. 
 	 ��B � ��. The episode will terminate in two 

cases, one is that the aircraft performing a bombing action, and 

the other is that the aircraft flying out of the bombing area. 

5. Experiment 

The initial position of the aircraft in the experiment is 

randomly set in an annulus whose center is at the origin, with an 

inner radius of 4 and an outer radius of 10. The flight direction 

is toward a point randomly chosen on a circle centered on the 

origin with a radius of 1. The aircraft speed is set to 1. 

5.1. The Continuous Motion Space Problem 

 

 

Figure 5. Performance curves for OTMRL in different step length. For each 

we average over 10 experiments with learning rates α = 0.001. 
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Figure 6. Performance curves for OTMRL in different observation error. 

First, we tested the cases with no observation error. The 

decision-making step length takes various values. The error of 

observation ~  is set to � 	 0 , and the delay from the 

observation to the execution of the action is set to 1.5 s. The 

reinforcement learning tasks are run using an agent composed 

with the MTM and the Continuous MPM in step length of 

d�=0.1 s, 0.2 s, 0.5 s, and 1 s, respectively. As shown in Figure 

5, the agent can always learn a near optimal policy in 

10,000episodes. 

 

Figure 7. Comparison of Discrete OTMRL and A3C. 

However, the MTM’s optimality is not as good as the MPM 

which can quickly converge to the optimal policy. The reason 

for the high accuracy of the MPM convergence is that the 

sample distribution is concentrated and the return value is not 

uncertain. The logic behind the MTM is more complicated. 

The optimal policy is that the probabilities of executing 

motion before the optimal timing are 0, and the probability at 

the optimal timing is 100%. While, on the one hand, learning 

to adjust the neural network parameters will affect the policies 

in the entire space, making it impossible to converge to a 

complex step function. On the other hand, judging whether it 

is the optimal timing requires learning in the trial and error of 

reinforcement learning, and the approximation and 

self-expansion error in learning bring difficulties to learning 

the optimal timing. 

In the condition of d�=0.1 s, we set the observation errors 

to � = 0, 0.1, 0.2. The errors of the estimation network are 

shown in Figure 6. This also has an impact on the optimal 

timing of the action and parameters. However, policies can 

still converge to a near optimal one within 10,000 simulations, 

as shown in Figure 5. It shows that the OTMRL method is 

robust to observed noise. 

5.2. The Discrete Motion Space Problem 

We use the agent composed of the MTM and the Discrete 

MPM to learn the task and compare it with the A3C algorithm. 

The experimental results are shown in the Figure 7. Both the 

two methods can converge to an approximate optimal policy, 

while A3C requires more learning times to converge than the 

method proposed in this paper. We believe that the main 

reason may be that A3C treats doing nothing and executing 

motion with a set of parameter equally. Its policy exploration 

is blinder. 

This structure conforms to the general idea of complex 

control—hierarchical decomposition. For the control of the 

one-time action, since the episode is terminated as soon as the 

action is performed, the sample accumulated by the MPM 

memory can accurately reflect the action value, and the 

evaluation network can generally converge quickly. 

6. Conclusion 

Because both the timing and action parameters of the 

motion are important, methods with manually splitting the 

control element will cause problems. The OTMRL method 

combines the motion timing decision of 0-1 variable with the 

motion parameter decision of continuous variable to optimize 

together and realize fast and stable convergence to an optimal 

policy. 

Reinforcement learning is currently the only machine 

learning method that can directly learn optimal control 

(function extreme value problem). However, the convergence 

of reinforcement learning to continuous functional has not 

been proved, and the method of adjusting parameters has not 

been fully studied. 

The design of the reward function, the inherent difficulty of 

this reinforcement learning, will have an important impact on 

the OTMRL learning. The basic requirement for the design of 

reward functions is that there is a learnable gradient in the 

state space. In this problem, on the one hand, the closer the 

point is to the target point, the larger the reward, on the other 

hand, the modulus of the action parameter is used as a penalty 

factor to avoid the gradient disappearing within the large 

optimal action timing, resulting in instability of policies. 

Because of the bootstrapping nature of reinforcement 

learning, using a neural network to express timing policies, 

each time the parameter adjustment for one experiment will 

affect the decision in other states. The initial state of each 

episode is quite different, which makes the learning process 

always attend to one thing and lose another. The smaller the 
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step size is, the smaller the difference in returns between 

adjacent steps, which makes it impossible to converge to the 

optimal policy. 
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