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Abstract: This paper presents machine learning algorithms based on back-propagation neural network (BPNN) that employs 
sequential feature selection (SFS) for predicting the compressive strength of Ultra-High Performance Concrete (UHPC). A 
database, containing 110 points and eight material constituents, was collected from the literature for the development of 
models using machine learning techniques. The BPNN and SFS were used interchangeably to identify the relevant features that 
contributed with the response variable. As a result, the BPNN with the selected features was able to interpret more accurate 
results (r2 = 0.991) than the model with all the features (r2 = 0.816). The utilization of ANN modelling made its way into the 
prediction of fresh and hardened properties of concrete based on given experimental input parameters, whereby several authors 
developed AI models to predict the compressive strength of normal weight, light weight and recycled concrete. The steps that 
were are followed in developing a robust and accurate numerical model using SFS include (1) design and validation of ANN 
model by manipulating the number of neurons and hidden layers; (2) execution of SFS using ANN as a wrapper; and (3) 
analysis of selected features using both ANN and nonlinear regression. It is concluded that the usage of ANN with SFS 
provided an improvement to the prediction model’s accuracy, making it a viable tool for machine learning approaches in civil 
engineering case studies. 

Keywords: ANN, SFS, UHPC, Compressive Strength, Constituents 

 

1. Introduction 

Several types of machine learning algorithms such as 
Artificial Neural Network (ANN) have been used in different 
fields for the development of models that predict response 
parameters (experimental dataset) using certain independent 
input parameters. However, an experiment could have a large 
number of independent parameters most of which are 
redundant and have negligible effects on the response 
parameters. Therefore, an artificially intelligent (AI) 
selection algorithm is required to overcome this shortcoming 
and identify the underlying parameters that improve the 
model’s accuracy and simplify the computational complexity. 
The need for soft computing tools and models for the 
prediction of behavioural properties of engineering 
components, systems and materials is continuously rising. 
ANN emerged as one of soft computing paradigms that have 
been successfully applied in several engineering fields [1]. 
Specifically, ANN has been used to solve a wide variety of 

civil engineering problems [2–4]. Mainly, ANN was utilized 
to model the nonlinear behaviour of fatigue and creep of 
Reinforced Concrete (RC) members [5–8]. Recently, research 
interest has revolved around the development of ANN 
models to interpret the behaviour of structural materials such 
as steel, concrete, and composites [9– 14]. The utilization of 
ANN modelling made its way into the prediction of fresh and 
hardened properties of concrete based on given experimental 
input parameters, whereby several authors developed AI 
models to predict the compressive strength of normal weight, 
light weight and recycled concrete [14–17]. Afterwards, 
several authors began developing ANN models for the 
prediction of compressive strength of high performance 
concrete [18–21]. In this study ANN is employed with other 
machine learning techniques to identify the parameters that 
capture the compressive strength of UHPC using data 
collected from the literature. 
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2. UHPC and ANN Background 

The evolution of UHPC has lead structural engineers to 
improve the compressive strength, ductility, and durability of 
heavy loaded reinforced concrete (RC) structures. Several 
researchers have been investigating the mechanical behaviour 
of UHPC and its applications over the last four decade, 
where it was founded that UHPC exhibits a compressive 
strength that would range from 150 to 810 MPa [22, 23]. The 
underlying material constituents that enable such a superior 
mix are cement (up to 800 kg/m3), water/binder ratio that is 
lower than 0.20, high-range water-reducing (HRWR) 
admixture, very fine powders (crushed quartzite and silica 
fume), and steel fibers. 

[24]. Other researchers proposed different mixtures by 
adding fly ash and sand to reduce the amount of cement and 
silica fume, and acquire an optimum mix that is both 
economical and sustainable [25, 26]. However, most of the 
aforementioned mixtures result in exhausting a large amount 
of resources and performing tests on many batches, while 
barely predicting the strength of UHPC [19]. Therefore, 
researchers began conducting investigations on the utilization 
of machine learning techniques for the development of 
prediction models that could assist engineers and researchers 
to produce appropriate UHPC mixes. 

Ghafari et al. [19] used the back-propagation neural 
network (BPNN) and statistical mixture design (SMD) in 
predicting the required performance of UHPC. The objective 
of the study was to develop an ANN and SMD model to 
predict both the compressive strength and the consistency of 
UHPC with two different types of curing systems (steam 
curing and wet curing). As a result, BPNN proved to be more 
accurate than SMD in the prediction of compressive strength 
and slump flow of UHPC. Despite the statistical advantages 
of ANN, it has been long regarded as a black box that 
evaluates functions using input covariates and yielding 
outputs. Meaning, the model does not produce any analytical 
model with a mathematical structure that can be studied. 
Therefore, ANN should be utilized in detecting the dominant 
input parameters that have direct association with the ANN 
model. This will reduce the amount of parameters in the 
model, which will improve the computation complexity of 
the ANN model and simplify the derivation strategies of a 
mathematical model used to predict the compressive strength 
of UHPC. In addition prediction of compressive strength of 
high strength and high performance concrete was addressed 
by other researchers [20, 21]. 

There are several machine learning techniques, in the 
literature, that assist researchers in identifying the underlying 
covariates impacting the prediction model. Sequential feature 
selection (SFS) is a machine learning tool that sequentially 
selects features and inputs them into a fitting model (i.e. 
ANN) until the model’s error function increases. This 
technique makes use of ANN’s complex computation and 
allows the SFS tool to select and remove the influential and 
redundant parameters, respectively. The reduction in the 
covariate domain improves the accuracy of the fitting model, 

decreases its computation time, and facilitates a better 
understanding of the data processing [27]. There are two 
types of SFS classes – mainly filter method and wrapper 
method [28], where Zhou et al. [29] used the Markov Blanket 
with a wrapper method to select the most relevant features of 
human motion recognition. Four sets of open human motion 
data and two types of machine learning algorithms were 
used. The total number of features was reduced rapidly, 
where this reduction helped the algorithm demonstrate better 
recognition accuracy than traditional methods. Moreover, 
Rodriguez-Galiano et al. [30] used SFS when tackling 
ground water quality problems, where 20 datasets of 
parameters were extracted from a GIS database. Four types 
of machine learning algorithms were used as wrappers for the 
SFS. As a result, the Rain Forest machine learning algorithm 
used with SFS showed promising results, where only three 
features were sufficient enough in predicting the most 
accurate results. 

Table 1. Experimental Program. 

Variable Symbols Minimum Maximum 

Cement (kg/m3) C 383 1600 
Silica fume (kg/m3) SI 0 367.95 
Fly ash (kg/m3) FA 0 448 
Sand (kg/m3) S 0 1898 
Steel Fiber (kg/m3) SF 0 470 
Quartz Powder (kg/m3) QP 0 750 
Water (kg/m3) W 109 334.5 
Admixture (kg/m3) A 0 185 
f'c (MPa) fc 95 240 

   

3. Methodology of Modeling 

The steps that were are followed in developing a robust 
and accurate numerical model using SFS include (1) design 
and validation of ANN model by manipulating the number of 
neurons and hidden layers; (2) execution of SFS using ANN 
as a wrapper; and (3) analysis of selected features using both 
ANN and nonlinear regression. Table 1 presents the initial 
input variables together with their range (maximum and 
minimum values) and symbols for identifying them in this 
experimental program. 

3.1. Artificial Neural Network 

Artificial neural network (ANN) is a machine learning tool 
that imitates the learning functions of a human brain by 
providing a robust technique in classifying and predicting 
certain outcomes based on the model’s objective. There are 
two types of ANN models: (1) feed forward; and (2) feed 
backward. In this study, the feed backward ANN is used, 
where it is composed of input neurons, hidden neurons, bias 
units, wires containing randomly generated weights, and 
output neurons. The input neurons are responsible for 
containing the independent parameter presented by the user, 
the wires represent the randomly generated matrices called 
weights that manipulate the function’s slope or steepness, the 
hidden neurons map the weights variables using an activation 
function, and the bias units control the output function’s shift, 
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either upward or downward. Equation (1) shows the linear 
combination of mapping weights from each input neuron, via 
wires, to the hidden neurons. 

�� � ��∑ ∑ ��� � 	�

��


���
�
��� �                   (1) 

Where Xi represents the first input parameter of size R×1 
(R is the number of data points), θij is the weight of size 
R×(n+1), Oi is the value of the output neuron or prediction 
function hθ(X), and g(x) is the activation function. The bias 
unit is simulated by creating a column vector of size R×1 and 
assigning it with values of ones, where X0 and θi0 contain the 
bias values. 

3.2. Sequential Feature Selection 

SFS reduces the dimensionality of data by selecting only a 
subset of measured features to create a prediction model. SFS 
is composed of two components: the objective function, 
which is the criteria the algorithm follows when selecting the 
features (i.e. the NMSE), and the search algorithm, which are 
the methods of how the machine add/removes the features 
from the subset. There are two types of search algorithms: 
sequential forward selection and sequential backward 
selection. In this study, the previously verified ANN model 
was used as the objective function and the forward selection 
was used in selecting the relevant features. Figure 1 shows 
the algorithm SFS uses when performing forward selection. 

 
Figure 1. Foward Selection Algorithm. 

4. Ai Modeling for Prediction of 

Compressive Strength of UHPC 

4.1. Verification of ANN 

The ANN numerical solver, Levenberg-Marquardt, was 
verified by testing different number of neurons using a 
basis like the normalized mean square error (NMSE) to 
measure the error. The increment started from one neuron 
and ended with 15 neurons, where the model was analyzed 
10 times, for each increment, because the Levenberg-
Marquardt algorithm locates the local, and not the global, 
minimum of a function. Hence, for each neuron tested, ten 
NMSE values will be stored in a column vector, where 
each column vector will be averaged and plotted against 
its corresponding number of neuron(s). Figure 2 shows the 

plot of all the scenarios with the minimum point circled at 
11 neurons. Therefore, 11 neurons is, approximately, the 
number of neurons that is sufficient enough for BPNN to 
facilitate an accurate ANN model for the collected dataset. 

4.2. Execution of SFS 

The SFS algorithm was run 200 times to capture all 
possible combinations of independent features when using 
ANN. Table 2 tabulates the percentage of features that 
were used during the 200 trials. Based on the results of 
these trials, the most abundant combination during the 
SFS analysis, within a 20% threshold, was selected as the 
important parameters that contribute mostly in the model. 
In this study, four variables (Cement, Sillica Fume, 
Flyash, and Water) were selected as the most relevant 
features for the prediction model. Figure 3(a) and (b) 
present the architecture of both ANN models, before and 
after selection. 

 

Figure 2. Verification Curve for ANN. 

Table 2. SFS Results. 

Materials Percentage Used 

C 24% 
SI 33% 
FA 24% 
S 14% 
SF 6% 
QP 5% 
W 31% 
A 13% 

 

Figure 3. (a & b): ANN Before and After Selection. 
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5. Results and Discussions 

5.1. ANN Results 

The selected features, using SFS, were analyzed by the 
previous BPNN model. As a result, the model that used the 
selected features showed stronger agreement with the 
experimental results in contrast with that prior to the 
selection. Table 3 shows the statistical measurements 
calculated for both cases. It was observed that the r

2
 and 

NMSE before and after selection yielded 81.6% and 99.1%, 
respectively, and 0.0594 and 0.026, respectively. 

The correlation plots between the predicted and 
experimental results for the ANN models, with and without 
selected features using SFS, are summarized in Figure 4(a) 
presents the percent deviation, where an arbitrary percent 
deviation was plotted above and below the perfect fit line 
with a deviation value of ±20%. As a result, the ANN model 
with the relevant features was capable of predicting 89.6% of 
its values within the aforementioned boundaries, as opposed 
to the ANN model with all the features which predicted 
58.7% of its values within the boundaries. Figure 4(b) 
summarizes the compressive strength ratio between both 
ANN models, where the model with the selected features 
demonstrated a higher percentage of values (90.6%) ranging 
between 0.8 and 1.2 than the other model (63.6 %). 

 

(a) Percent Deviation of Predicted versus Experimental Values. 

 

(b) Ratios of Experimental and Predicted Values for Both ANN Models 

Figure 4. Comparison between Experimental and Predicted Values. 

Table 3. Statistical Measurements Before and After SFS. 

Statistics Measurements Before Selection After Selection 

r2 0.816 0.991 
NMSE 0.0594 0.026 

5.2. Linear Square Regression Analysis 

A linear regression model was developed using the Least 
Square Regression (LSR) method, where the analytical 
model consisted of the previously selected features. Table 4 
shows the coefficient values, with their corresponding 
symbols, for each UHPC constituent with the statistical 
measurements of the LSR model. The LSR model is a linear 
function and its form is shown in (2). 

fc = θ1C + θ2SI + θ3FA + θ4W                    (2) 
 

Table 4. LSR Coefficients. 

UHPC Coefficient Coefficients 
r2 NMSE 

Constituents Symbols Values 

C θ1 115.56   
SI θ2 23.97 

0.938 0.0830 
FA θ3 5.49 
W θ4 27.85    

Figure 5 summarizes the performance of the proposed 
model, where the model achieved an r2 and NMSE of 0.938 
and 0.0830, respectively. 

 

Figure 5. Summary of the Proposed Model’s Performance. 

 
Figure 6. Variation of compressive strength as a function of Fly Ash and 

Silica Fume. 
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5.3. Parametric Study 

Since the developed LSR model is capable of accurately 
predicting the experimentally measured compressive 
strength, a parametric study was conducted, using this model, 
to study the effect of Fly Ash and Silica Fume on the 
compressive strength of UHPC. Using Fly Ash quantities that 
range between 0-200 kg/m3 and Silica Fume quantities that 
range between 40-160 kg/m3 while fixing the quantity of 
cement at 1400 kg/m3 and water at 175 kg/m3, several plots 
showing the variation of strength of UHPC were generated as 
shown in Figure 5. It is observed from Figure 6 that there is 
noticeable increase in the compressive strength of UHPC 
with the increase in Flay Ash and more noticeable with the 
increase in Silica Fume. 

6. Conclusion 

This study was conducted to detect the correlation between 
the material constituents of UHPC and its compressive 
strength. BPNN was used and three major steps were 
executed: (1) verification of ANN; (2) application of both 
SFS; and NID, and (3) analysis of selected features using 
ANN and LSR. The SFS tool was used to select the relevant 
constituent that impacted have the most impact on the 
compressive strength of UHPC which are mainly Cement, 
Sillica Fume, Flyash, and Water. It can be concluded from 
this study that:  

1) The use of ANN with SFS reduced the number of input 
parameters needed to accurately predict the compressive 
strength of UHPC mix for the prediction of compressive 
strength, making it less computationally expensive.  

2) The use of ANN with selected input parameters 
improved the accuracy of prediction of compressive 
strength of UHPC and reduced the computational effort. 
The correlation coefficient (r

2
) before and after the use 

of SFS improved from 81.6% to 99.1% while the 
NMSE improved from 0.0594 to 0.026, respectively.  

3) The ANN model with the selected relevant input 
parameters also showed a lower deviation (89.6 %) than 
the ANN model with all the features (58.7%).  

4) LSR was implemented using the selected input parameters 
to develop an analytical model that can be used to 
accurately predict the compressive strength of UHPC. 
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