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Abstract: It is shown that fractional-order (FO) nonlinear systems can also show higher nonlinearity and complex dynamics. 

FO chaotic systems have wider applications in secure communication, signal processing, financial field due to FO chaos has 

larger key space and more complex random sequences than integer-order chaos. Thanks to the lack of the effective analytical 

methods and controller design methods of integer-order chaotic systems can not be applied directly to FO chaos systems, to 

control chaos of FO chaotic systems is a very interesting and difficult problem, especially for FO chaotic system with order 

α:1<α<2. Based on the stability theory of FO systems and the linear state feedback control, an LMI criterion for controlling a 

class of fractional-order chaotic systems with fractional-order α:1<α<2 is addressed in this paper. The proposed method can be 

easily verified and resolved by using the Matlab LMI toolbox. Moreover, the proposed controller is linear, easy to implement and 

overcome some defects in the recent literature, which have improved the existing results. The method employed in this letter can 

effectively avoid control cost and inaccuracy in the literatures, and can be be applied to FO hyperchaos systems and 

synchronization controller design of FO chaotic system. Theoretical analysis and numerical simulations are presented to 

demonstrate the validity and feasibility of the proposed methods. 
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1. Introduction 

The main property of chaotic dynamics is its critical 

sensitivity to initial conditions, which is responsible for 

initially neighboring trajectories separating from each other 

exponentially in the course of time. This feature would lead 

systems to unstable, performance-degraded, and even 

catastrophic situations. Therefore, it is considered as 

undesirable and should be eliminated in many cases. Due to its 

potential applications in various branches of engineering such 

as mechanical systems, electrical and electronic systems, 

chaos control has attracted increasing attention in recent years 

[1-4]. Many researchers and engineers have devoted their 

efforts to chaos control, including stabilization of unstable 

equilibrium and controlling the chaotic states to desired states. 

Some methods have been applied to deal with this problem, 

such as OGY method [5], the feedback control method [6], 

impulsive control [7], backstepping method [8], adaptive 

control [9], bang-bang control [10], sliding mode control [11], 

nonlinear control [12], active control [13], and many others. 

On the other hand, during the past several years, with the 

development of theory of fractional-order calculus, it has been 

surprisingly found that many FO differential systems also 

display complex bifurcation and chaos phenomena, for 

instance, FO Duffing’s oscillators [14], FO Chua’s circuit 

system [15], FO Rössler system [16], FO Chen system [17], 

FO Lorenz system [18], FO Lü system [19], FO Liu system 

[20], FO financial system [21], FO Volta’s system [22], FO 

hyperchaotic Chen system [23], FO hyperchaotic Lorenz 

system [24], FO hyperchaotic Rössler system [25], FO love 

model [26] and so on. Naturally, to control chaos in FO 

chaotic system has become a hot issue.  

Note that the proposed schemes in most of the previous 

works about chaos control, are too complex in design to 

implement in applications, meanwhile, some of these control 

schemes are not applicable to fractional-order chaotic systems. 

Compared with nonlinear control methods, due to the 
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simplicity in configuration and implementation, the linear 

feedback control is especially attractive and has been 

commonly adopted for practical implementations. It possesses 

a high value in application. On the other hand, most of the 

above mentioned works on chaos control all are dependent on 

the Lyapunov direct method. Due to the difference between 

fractional-order differential systems and integer-order 

differential ones, it is very difficult and inconvenient to 

construct Lyapunov functions for fractional-order systems. 

Some authors used linearization approach to achieve chaos 

control based on linear control [27-30], however, inaccuracy 

may be encountered.  

In this paper, the aim of the paper is to control chaos in 

fractional-order systems by using the economic, simply 

implemented control scheme and avoid error caused by 

linearization in many present literatures. Based on the stability 

theory of fractional-order differential system and the linear 

feedback control, chaos control of a class of chaotic 

fractional-order systems is considered, a LMI conditions is 

established, feedback gains could be found directly from the 

LMI formulation. It would be specially mentioned that control 

of FO system with order (1, 2) is discussed. To the best of our 

knowledge, there are few results on the issue. Finally, a 

numerical example is given to illustrate the effectiveness and 

usefulness of the proposed method.  

The remainder of this brief is organized as follows. In 

Section 2, problem description and some preliminary results 

are presented. In Section 3, main results are derived. Example 

and corresponding numerical simulation are shown in Section 

4. Finally, conclusions are drawn in Section 5.  

Notations: Throughout this paper, Rn and Rn×m , denote, 

respectively, the n-dimensional Euclidean space and the set of 

all n × m real matrices; MT denotes transpose of matrix M; 

The notation M > 0(𝑀 < 0)  means that the matrix M  is 

positive (negative) definite; Sym*M+ is used to denote the 

expression M + MT, and ⋆ is used to denote a block matrix 

element that is induced by transposition.  

2. Problem Description and Preliminaries 

The fractional-order deals with derivatives and integrals to 

an arbitrary order (real or, even, complex order). Note that the 

initial conditions of Caputo derivative differential equations 

with Caputo derivatives take on the same form as for 

integer-order differential, which have well understood 

physical meanings and more applications in modelling and 

analysis. Here, Caputo derivative is taken.  

Definition 1. The Caputo derivative of fractional order α of 

function x(t) is defined as follows:  
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Consider the following fractional-order chaotic systems  

    0 ,D x f x A A x x             (1) 

where  1 2, ,
T n

nx x x x R  denotes state vectors of the 

state system, : n nf R R  define nonlinear vector field in 

n-dimensional vector space, 0
n nA R  is a real coefficient 

matrix of the linear part of system (1),   n nA x R    is a 

matrix state variable, order :1 2   .  

Corresponding linear controlled fractional-order system is 

given by  

  0 ,D x A A x K x             (2) 

where Kx denotes linear state feedback controller, n nK R   

is the feedback gains.  

It can be seen from controlled system (2) that 

  n nA x R    is a matrix, and every element of the matrix is 

bounded for the boundedness of chaotic systems, thus, 

 A x  is regarded as a bounded perturbation item of 

coefficient matrix 0A  of system (2) and is of form: 

  M ij ij ij
n n n n

A x A   
 

             , where 0ij  , 

1 1ij   , M ij
n n

A 


    is the maximal perturbation 

scope matrix. In order to deal with the perturbation  A x , 

based on method presented in [31], controlled system (2) 

could be rewritten as follows  

 0 ,D x A K DFE x                (3) 

where 
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n n nn n
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11 1 1, 1n n
n n nn ijF H diag R         ， ， ， ， ， ， ， , 

211 1 1 1 1 1 , , ,n n n n
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n n
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
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 

， ， ， ，  

n n
ke R  denote the column vectors with the k-th element 

being 1 and all the others being 0.  

The aim of this work is to design a suitable feedback gain 

matrix K  such that controlled dynamical system (3) is 

asymptotically stable. To this end, the following lemmas need 
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to be introduced.  

Lemma 1 [32]. For fractional-order linear system with 

order : D x Ax   is asymptotically stable if and only if  

  arg ,
2

spec A


             (4) 

where n nA R   is a deterministic real matrix, spec (A) is the 

spectrum of A.  

Lemma 2 [33]. Let n nA R   be a real matrix. Then 

  arg
2

spec A


 , where, 1 2   if and only if there 

exists 0P   such that  
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    (5) 

Where 2    . 

Lemma 3 [34]. Let X and Y be matrices of appropriate 

dimensions, then the following inequality holds for 0  ， 

1 .T T T TX Y Y X X X Y Y               (6) 

Lemma 4 [35] (Schur complement). For a real matrix 
TM M , the following conditions are equivalent:  

  11 12

22

0
*

M M
i M

M
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 

, 

  11 0ii M  , 1
22 12 11 12 0TM M M M  ,       (7) 

  22 0iii M  , 
12

1
11 12 22 0TM M M M  . 

Remark 1. Many fractional-order chaotic systems could be 

expressed by (1). Examples include FO Chen system [17], FO 

Lorenz system [18], FO Lü system [19], FO Liu system [20], 

FO financial system [21], FO Volta’s system [22], FO 

hyperchaotic Chen system [23], FO hyperchaotic Lorenz 

system [24] and so on.  

3. Main Results 

In this section, a LMI conditions is presented for chaos 

control in fractional-order chaotic systems with 

fractional-order :1 2   .  

Theorem 1. Controlled system (2) with fractional-order 

 1 2    is asymptotically stable if there exists a 

symmetric positive definite matrix P , a matrix X , and a real 

scalar 0  , such that  
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           (8) 

where 

 11 22 0 0 sin ,T T TA P PA X X DD         

 12 0 0 cos ,T TA P PA X X       

2.     

Moreover, feedback gain matrix is given by 

1.K XP                    (9) 

Proof. Let  0A A K A x   , suppose that there exist 

symmetrical matrix 0P  , a matrix X , and scalars 0   

such that (8) and (9) hold, it follows that  
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By using Lemma 3, the following inequality holds for 0   

1
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Substituting (11) into (10), one obtains  
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 (12) 

By applying Lemma 4 (Schur complement) to (8) and 

combining with (12), it holds that  

   

   

sin cos
0

cos sin
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.    (13) 

It follows from Lemma 2 and (13) that controlled system (2) 

with the feedback gain (9) is asymptotically stable.  

Remark 2. Note that most of the existing results about 

control of fractional order systems are based on Lemma 1. 

Refs. [11-13, 36] adopted such as sliding control, active 

control, and nonlinear feedback control such that 

eigenvalues of the coefficient matrix of controlled systems 

are in a certain range, thereby controlling chaos in 

fractional-order systems. Although these methods are able to 

achieve better effect, control cost will be high and it is hard 

to implement. Refs. [27-30] attempted to overcome these 

shortages by using linear control. However, due to the 

coefficient matrix of nonlinear system usually contain 

system variables, it is not very easy to obtain eigenvalues of 

the coefficient matrix, therefore, they all used linearization 

approach to achieve such a goal, which may make inaccuracy 

in this instance. The method employed in this letter can 

effectively avoid control cost and inaccuracy. 

Remark 3. Linear matrix inequality (LMI) approach is an 

popular method to deal with stabilization of integer-order 

systems, but it has to rely more on constructing the suitable 

Lyapunov function, which has no application to 

fractional-order systems. There are few papers to consider 

stabilization of chaotic fractional-order systems by using LMI 

technique. It must be noted that the advantage of this approach 

is to obtain directly feedback gains from the LMI formulation 

in the MATLAB environment, which also improves the 

existing results. 

Remark 4. Some of the results about chaos control of 

fractional-order chaotic system reported in literatures all 

concentrated on the case of fractional-order : 0 1   , the 

case of fractional-order :1 2    is still given less 

concern.  

4. Numerical Example 

In this section, fractional-order chaotic Lorenz system with 

fractional-order 1.05   is taken as an example to verify 

and demonstrate the effectiveness of the proposed method. 

Fractional-order chaotic Lorenz system [18] is described by 

 1 2 1

2 1 1 3 2

3 1 2 3

D x a x x

D x bx x x x

D x x x cx







  


  


 

           (14) 

when the parameters are taken as 10a  , 28b  , 8 3c   and 

1.05  , system (14) exhibits chaotic behaviour as shown in 

Figure 1.  

The controlled system is defined as follows  

  0D x A A x K x              (15) 

where 

0

0

1 0
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a a

A b

c
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 
 
  

,   1

2

0 0 0

0 0

0 0

A x x

x

 
 

  
 
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Based on (3) and the boundedness of chaotic system, one 

obtains  

000000 0 00

000005 0 00

000000 0030

D

 
 

  
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’

000000 30 00
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000005 0 00

T

E

 
 

  
 
 

. 

Thus, by using Theorem 2 and the Matlab’s LMI toolbox, 

the feasible solution of (8) is given by  

88.0297 3.7848 4.8671

3.7848 252.1759 1.4968

4.8671 1.4968 84.5999

P

 
 

 
 
   

’ 

3

0.5557 3.2111 0.0767

10 3.2111 4.9989 0.0412

0.0767 0.0412 6.0018

X

  
 

   
 
   

’ 

795.3859  . 

Based on (9), feedback gain K is given as follows  

1

6.8236 12.8404 0.7416

35.7535 19.2978 1.9111

4.8015 0.1872 71.2234

K XP

  
 

    
 
    

. 

In the numerical simulations, the initial states of the controlled 

systems is taken as  1 0 4x  ,  2 0 2x  ,  3 0 11x  . Substituting 
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the feedback gain K  into the controlled system (14). Figure 2. 

shows that the Lorenz system can be stabilized to the origin with 

the linear control law. Figure 3 describes the control input.  
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Figure 1. Chaotic behaviour of fractional-order chaotic Lorenz system with the order 1.05  . 

 
Figure 2. The time response of the states for the controlled Lorenz system with the order 1.05  . 

 
Figure 3. Linear control input for stabilizing fractional-order chaotic Lorenz system with the order 1.05  . 
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5. Conclusion 

In this brief, a linear matrix equality condition is proposed 

to control chaos in fractional-order chaotic systems with order 

lying in (1, 2). The proposed method is economic and 

effective. The idea and the technique presented in this brief 

could also be easily extended to synchronize fractional-order 

chaotic systems.  
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