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Abstract: Assessing the stock price indices is the foundation of forecasting the market risk. In this paper, we derived a 

seemingly Black-Scholes parabolic equation. We then solved this equation under given conditions for the optimal prediction of 

the expected value of assets. 
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1. Introduction 

The problem associated with random behavior of stock 

exchange has been addressed extensively by many authors 

(see for example, Black and Scholes, 1973; and Black, et al., 

1991). The concept of “fractal world” was proposed by 

Mandelbrot in 1980’s and was based on scale-invariant 

statistics with power law correlation (Mandelbrot, 1982). 

Fang et al., (1994) examined the relevance of fractal 

dynamics in major currency futures market. Fractal dynamics 

are forms of dynamics characterized by irregular cyclical 

fluctuations and long term dependence. They estimated 

directly the fractal structure in currency futures prices based 

on a time series model of fractional processes. Based on the 

self-similarity property of fractal, Tokinaga and Moriyasu, 

(1997) forecasted the time series by the fractal dimension 

which was obtained via the wavelet transform. Xiong, (2002) 

also applied the wavelet to measure the fractal dimension of 

Chinese stock market. Muzy, et al., (2000) estimated the 

statistical self-similarity exponents from the data and made a 

quadratic fit for some low order moments. Several studies 

have examined the cyclic long-term dependence property of 

financial prices, including stock prices (Greene and Fielitz, 

(1977); Aydogan and Booth, (1988)). These studies used the 

classical rescaled range (R/S) analysis, first proposed by 

Hurst (1951) and later refined by Mandelbrot and Wallis, 

(1969) and Wallis and Matalas, (1970), among others. Using 

R/S analysis, Greene and Fielitz, (1977) studied 200 daily 

stock returns of securities listed on the New York stock 

exchange and they found significant long range dependence. 

A problem with the classical R/S analysis is that the 

distribution of its regression-based test statistics is not well 

defined. As a result, Lo (1991) proposed the use of a 

modified R/S procedure with improved robustness. The 

modified R/S procedure has been applied to study dynamic 

behavior of stock prices (Lo, 1991; and Cheung, et al., 1994). 

Teverovsky et al., (1999) and Willinger et al., (1999) 

identified a number of problems associated with Lo’s 

method. In particular, they showed that Lo’s method has a 

strong preference for accepting the null hypothesis of no long 

range dependence. This happens even with long-range 

dependent synthetic data. To account for the long-range 

dependence observed in financial data, Cutland et al., (1995) 

proposed to replace Brownian motion with fractional 

Brownian motion as the building block of stochastic models 

for asset prices. An account of the historical development of 

these ideas can be traced from Cutland et al., (1995), 

Mandelbrot, (1997) and Shiryaev, (1999). In this paper, we 

will derive a seemingly Black-Scholes parabolic equation. 

This equation is being solved under given conditions for the 

optimal prediction of the expected value of assets. 
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2. The Model 

Consider a portfolio comprising h unit of assets in long 

position and one unit of the option in short position. At time, 

T the value of the portfolio is 

ℎ� − �,                                       (1) 

measured by the fractal index ����	 − ����	 ≠ 0. 

After an elapse of time, ∆
, the value of the portfolio will 

change by the rate ℎ�∆� + ��∆
	 − ∆�  in view of the 

dividend received on h units held. By Ito’s lemma this equals 

ℎ���∆
 + ��∆� + ��∆
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1
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If we take 

ℎ = ��
�                                          (2) 

the uncertainty term disappears, thus the portfolio in this case 

is temporarily riskless. It should therefore grow in value by 

the riskless rate in force i.e. 

��ℎ�� + ℎ��	 − ����
 +
��
�� �� +

1
2
���
��� ������∆
 

= �ℎ� − �	!∆
. 
Thus 

�� ���� 	− ����
 +
1
2
���
��� ����� = ����� � − �	! 

So 

	��
�" + �!� − ��	 ��� + �

�
�#�
� # ���� = !�.            (3) 

Proposition 1: Let �� = 0 (where �� is the market price of 

risk), then the solution of equation (3), which coincides with 

the solution of 

��
�" + �

�
�#�
� # ���� = 0                        (4) 

with 

���, 
	 = 0,                             (5a) 

��� ,"	
� = 0	∀
,                           (5b) 

and �� is assumed constant, is given by 

V��, t	 = V)exp -.�/012#3# + λP6 78".(using equation (5a))  (6) 

with 

9 + :; 2<"
=# = 0 (using equation (5b)).          (7) 

Where � is the investment output, ! the discount rate, and �� the variance of the stock market price. 

Proof: Let �� = 0 (where ��  is the market price of risk), 

then equation (3) becomes 

��
�" + !� ��

� + �
�
�#�
� # ���� = !�.                (8) 

In order to remove the effect of the discount rate (!) from 

equation (8), we let ! = 0 and set 

� = 7.8"�>                                   (9a) 

and 

� = 7.8"�>.                                (9b) 

Hence equation (8) becomes 

��
�" + �

�
�#�
� # ���� = 0.                      (10) 

By the method of separation of variables, we assume a 

solution of the form � = ?��	@�
	. 
Hence 

�#�
� # = ?AA@,                              (11a) 

and 

��
�" = ?@A.                               (11b) 

Substituting equations (11a) and (11b) in equation (10) 

gives 

=# #
�

BCC
B = .DC

D = E                         (12) 

or 

@A = .�;D
=# #                                (13a) 

and 

?AA = E?.                                (13b) 

These are ordinary differential equations for ?	FGH	@ with 

IG@ = .�;
=# # 
 (using equation (13a)) and having solution 

@�
	 = �)7.#JK
2#

L# " .                           (14) 

Also 

?AA − E? = 0 (using equation (13b)) 

So that 9� = E and 9 = ±√E with solution 
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?��	 = 7O .                             (15) 

Hence, we obtain a special solution of the form 

���, 
	 = �)7PQ -.�; 2#=# 
 + 9�6.            (16) 

But 

��
�� = 0 

= �)97.�; 
2#

=# "7O + 4�)E�.S
�� 7.�; 2#"=# 7O  

= 9 + :; 2<"
=#  (as in equation (7)). 

Solving for � in the above equation gives 

�.S = .O=#
:;" , 

and 

� = T.:;"O=# U
V<
. 

Equating this result to equation (9b) gives 

7.8"�"W = X−4E
9�� Y
�S
 

and 

�"W = T.:;"O=# U
V
< 78".                           (17) 

Equating equation (9a) to equation (16) gives 

V��, t	 = V)exp -.�/012#3# + λP6 78"            (18) 

Proposition 2: Let �� = 0 (where �� is the market price of 

risk), then the solution of equation (3) where ��  is not a 

constant, coincides with the solution of 

��
�" + �

�
�#�
� # ���� = 0.                       (19) 

with 

���, 
	 = 0                             (20a) 

and 

��� ,"	
� = 0	∀
,                           (20b) 

is given by 

���, 
	 = �)7.V#=#;#"Z8"[\�OV + ]�O#^	        (21) 

with 

\9��OV.� + ]9��O#.� = 0 (using equation (20b)).   (22) 

Where � is the investment output, ! the discount rate, �� 

the variance of the stock market price, \ and ] are arbitrary 

constants. 

Proof: From equation (8), to equation (9b) we have 

equation (3) reduced to 

��
�" + �

�
�#�
� # ���� = 0.                          (23) 

By the method of separation of variables, let the solution 

of equation (23) be � = ?��	@�
	.  Hence, 
��
�" = ?@′  and 

�#�
� # = ?AA@ . Equation (23) becomes ?@A + �

� ?AA@���� = 0 . 

Therefore 

�
� ?AA@���� = −?@A.                          (24) 

By separation of variables equation (24) becomes 

�� BCCB = − �DC
=#D = E�.                          (25) 

From equation (25) we have 

�� ?AA? = E� 

��?AA − E�? = 0 

That is, 

�� _#B_ # − E�? = 0.                           (26) 

We then solve equation (26) using Euler’s substitution 

method. 

Let � = 7", then 

IG� = 
,	and 
_"
_ = �

 .                          (27) 

Also 

_B
_ = _B

_"
_"
_ = �

 
_B
_" ,                            (28) 

_#B
_ # = _

_ T� _B_"U = �
 
_
_ T_B_"U + _B

_"
_
_ T� U, 

and 
_#B
_ # = �

 # T_
#B
_"# − _B

_"U.                       (29) 

Equation (26) becomes 

_#B
_"# − _B

_" − E�? = 0.                       (30) 

Let ? = 7O"  be the solution of equation (30), hence ?A = 97O"; ?AA = 9�7O". Equation (30) becomes 

9�7O" − 97O" − E�7O" = 0. 
Our auxiliary equation becomes 

9� − 9 − E� = 0. 

Therefore  
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9� = �Z`�Z:;#
�                                   (31) 

and  

9� = �.`�Z:;#
� .                                 (32) 

From equation (27) we have IG� = 
, but ? = 7O", hence ? = �O . 
Our general solution becomes 

?��	 = \�OV + ]�O#.                        (33) 

From equation (25) we have 

− �DC
=#D = E�.                                   (34) 

The solution of equation (34) becomes 

@�
	 = �)7.V#=#;#".                           (35) 

But ���, 
	 = ?��	@�
	, from equations (33) and (35) we 

have 

���, 
	 = �)7.V#=#;#"[\�OV + ]�O#^.            (36) 

But 

��
�� = 0 

= �)7.��=#;#"[\9��OV.� + ]9��O#.�^ 
= \9��OV.� + ]9��O#.� (as in equation (22)). 

Solving for � in the above equation gives 

��OV.O#	 = −]9�\9�  

and 

� = T.aO#bOV U
V

cV2c# . 

Equating this result to equation (9b) gives 

7.8"�>" = X−]9�\9� Y
�OV.O#

 

and 

�>" = T.aO#bOV U
V

cV2c# 78".                        (37) 

Equating equation (9a) to equation (36) gives 

���, 
	 = �)7.V#=#;#"Z8"[\�OV + ]�O#^           (38) 

where \  and ]  are arbitrary constants; 9�  and 9�  are as 

defined in equations (31) and (32). 

Proposition 3: For �� ≠ 0, the solution of equation (3) is 

given as: 

���	 = Tdef#� U
g �\7OVhif##K + ]7O#hif##K �,          (39) 

where 

9� = − �
j ± k :

j# + l8
j#=# and 9� = ± �

jk4 + l8
=#.     (40) 

Proof 

We take 

m = ;
 ; ���	 = mgo�m	                      (41) 

Thus 

H�
H� = − E

�� = − 1E m� 

H�
H� =

H�
Hm .

Hm
H� 

= − 1E m��pmg.�o + mg HoHm 	 
= − �

; �pmgZ�o + mgZ� _q_r 	. 
Hence 

_#�
	_ # = _

_ �_�_r).
_r
_  

= − 1E m��p�p + 1	mgo + pmgZ� HoHm  

+�p + 2	mgZ� _q_r + mgZ� _#q_r# 	. 
In this case V is not dependent on	!. Substituting into the 

given differential equation we have 

!mgo = =#
� Tp�p + 1	mgo + pmgZ� _q_r + �p + 2	mgZ� _q_r +

mgZ� _#q_r# U + T8;r − ��U T.�; U �pmgZ�o+ mgZ� _q_r 	.   (42) 

Cancelling by mg  and collecting like terms we have 

0 = ��
2 m� H�oHm� +	

Ho
Hm X���p + 1	m − !m + ��E m�Y

+o ���2 p�p + 1	 − !p + p ��E m� − !s 

Or 

0 = =#
� m� _

#q
_r# +	_q_r 	m T���p + 1	 − ! + tV

; mU +
o T=#� p�p + 1	 − !�p + 1	 + p tV

; mU. 

Let 

p = 0 and = tV
; m.                             (43) 

We obtain 
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m� _#q_r# + 2m _q
_r − �q8

=# = 0.                      (44) 

Let 9� and 9� be the roots of the equation, then 

9� + 9� = −2m 

9�9� = − �8
r#=#.. 

Now, 

H�o
Hm� − �9� + 9�	 HoH� − 9�9�o = 0 

or 

H
Hm X

Ho
Hm − 9�oY = 9� XHoH� − 9�oY 

Then 

Ho
Hm = u, u = XHoH� − 9�oY 

Which gives u = �7O#j with solution 

7.OVjo = v� 7�OV.O#	jH� + ]                      (45) 

(Where C and B are arbitrary constants). 

Hence 

o��	 = \7OVj + ]7O#j                           (46) 

���	 = mgo�m	 	= TE�U
g -	\7OV; + ]7O#; 6 ���	 

= Tdef#� U
g �	\7OVhif##K + ]7O#hif##K �.                     (47) 

3. Conclusion 

The Models: equations (6), (21) and (39) suggest the 

optimal prediction of the expected value of assets under 

fractal scaling exponent �����	 − ����		 = def#
�  which we 

obtained. We derived a seemingly Black Scholes parabolic 

equation and its solution under given conditions for the 

prediction of assets values given the fractal exponent. 

Considering equation (6), we observed that when F =0, E = 0 , the equation reduces to ���, 
	 = �)7`8" .This 

means that the expected value is being determined by the 

interest rate ! and time 
 . If F = 4, E = 2xy� , equation (6) 

reduces to ���, 
	 = �)7PQ -.:ef#" 2#=# ± √2xy6 78", this also 

means that the growth rate depends on price, time, and 

interest rate. 

Considering equation (21), we observed that when our 

singularity strength, F = 0 , our fractal exponent, E = 0 , 

equation (21) becomes ���, 
	 = �)78"[\�OV + ]�O#^.  If 

our singularity strength, F = 4 , our fractal exponent, E = 2xy� , equation (21) reduces to 

���, 
	 = �)7.�=#efz"Z8"[\�OV + ]�O#^ . When x = 1 , we 

have ���, 
	 = �)7.�=#"Z8"[\�OV + ]�O#^. This means that 

the expected value depends on stock price, interest rate, and 

time. If 9�  and 9�  are positive, the stock price increases, 

hence the investment output increases. On the other hand, if 9�  and 9�  are negative, the stock price decreases and this 

leads to decrease in investment output. Considering equation 

(39), we also observed that when F = 0 , the equation 

becomes ���	 = 0 , this signifies no signal. If F = 4, 
equation (39) becomes ���	 = T�ef# U

g �\7OV#if#K + ]7O##if#K �, 

this implies that there is signal. We now further look at it 

when x = 1 to have ���	 = T� U
g {\7#cVK + ]7#c#K |. Hence, if 

9�	FGH	9�  are negative, the equation decays exponentially. 

On the other hand, if 9�FGH	9�  are positive, the equation 

grows exponentially. 
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