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Abstract: The aim of this paper is to investigate analytically the motion of oscillating dumbbell, two micro-spheres connected
by a spring, in a viscous incompressible fluid at low Reynolds number. The oscillating dumbbell consists of one conducting
sphere and assumed to be actively in motion under the action of an external oscillator field while the other is non-conducting
sphere. As result, the oscillating dumbbell moves due to the induced flow oscillation of the surrounding fluid. The fluid flow
past the spheres is described by the Stokes equation and the governing equation in the vector form for the oscillating dumbbell
is solved asymptotically using the two-timing method. For illustrations, applying a simple oscillatory external field, a systematic
description of the average velocity of the oscillating dumbbell is formulated. The trajectory of the oscillating dumbbell was found
to be inversely proportional to the frequency of the external field, and the results demonstrated that the oscillating dumbbell moves
in a circular path with a speed that decreases inversely with the length of the spring.
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1. Introduction
The study of particle motion in a viscous fluid is a key to

understanding the physical processes associated with particle
suspensions at low Reynolds number. It has been of interest to
scientists for many years and is still an active area of research
[2, 3, 7, 8, 24, 25, 27]. The interactions between particles in
the viscous fluid plays important roles in many applications in
medicine and technology, such as minimizing surgical invasion
and controlling drug delivery [13, 14, 16, 18, 20].

To successfully design a micro-robot, the motion of linked
two (or more) micro-spheres must be studied and formulated.
For example, the motion of dumbbells, in which two particles
linked with a thin rod of a fixed length, has been studied by
many researchers [1, 6, 12, 22]. In this article, we studied an
extended case, in which the length is no longer fixed but varied
between two lengths.

A conducting or active micro-sphere suspended in an
external oscillatory force tends to accelerate in the direction
of the applied external field, while the dumbbell moves due to

the local surrounding fluid velocity generated by the motion
of the active sphere. There is, however, a secondary effect
arising from the fact that the oscillating dumbbell has not
solely moved due to the external field, but its motion is also
distorted by the presence of the other sphere. The key question
is how does the surrounding fluid influence the motion of a
oscillating dumbbell; will it also change the direction the active
sphere moves, and if so, what trajectory does the oscillating
dumbbell follow? Does the size of the micro-spheres or the
length of the spring between the spheres have any effects on the
motion of the oscillating dumbbell? In an attempt to answer
these questions, we develop an analytical framework to study
the motion of oscillating dumbbell in Stokes flow driven by
an external oscillatory force. This analytical theory serves
as a preliminary investigation on the effect of an external
oscillatory field on the motion of a suspension of conducting
particles.

This paper aims to provide a systematic and explicit
description of a two-dimensional motion of oscillating
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dumbbell in Cartesian coordinates (X,Y ) and calculate its
average velocities. Two micro-spheres of radii Rν < 10−6

meter are considered submerged in a viscous fluid at low
Reynolds number, Re � 1, and suppose that one sphere
is passive and the other is active which is accelerated by an
external oscillatory field such as magnetic field [4, 9, 11, 17],
electric field e.g. [10] and molecular Brownian force [23].

Formulation of the problem leads us to study the motion
of an oscillating dumbbell with time-periodic forces. The
problem is described by the Stokes equation, where the fluid
inertial effect is neglected, and is solved by employing the
two-timing method [11]. The results present in general form
and discuss it in detail through an example. Treatment of the
problem is simple, but it can be considered as the basis for the
development of a full theory of suspension mechanics.

2. Formulation of Problem
Oscillating dumbbell, two solid spherical spheres connected

by a spring of stiffness k and length l is considered, see
Figure 1. The oscillating dumbbell involved two homogeneous
spheres; one of them is active and positively buoyant and the

other is passive and negatively buoyant. The active sphere
is driven by an external field which oscillates periodically
with constant frequency ω. Geometrically, the centers of the
spheres and the length of the spring are denoted by

Figure 1. Diagram of oscillating dumbbell.

x(1) =X +α, x(2) =X + β, l = x(1) − x(2), (1)

where X = (X,Y ) is the displacement vector of the system and it is considered a reaction center of the spring’s ends. We use
the subscript i, j = 1, 2 for Cartesian components of vectors and tensors and superscript µ, ν = 1, 2 to identify the spheres. The
vectors α, β are define as

α = αn = r1ln, β = βn = −r2ln, r1 = R2/(R1 +R2), r2 = R1/(R1 +R2) (2)

where n is unit vector along l such that n ≡ l/l and l =| l |.
The unit vectors n, n̂ and the angle ϕ are given by

n ≡
(

cosϕ
sinϕ

)
, n̂ ≡

(
- sinϕ
cosϕ

)
(3)

The oscillating dumbbell moves due to the fluid flow only;
where the forces exerted by the spring on the spheres can be
considered negligible, since the spring thickness is smaller in
comparison with the radius of spheres. Hence,

R1α+R2β = 0. (4)

The length of spring l is changing periodically due to the
oscillations of an active sphere which is given by

l = L+ εl̃(τ), τ = ωt, ε = const (5)

where L is a constant (averaged value) and l̃ is a 2π-
periodic function of τ with zero average value. Throughout
the paper, a ’tilde’ above a function denotes a 2π- periodic
function with zero mean value. We consider a high-frequency

asymptotic problem of oscillating dumbbell in a viscous
incompressible fluid which oscillates as a rigid body due to
an external field. The rigid-body oscillations are prescribed
as a two-dimensional transitional spatial displacement of fluid
particles, ξ̃(τ) = (ξ1(τ), ξ2(τ)), through the related induced
acceleration ξ̃tt = ω2ξ̃ττ , where the subscripts t, τ stand for
related partial time derivatives. This problem is classified as an
oscillating (non-inertial) system of reference, in which a fluid
at infinity is termed in a state of rest. In this frame, according
to Einstein’s principle of equivalence, there is an equivalence
of gravitational and inertial mass, and so there is no influence
of gravity field on the micro-spheres such that the equations of
fluid motion are standard [21]. Hence, the micro-spheres float
by the buoyancy force

f
(ν)
b = −M (ν)g̃(τ), (6)

which produces the potential energy of the spheres [22]

Π(ν) = −M (ν)g̃ · x(ν), Πsp = k(l − L)2/2 (7)
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where M (ν) is equal to the difference in the mass of a sphere
and that of displaced fluid and g̃(τ) is equivalent to the induced
acceleration

g̃(τ) = ω2 ξ̃ττ . (8)

The potential energy of the spring [11], is defined as

Πsp = k(l − L)2/2 (9)

The total potential energy of the oscillating dumbbell is
given by

Π = Π(1) +Π(2) +Πsp

=M g̃ · l+ k(l − L)2/2 (10)

where M ≡M (1) = −M (2).
The micro-spheres experience Stokes force which is

described by

f
(ν)
h = 6πηRν(x

(ν)
t − uµν), µ 6= ν (11)

where η is a viscosity of the fluid and u is the velocity of the
flow due to the movement of other sphere [15] which is defined
as

uµν =
3Rµ
4

[
x
(µ)
t + n(x

(µ)
t · n)

l

]
, (12)

such that u12 represents the fluid disturbance generated by
the movement of the first sphere on the second, while u21

represents the fluid disturbance generated by the movement
of the second sphere on the first. We assume that the fluid
flow past the micro-spheres is solely described by the Stokes
equation where all inertial terms are neglected, hence, kinetic
energy K ≡ 0.

The geometric configuration of the problem contains two
characteristic lengths: the length of the spring L and the radius
of the spheres R. Using the reference scales T , G, M and F ;
characteristic time-scale, constant of gravity, mass and Stokes
force where

R = (R1 +R2)/2, T = 1/ω, G = max | g̃(τ) |, F = 6πηRL/T (13)

The dimensionless variables (marked with asterisks) are chosen as

x = Lx∗, l = Ll∗, Rν = RR∗ν , t = Tt∗, g = Gg∗, (14)

f
(ν)
b = FF ∗b , f

(ν)
h = FF

∗(ν)
h . (15)

Four independent small parameters of the problem are

ε ≡ 1/ω∗, δ ≡ 3R/4L, γ ≡MG/F, K = kL/F ; ε, δ � 1, (16)

where ω∗ is the dimensionless frequency of the oscillation.
The substituting (13), (14) and (15) into (11), (6) and (10) yield the dimensionless form (all asterisks are omitted for brevity)

F
(ν)
h = −Rνx(ν)

t + δRµRνSx(µ)
t , (17)

Fb = −γ g̃, (18)
Π = γ g̃ · l+K(l − 1)2/2, (19)

S = Sij ≡
1

l
(δij + ninj), (20)

where δij is a Kronecker delta; δij = 1 when i = j and δij = 0 when i 6= j.
The oscillating dumbbell represents a mechanical system which can be described by choosing generalized coordinates as

q = (q1, q2, q3, q4) ≡ (X,Y, l, ϕ). (21)

To describe the motion of the oscillating dumbbell, we use the Lagrangian function L = L(q, qt) which is defined as [11]
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L(q, qt) = K −Π = −Π = −γ g̃ · l−K(l − 1)2/2. (22)

The Lagrange equations are

d

dt

∂L
∂qmt

− ∂L
∂qm

= Qm, Qm =

2∑
ν=1

2∑
j=1

F
(ν)
jh

∂x
(ν)
j

∂qm
(23)

where Q = (Q1, Q2, Q3, Q4) is the generalized external viscous force exerted by the fluid on the oscillating dumbbell and
subscript m = 1, 2, 3, 4 denoted the generalized coordinates.

Using the left part of (23) yield

Q1 = 0, Q2 = 0, Q3 = γ g̃ · ll +K(l − 1), Q4 = γ g̃ · lϕ. (24)

Using the right part of (23) yield

Q1 = F
(1)
1h + F

(2)
1h , Q2 = F

(1)
2h + F

(2)
2h , (25)

Q3 = r1 cosϕ F
(1)
1h + r1 sinϕ F

(1)
2h − r2 cosϕ F

(2)
1h − r2 sinϕ F

(2)
2h , (26)

Q4 = −r1 l sinϕ F
(1)
1h + r1 l cos ϕ F

(1)
2h + r2 l sinϕ F

(2)
1h (27)

−r2 l cos ϕ F
(2)
2h . (28)

Combining (24), (25), (26) and (28) yield:

F
(1)
1h + F

(2)
1h = 0, F

(1)
2h + F

(2)
2h = 0, (29)

r1cosϕF
(1)
1h + r1sinϕF

(1)
2h − r2cosϕF

(2)
1h − r2sinϕF

(2)
2h = γ g̃ · ll +K(l − 1), (30)

−r1 l sinϕ F
(1)
1 + r1 l cos ϕ F

(1)
2h + r2 l sinϕ F

(2)
1h − r2 l cos ϕ F

(2)
2h = γ g̃ · lϕ. (31)

Integrating (30) with respect to l and then simple simplification yield

l r1

(
F

(1)
1h

F
(1)
2h

)
·
(

cosϕ
sinϕ

)
− l r2

(
F

(2)
1h

F
(2)
2h

)
·
(

cosϕ
sinϕ

)
= γ g̃ · l+K(l − 1)2/2, (32)

which can be written in the form

(
r1F

(1)
h − r2F (1)

h

)
· n = γ g̃ · n+K(l − 1)2/2l. (33)

Similarly, (31) takes the following form

(
r1F

(1)
h − r2F (1)

h

)
· n̂ = γ g̃ · n̂. (34)

For future use, we write (29), (33) and (34) as

F
(1)
h + F

(2)
h = 0 (35)

F− · n = γg̃ · n+K(l − 1)2/2l, (36)
F− · n̂ = γg̃ · n̂, (37)

where
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F− =
(
R2F

(1)
h −R1F

(2)
h

)
/2R. (38)

The use of (17) into (38) yield

F− = −
(
R1R2lt + δR1R2S

(
R̂Xt +R1R2lt/R

))
/2R. (39)

The use of (17) into (35) and the use of (39) into (36) and (37) yield:

Xt − δR1R2S
(
Xt − R̂lt/4R

)
/R = 0 (40)(

lt + δS
(
R̂Xt +R1R2lt/R

))
· n̂ = −2Rγ g̃ · n̂/R1R2 (41)(

lt + δS
(
R̂Xt +R1R2lt/R

))
· n = −R

(
2γ g̃ · n+K(l − 1)2/l

)
/R1R2 (42)

where R̂ = R1−R2. An approximate solution to the equations
(40), (41) and (42) is presented in the next section using an
asymptotic procedure containing the two-timing method.

3. Two-timing Method and Asymptotic
Procedure

3.1. Definition

Two-timing method constructs an asymptotic solution to
the equation of motion (40), (41) and (42) by introducing
two dependent time-scales s and τ as mutually independent
variables, called slow and fast times, respectively, see Figure 2.
This method converts (40), (41) and (42) from an ODE with the
only independent variable t into a PDE with two independent
variables s, τ .

Figure 2. Diagram of the fast and slow motions.

The proper relations between s, τ and tis defined by [19]

τ = ωt, s = t/ωα; α > −1. (43)

For different values of α there are multi paths for the
asymptotic solution. In a rigorous asymptotic procedure ω −→
∞, there is a unique path can be lead to valid solution. If
such a limit brings valid an asymptotic result, then it is called
a distinguished limit. In this paper, we have chosen α = 1;
hence,

τ = ωt, s = t/ω, (44)

such that they lead to a valid asymptotic procedure of
successive approximations [5, 26].

3.2. Functions and Notation

For making further progress analytically, we introduce a
few convenient notation. We assume that any dimensionless
functions f(s, τ) (which could be scalar, vectorial, or tensorial
one) [2], has the following properties:

1. Subscripts τ and s stand for related partial time
derivatives.

2. f = f(s, τ) belongs to class O(1) such that f = O(1),
and all partial s and τ derivatives of f (required for our
consideration) are also O(1).

3. (iii) We consider only periodic function in τ {f ∈ P :
f(s, τ) = f(s, τ + 2π)}, where s-dependence is not
specified.

4. (iv) For arbitrary f ∈ P , the averaging-operation is

〈f 〉 ≡ 1

2π

∫ τ0+2π

τ0

f(s, τ) dτ ≡ f(s), ∀ τ0. (45)

The bar-function f = f(s) (or mean-function) does not
depend on τ .

5. (v) The tilde-function, f̃(τ)(or purely oscillating
function) represents a special case of P-function with
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zero average

〈f̃ 〉 = 0. (46)

A unique decomposition is valid

f = f + f̃ . (47)

6. (vi) A special notation f̃τ is the tilde-integration of
f̃(τ),

f̃τ =

∫ τ

0

f̃(s, σ) dσ − 1

2π

∫ 2π

0

(∫ µ

0

f̃(s, σ) dσ

)
dµ. (48)

The tilde-integration is inverse to the τ -differentiation

(
f̃τ
)
τ
≡
(
f̃τ

)τ
≡ f̃ . (49)

3.3. Successive Approximations

The choices τ = ωt and s = t/ω lead to the following chain
rule:

d/dt = ω ∂/∂τ + 1/ω ∂/∂s

= ω
(
∂/∂τ + ε2 ∂/∂s

)
; ε = 1/ω. (50)

However, we consider series expansions in ε, at most O(ε2)
and keep at most linear in δ terms. The unknownX is written
as series in ε

X(s, τ) =
(
X0 + X̃0

)
+ ε

(
X1 + X̃1

)
+ ε2

(
X2 + X̃2

)
+O(ε2) (51)

Differentiate (51) with respect to t gives

Xt =
(
X0t + X̃0t

)
+ ε

(
X1t + X̃1t

)
+ ε2

(
X2t + X̃2t

)
+O(ε2) (52)

The use of (50) into (52) yield

Xt = ω
((
X0τ + ε2X0s

)
+
(
X̃0τ + ε2X̃0s

))
+ ωε

((
X1τ + ...

)
+
(
X̃1τ + ...

))
+ωε2

((
X2τ + ...

)
+
(
X̃2τ + ...

))
+ ... (53)

and with similar expressions for l. The two-timing method study only the class of solutions with

X̃0(s, τ) = 0, l̃0 = 0 while X0(s, τ) 6= 0 and l0(s, τ) 6= 0. (54)

Physically, this constraint means that the amplitude of oscillations is small compared with the amplitude of the averaged
solution such that when X̃0(s, τ) 6= 0, the main term of velocity grows to infinity as ω −→∞.

Hence, (53) is given in the form

Xt = ω
(
εX̃1τ + ε2

(
X̃2τ +X0s

)
+O(ε2)

)
. (55)

Taylor series expansion of the tensor Sij (20) about l = l0 takes the form

Sij(l) = Sij(l0) + S′ij(l0) (l− l0) +O(ε2), (56)

where l− l0 = εl1 + ε2l2 +O(ε2). Hence, (56) can be written as

Sij(l) = Sij(l0) + εl1k
∂Sij(l0)
∂xk

+O(ε2), (57)

where l0, l1k, Sij(l0) and ∂Sij(l0)/∂xk are given by

l0 = x
(1)
0 − x

(2)
0 , l1k = x

(1)
1k − x

(2)
1k , (58)
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Sij(l0) =
1

l0
[δij + n0in0j ], n0 = l0/l0; l0 =| l0 |, (59)

∂Sij(l0)
∂xk

=
1

l20
(−δijn0k + δikn0j + δjkn0i − 3n0in0jn0k) . (60)

For future use, we write the first and second terms in the right-hand side of (57) as

S0 = Sij(l0), S1 = S1ij(l0) = l1k
∂Sij(l0)
∂xk

, (61)

The use of (55) and (57) into the system (40), (41) and (42) yield

εX̃1τ + ε2(X̃2τ +X0s) +O(ε2)− δR1R2

R
(S0 + εS1 +O(ε2))(εX̃1τ

+ε2(X̃2τ +X0s) +O(ε2))− R̂

4R
(εl̃1τ + ε2(l̃2τ + l0s) +O(ε2)) = 0 (62)

[εl̃1τ + ε2(l̃2τ + l0s) +O(ε2) + δ(S0 + εS1 +O(ε2))(R̂(εX̃1τ + ε2(X̃2τ +X0s) +O(ε2))

+
R1R2

R
(εl̃1τ + ε2(l̃2τ + l0s) +O(ε2)))] · n̂0 = ε

−2Rγ
R1R2

g̃ · n̂0 (63)

[εl̃1τ + ε2(l̃2τ + l0s) +O(ε2) + δ(S0 + εS1 +O(ε2))(R̂(εX̃1τ + ε2(X̃2τ +X0s) +O(ε2))

+
R1R2

R
(εl̃1τ + ε2(l̃2τ + l0s) +O(ε2)))] · n0 = ε

−R
R1R2

(
2 γ g̃ · n0 +K(l − 1)2/l

)
(64)

The successive approximations of (62), (63) and (64) lead to:
terms of order ε0 give the identities 0=0. Terms of order ε yield

X̃1τ = δR1R2S0(X̃1τ − R̂l̃1τ/4R)/R, (65)

[
l̃1τ + δS0(R̂X̃1τ +R1R2l̃1τ/R)

]
· n̂0 =

−2Rγ
R1R2

g̃ · n̂0, (66)

[
l̃1τ + δS0(R̂X̃1τ +R1R2l̃1τ/R)

]
· n0 =

−2R
R1R2

(
γ g̃ · n0 +K(l − 1)2/2l

)
. (67)

The use of (65) into (66) and (67), keep at most linear in δ, yield

[
l̃1τ + δS0R1R2l̃1τ/R

]
· n̂0 =

−2Rγ
R1R2

g̃ · n̂0, (68)

[
l̃1τ + δS0R1R2l̃1τ/R

]
· n0 =

−2R
R1R2

(
γ g̃ · n0 +K(l − 1)2/2l

)
. (69)

Terms of order ε2 yield

X̃2τ +X0s − δ
R1R2

R
S0(X̃2τ +X0s −

R̂

4R
(l̃2τ + l0s))− δ

R1R2

R
S1(X̃1τ −

R̂

4R
l̃1τ ) = 0 (70)
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[l̃2τ + l0s + δS0(R̂(X̃2τ +X0s) +
R1R2

R
(l̃2τ + l0s)) + δS1(R̂X̃1τ +

R1R2

R
l̃1τ )] · n̂0 = 0 (71)

[l̃2τ + l0s + δS0(R̂(X̃2τ +X0s) +
R1R2

R
(l̃2τ + l0s)) + δS1(R̂X̃1τ +

R1R2

R
l̃1τ )] · n0 = 0 (72)

The use of averaging procedure (45) and (46) into (70), (71) and (72) yield

X0s − δ
R1R2

R
S0X0s − δ

R1R2R̂

4R2
S0l0s + δ

R1R2R̂

4R2
〈S1l̃1τ 〉 = 0 (73)

(
l0s + δR̂S0X0s + δ

R1R2

R
S0l0s + δR̂〈S1X̃1τ 〉+ δ

R1R2

R
〈S1l̃1τ 〉

)
· n̂0 = 0 (74)

(
l0s + δR̂S0X0s + δ

R1R2

R
S0l0s + δR̂〈S1X̃1τ 〉+ δ

R1R2

R
〈S1l̃1τ 〉

)
· n0 = 0 (75)

The equation (73) can be written as

X0s = δ
R1R2

R
S0X0s + δ

R1R2R̂

4R2
S0l0s − δ

R1R2R̂

4R2
〈S1l̃1τ 〉 (76)

The use of (65) and (76) into (74) and (75), keep at most
linear in δ, yield

(
l0s + δ

R1R2

R
S0l0s + δ

R1R2

R
〈S1l̃1τ 〉

)
· n̂0 = 0 (77)

(
l0s + δ

R1R2

R
S0l0s + δ

R1R2

R
〈S1l̃1τ 〉

)
· n0 = 0 (78)

The system of equations, (77) and (78) lead to

l0s + δ
R1R2

R
S0l0s + δ

R1R2

R
〈S1l̃1τ 〉 = 0 (79)

which can be written as

l0s = −A−1δ
R1R2

R
〈S1l̃1τ 〉 (80)

where the matrix A = I + δR1R2S0/R such that I is the
identity matrix. Using simple algebraic transformation, the
inverse matrix of A is given by

A−1ik = (1− δR1R2

Rl
)δik − δ

R1R2

Rl
n0in0k (81)

The use of (81) into (80), keep at most linear in δ, yield

l0s = −δ
R1R2

R
〈S1l̃1τ 〉 (82)

The substituting (82) into (76), keep at most linear in δ, yield

X0s = −B−1 δ
R1R2R̂

4R2
〈S1l̃1τ 〉 (83)

where the matrix B = I − δR1R2S0/R. The inverse matrix
of B is given by

B−1ik = (1 + δ
R1R2

Rl
)δik + δ

R1R2

Rl
n0in0k (84)

The use of (84) into (83), keep at most linear in δ, yield

X0s = −δ
R1R2R̂

4R2
〈S1l̃1τ 〉 (85)

Expressions (85) still contain unknown functions 〈S1l̃1τ 〉,
which can be determined from (60) and (61). Hence,

X0s = −δ
R̂ γ2

l2R1R2
〈g̃τ g̃〉n0 (86)

which represents the main result of this paper.
Equation (86) shows that the oscillating dumbbell moves

with a constant velocity in the fixed direction n0. It is clear
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that X0s is inversely proportional to the length of the spring
l and it does not depend on the spring stiffness k; and in the
limit as length l −→∞, thenX0s −→ 0.

Integrating of (86) lead to the displacement vector

X0 = −δ U n̂0 +C or (X0 −C)2 = δ2U2 (87)

where U = R̂ γ2 〈g̃τ g̃〉 /l2R1R2 andC is a vectorial constant
of integration. The equality (87) represents that X0 changes
along a circular path of radius δ U .

It is interesting that the average velocity X0s can be
arranged by appropriate choice of the induced acceleration,
g̃(τ).

3.4. An Illustrative Example

Let us consider a particular example

g̃(τ) =

(
a sin τ
b cos τ

)
(88)

where a and b are constants. The use of the integral (48) gives

g̃τ (τ) =

(
−a cos τ
b sin τ

)
, (89)

and thus

g̃τi g̃k =

(
−a2 sin τ cos τ −ab cos2 τ
ab sin2 τ b2 sin τ cos τ

)
. (90)

Calculating 〈g̃τi g̃k〉 using the definition of average (45)
yields

〈g̃τi g̃k〉 =
ab

2

(
0 −1
1 0

)
. (91)

Substituting (91) into (86) gives

X0s = −δ
R̂ γ2 a b

2R1R2l2
n0 (92)

Integrating of (92) leads to

X0 = −δλ n̂0 +C (93)

where λ = Ua b/2.
In this paper, we consider motions (40) with large ω where

all functions and its derivatives belongs to class O(1). Hence,

C = (a− δP, b− δP ), where p = R̂γ2ab/2R1R2l
2. (94)

The use of (58) and (59) lead to

n̂0 = (−sinφ, cosφ) where φ = ϕ0. (95)

(a) ω = 3 (b) ω = 5 (c) ω = 10

Figure 3. Trajectory of the oscillating dumbbell for different ω.

The slow time scale s = t/ω implies that in order to obtain
dimensionless trajectory of the oscillating dumbbell we have
to multiplyX0 by 1/ω.

The trajectory of oscillating dumbbell for different
frequencies is plotted in Figure 3. It is clearly shown that
the circular path of the oscillating dumbbell is decreased as
the frequency increased which a small oscillation leads to
a large motion of the surrounding fluid. This result agrees
with the classical studies of the oscillatory motion of particle
suspensions at low Reynolds numbers [12, 13].

4. Conclusion

In this paper, we investigated analytically the dynamics
of two micro-spheres, that are elastically connected by a
spring, one of them is magnetized and driven by an external
oscillator field. We constructed an asymptotic procedure with
the dimensionless inverse frequency ε = 1/ω and derived the
average velocity of the system using the two-timing method.
Our choice of slow time s = εt and fast time τ = t/ε
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lead to a result that agrees with the experimental studies of
an oscillating sphere in a viscous fluid [7, 12]. It shows the
strength and analytical simplicity to describe the oscillatory
motion of the dumbbell at low Reynolds number. It is worth
noting that the average velocities of the oscillating dumbbell
is given in the most general form which could be applicable to
study a full three-dimensional problem.
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