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Abstract: In this paper, present solution of one-dimensional linear parabolic differential equation by using Forward 

difference, backward difference, and Crank Nicholson method. First, the solution domain is discretized using the uniform mesh 

for step length and time step. Then applying the proposed method, we discretize the linear parabolic equation at each grid point 

and then rearranging the obtained discretization scheme we obtain the system of equation generated with tri-diagonal 

coefficient matrix. Now applying inverse matrixes method and writing MATLAB code for this inverse matrixes method we 

obtain the solution of one-dimensional linear parabolic differential equation. The stability of each scheme analyses by using 

Von-Neumann stability analysis technique. To validate the applicability of the proposed method, two model example are 

considered and solved for different values of mesh sizes in both directions. The convergence has been shown in the sense of 

maximum absolute error (E
∞
) and Root mean error (E

2
). Also, condition number (K(A)) and Order of convergence are 

calculated. The stability of this Three class of numerical method is also guaranteed and also, the comparability of the stability 

of these three methods is presented by using the graphical and tabular form. The proposed method is validated via the same 

numerical test example. The present method approximate exact solution very well. 

Keywords: Linear Parabolic Equation, Implicit Crank Nicholson Method, Root Mean Square Error, Condition Number, 

Order of Convergence 

 

1. Introduction 

Numerical analysis is a subject that involves 

computational methods for studying and solving 

mathematical problems. It is a branch of mathematics and 

computer the science that creates, analyzes, and implements 

algorithms for solving mathematical problems numerically 

[2, 13]. Also, it’s widely used by scientists and engineers to 

solve some problems. Such problems are formulated in terms 

of an algebraic equation, transcendental equations, ordinary 

differential equations and partial differential equations [7, 

16]. Numerical analysis is also concerned with the theoretical 

foundation of numerical algorithms for the solution of 

problems arising in scientific applications [7]. 

Partial Differential Equations (PDEs) are mathematical 

equations that are significant in modeling physical 

phenomena that occur in nature. Applications of PDEs can 

be found in physics, engineering, mathematics, and 

finance. Examples include modeling mechanical vibration, 

heat, sound vibration, elasticity, and fluid dynamics. 

Although PDEs have a wide range of applications to real-

world problems in science and engineering, the majority 

of PDEs do not have analytical solutions. It is, therefore, 

important to be able to obtain an accurate solution 

numerically. Many computational methods have been 

developed and implemented to successfully approximate 

solutions for mathematical modeling in the application of 

PDEs. In order to make use of mathematical models, it is 

necessary to have solutions to the model equations. 

Generally, this requires numerical methods because of the 

complexity and number of equations [17, 20]. The 

scientists in the field of computational mathematics are 

trying to develop more accurate numerical methods by 

using computers for further application. Same of this 
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method are forward difference method, backward 

difference method crank Nicholson method. Due to the 

wide range of the application of the one dimensional 

linear parabolic equation, several numerical methods have 

been developed. Even though many numerical methods 

were applied to solve these types of equations. 

Accordingly, more efficient and simpler numerical 

methods are required to solve linear parabolic equation. 

Most of the researchers have studied the numerical 

solutions of1Dheatequation. In [1] presented Numerical 

solutions of a one-dimensional linear parabolic Equation 

together with initial condition and Dirichlet boundary 

conditions. In [4] presented the Numerical Simulation of 

one-dimensional Heat Equation by us-ing B-Spline Finite 

Element Method. In [8] they used Chebyshev Wavelets 

Method for obtaining a numerical solution of the One-

Dimensional Heat Equation. In [3] presented the 

numerical solution of 1D heat with Neumann and Dirichlet 

boundary conditions. [10] also developed an explicit 

method for solving inhomogeneous heat equation in free 

space, following the time evolution of the solution in the 

Fourier domain. In [9] solved the 1D heat equation by 

using double interpolation. They used finite difference 

method for the double interpolation method to solve the 

1D heat equation. In [18] solved parabolic partial 

differential equations using radial basis functions and 

Application to the heat equation. They used the Gaussian 

radial basis functions for obtaining the solution of the heat 

equation. Even though the method is capable of 

approximating the heat equation, they failed to produce 

the solution for the relatively small value of shape 

parameters. Since Gaussian radial basis functions are low 

accuracy than both Multiquadraic Radial Basis Function 

(MQ-RBF) and Thin Plate Spline Radial Basis Function 

(TPS-RBF) in an approximation of a function by 

interpolation process [6]. 

However, still, the accuracy and stability of the method 

need attention because of the treatment of the method used to 

solve the linear type of PDE equation is not trivial 

distribution. Even though the accuracy and stability of the 

aforementioned methods need attention, they require large 

memory and long computational time. So the treatments this 

method presents severe difficulties that have to be addressed 

to ensure the accuracy and stability of the solution. To this 

end, the aim of this paper is to develop the accurate and 

stable three methods forward difference, Backward 

difference and Crank Nicholson numerical method that is 

capable of producing a solution of linear type PDEs equation 

and approximate the exact solution. The convergence has 

been shown in the sense of maximum absolute error (L�) and 

Root mean error (L�). and so that the local behavior of the 

solution is captured exactly. As well as condition number 

(K(A)) and Order of convergence are calculated for new 

numerical method The stability of those three present 

methods are also investigated. 

2. Description of the Method 

Consider the following linear Parabolic type of PDEs 

equation: 

2

2
( , ) ( , ) ( , )

u u u
x t x t H x t

t x x

∂ ∂ ∂ + −∈ = ∂ ∂ ∂ 
, ( , ) (0,1) (0, ]x t T∈ ×    (1) 

subject to initial and boundary condition respectively are:: 

( ) 1,0 ( )x f x=u , a x b≤ ≤                       (2) 

1 2( , ) ( ), (1, ) ( )u a t g t u t g t= = , 0 t T≤ ≤            (3) 

where � > 0 is called the diffusion coefficient, representing 

the thermal diffuse of the material making up the rod and 

1( )f x ,
1 ( )g t and 

2 ( )g t  are sufficiently smooth function for 

( , ) (0,1) (0, ]x t T∈ ×  The computational domain (0,1) (0, ]T×  is 

partitioned as: 

0 1 20 ... ... 1j Mx x x x x≤ < < < < < < =             (4) 

where step length is 
1 , 1, 2,...,j jh x x j M+= − =  and M 

maximum number of grid point in [0,1] and, 

0 1 20 ... ...n Nt t t t t T≤ < < < < < < =                 (5) 

where time step 
1 , 1, 2,...,n nt t t n N+∆ = − =  and N maximum 

number of grid point in [0,T]. Recalling that the one-

dimensional linear types of the parabolic equation given in 

Eq (1), our aim is to approximate the partial derivative of 

( , )u x t  into functional value at each grid point. 

2.1. Forward Finite Difference Formula 

Recall that one-dimensional parabolic equation in eq (1) 

and discretization of them is: 

1, 1,

2

j n j nu uu

x h

+ −−∂ =
∂

,                           (6) 

 
2

1, , 1,

2 2

2
,

j n j n j nu u uu

x h

+ −− +∂ =
∂

                  (7) 

, 1 ,j n j nu uu

t t

+ −∂ =
∂ ∆

                               (8) 

Now substituting eqs (6)-(8) into eq. (1) at point 
( ),j nx t

 

we obtain: 

, 1 , 1, 1, 1, , 1,

2

2
( , ) ( , ) ( , )

2

j n j n j n j n j n j n j n

j n j n j n

u u u u u u u
x t x t H x t

t h h

+ + − + −− − − + 
+ −∈ = ∆ 

                           (9) 
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where j = 1,2,3,…M and n = 1,2,3,…N. Note that initial and 

boundary conditions give known quantities 
0j

u  for j = 1, 2, 

3,… M and 0nu  and Mnu  for n = 0,1,2,…,N which correspond 

to the bottom and sides of the rectangular domain, Now 

rearranging Eq. (9) and introducing the vector 

2 3 1[ , ,...., ]n n n M nU u u u −= , we obtain: 

( ), 1 1, , 1,1 2 ( , )j n j n j n j n j nu u u u tH x tγ α β+ + −= + − + + ∆  (10) 

where 
2

,
2

t t

h h

εα β α∆ ∆= = +  and 
2

t

h
γ α ∆= − . From eq. (10) we 

obtain matrix form of the system of the equation: 

1 1n nU AU b b+ = + +                                   (11) 

where 
1 2 0 0

1 2 0

0 1 2 0

0 0 0 1 2

A

α γ
β α γ

β α

β α

− 
 − 
 = −
 
 
 − 

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋮

, [ ]0 ,0,0,...,
t

n Mnb u uγ γ=

and [ ]1 1 2 2( , ), ( , ),..., ( , )
t

M Nb t H x t H x t H x t= ∆ . Now writing the 

MATLAB code for eq. (11) we find the solution. 

2.2. By Backward Difference Method 

As an alternative, the finite difference approach can be 

redone with better error magnification properties by using an 

implicit method. As before, we replace xu  and xxu  in eq (1) 

by using a centered-difference formula, but we use the 

backward-difference formula for tu , 

, , 1j n j nu uu

t t

−−∂ =
∂ ∆

                             (12) 

Thus substituting eqs (6), (7) and (12) into eq. (1) at the 

point ( ),j nx t , we obtain: 

, , 1 1, 1, 1, , 1,

2

2
( , ) ( , ) ( , )

2

j n j n j n j n j n j n j n

j n j n j n

u u u u u u u
x t x t H x t

t h h

− + − + −− − − + 
+ −∈ = ∆ 

                              (13) 

Now rearranging (13) and introducing vectors 
2 3 1[ , ,...., ]n n n M nU u u u −= , we obtain: 

( ) , 1, 1, . 11 2 ( , )j n j n j n j n j nu u u u tH x tα γ β+ − −+ − − − = ∆                                    (14) 

From eq. (14) we obtain matrix form of the system of the equation: 

1nBU b b= +                                                                                       (15) 

where 
1 2 0 0

1 2 0

0 1 2 0

0 0 0 1 2

B

α γ
β α γ

β α

β α

+ − 
 − + − 
 = − +
 
 
 − + 

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋮

, [ ]0 ,0,0,...,
t

n Mnb u uγ γ= and [ ]1 1 1 2 2( , ), ( , ), ..., ( , )
t

M Nb t H x t H x t H x t= ∆ , 

2
,

2

t t

h h

εα β α∆ ∆ = = − + 
 

 and 
2

t

h
γ α ∆ = − − 

 
. Now writing the MATLAB code for eq. (15) we find the solution. 

2.3. By Crank-nicholson Method 

To find an accurate solution, we also use the crank Nicholson method. Let us consider the discretization of given linear 

parabolic partial differential equation by using the crank Nicholson method: 

1, 1, 1, 1 1. 1

4 4

j n j n j n j nu u u uu

x h h

+ − + − − −− −∂ = +
∂

                                                              (16) 

2
1, , 1, 1, 1 , 1 1. 1

2 2 2

2 2

2 2

j n j n j n j n j n j nu u u u u uu

x h h

+ − + − − − −− + − +∂ = +
∂

                                               (17) 

, , 1j n j nu uu

t t

−−∂ =
∂ ∆

                                                                         (18) 
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Now substituting eqs (16)-(18) into eq (1) at the point ( ),j nx t  we obtain: 

, , 1 1, 1, 1, 1 1. 1 1, , 1,

2

2
( , ) ( , )

4 4 2

j n j n j n j n j n j n j n j n j n

j n j n

u u u u u u u u u
x t x t

t h h h

− + − + − − − + −− − − − +   
+ + −∈   ∆   

 

1, 1 , 1 1. 1

2

2
( , ) ( , )

2

j n j n j n

j n j n

u u u
x t H x t

h

+ − − − −− + 
−∈ = 

 

                                            (19) 

Now multiplying both side of eq (19) by t∆ and rearranging it we obtain: 

( ) ( ) ( ) ( ) ( ), 1, 1, 1, 1 , 11 2 2 2j n j n j n j n j nu u u u uα α β β α α β α− + − − −+ − + + − = + + −  

( ) 1, 1 ( , )j n j nu tH x tα β + −− + ∆                                                                           (20) 

where 
2

,
2

t t

h h

εα β∆ ∆= =
.

 Now by introducing the vector 

2 3 1[ , ,...., ]n n n M nU u u u −= ,in eq (20), we obtain the matrix 

form of the system of equation is: 

1 1 1n nAu Bu b C b− −= + + +                        (21) 

where 

( )
( ) ( )

( )

( )

2 2 0 0

2 2 0

0 2 2 0

0 0 0 2 2

A

α β α
β α α β α

β α α

β α α

 + −
 − + + − 
 = − + +
 
 
 − + + 

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋮

,

( )
( ) ( )
2 2 0 0

2 2 0

0 2 2 0

0 0 0 2 2

B

α β α
β α α β α

β α α

β α α

 − − −
 + − − − 
 = + −
 
 
 + − 

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋮

( ) ( )0, ,,0, 0,...,
t

n M nb u uβ α β α = − + − −  and 

[ ]1 1 1 2 2( , ), ( , ), ..., ( , )
t

M Nb t H x t H x t H x t= ∆  

( ) ( )1 0, 1 1,0,0,...,
t

n MnC u uβ α β α− − − = + − +   

Then write the MATLAB code for all scheme and we 

finding the solution of the given linear types of the parabolic 

partial differential equation. 

3. Stability and Convergent Analysis
 

The Von-Neumann stability analysis technique is applied 

to investigate the stability of the proposed method. such an 

approach has been used by many researchers like [11, 12, 15, 

19]. Now assume that the solution of the given problem at the 

point ( ),j nx t  is 

,

n ij

j nu e θλ=                              (22) 

where 1,
j

i
M

πθ= − =  a real number and λ  is a complex 

number. For analysis of the stability of those numerical 

methods that we proposed above, we substitute eq. (22) into 

eqs (10), (14), and, (20). From eqs. (22) and (10) we have: 

( ) ( ) ( )1 11 1 2
i j i jn ij n ij n ne e e e

θ θθ θλ α λ βλ γλ− ++ = − + +  (23) 

Divided eq (23) by 
n ije θλ  we obtain: 

( )1 2 i ie eθ θλ α β γ −= − + +  =

( ) ( )1 2 cos( ) sin( ) cos( ) sin( )i iα β θ θ γ θ θ− + + + −  

= ( ) ( )1 2 cos( ) sin( )iα β γ θ β γ θ− + + + −        (24) 

Thus from this equation, we get the criteria of stability of 

the forward difference method. Again substituting eq. (22) 

into eq. (14) the stability analysis for back ward difference 

method is: 

( )1 ( 1) ( 1)1 2n ij n ij n i j n i je e e eθ θ θ θλ α λ γλ βλ− + −= + − −     (25) 

Divided eq (25) by 
n ije θλ  we obtain: 

( )1 1 2 i ie eθ θλ α γ β− −= + − −  

= ( ) ( ) ( )1 2 cos( ) sin( ) cos( ) sin( )i iα γ θ θ β θ θ+ − + − −  

= ( ) ( ) ( )1 2 cos( ) sin( )iα β γ θ γ β θ+ − + − −  

This implies that: 

( ) ( ) ( )
1

1 2 cos( ) sin( )i
λ

α β γ θ γ β θ
=

+ − + − −  

2 2 2 2

X Y

X Y X Y
λ = −

+ +
                       (26) 

where ( ) ( )1 2 cos( )X α β γ θ= + − +  and ( )sin( )Y i γ β θ= − . 

Thus from eq. (26) we obtain the criteria that the Backward 

difference method is stable. We also analyze the stability of 

our third method which is the crank Nicholson method. 

Substitute eq (22) into Eq. (20), we obtain: 

( ) ( ) ( )( 1) ( 1)2 2 n ij n i j n i je e eθ θ θα λ α β λ β α λ− ++ − + + − =
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( ) 1 ( 1)n i je θα β λ − −+ +  

( ) ( )1 1 ( 1)2 2 n ij n i je eθ θα λ α β λ− − +− − −             (27) 

Divided both side of eq. (27) by n ije θλ  we obtain: 

( ) ( ) ( ) ( ) 12 2 i i ie e eθ θ θα α β β α α β λ− − −+ − + + − = + +
 
( ) ( )12 2 ijeα λ α β−− − −

 

( ) ( )( ) ( )( )2 2 cos( ) sin( ) cos( ) sin( )i iα α β θ θ α β θ θ+ − + − + − + + =
 

( )( ) ( ) ( )( )1 cos( ) sin( ) 2 2 cos( ) sin( )i iλ α β θ θ α α β θ θ− + − + − − − +
 

( )( ) ( )4 2 cos( ) sin( ) 2 cos( ) sin( )i iλ α α θ β θ α θ β θ− + = −  

( )
( )( )

2 cos( ) sin( )

4 2 cos( ) sin( )

i

i

α θ β θ
λ

α α θ β θ
−

=
− +

 

( )
2 2

4X X

Y Z

α
λ

−
=

+
                                                                                  (28) 

where ( )2 cos( ) sin( ) , 4 2 cos( )X i Yα θ β θ α α θ= − = −  and 

2 sin( )Z i β θ= − . Therefore from Eqs (24) (26) and (28), we 

obtain the required eigenvalues. The maximum eigenvalue is 

less than one (i.e. 1λ < ). Therefore the obtained system of the 

equation is stable. 

Theorem 1:-The obtained system of the equation is stable 

such that λ  of the system matrix say matrix ’A’ satisfy 

Re ( ) 0al λ ≤ . 

proof: Assuming that the system matrix is a diagonal matrix. 

Let ”P” be invertible matrix. Then, 
1A p pλ −=  where λ  are 

eigenvalues of matrix A and 

λ =

1

2

1

0 0

0 0

0 0 N

λ
λ

λ −

 
 
 
 
 
 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 for all n=1,2,3,…N-1. Then we have: 

( )1

1 1

1 1

! !

n
At n n n

n n

e A t p p t
n n

λ
∞ ∞

−

= =
= =∑ ∑ .

1

1

1

!

n n

n

p p t
n

λ
∞

−

=
=∑  = ( ) 1 1

1

1

!

n n

n

p t p pe p
n

λλ
∞

− −

=

=∑ =

1

2 1

1

0 0

0 0

0 0 N

p p

λ
λ

λ

−

−

 
 
 
 
 
 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (29) 

theorem Hence 0teλ →  if and only if the real part of the 

eigenvalue of ”A” is less than zero ( Re ( ) 0al λ ≤ ). This 

follows that 0teλ →  if and only if Re ( ) 0al λ → . 

Therefore the obtained system of the equation is stable 

4. Criteria for Investigating the Accuracy 

of the Method 

In this section, we investigate the accuracy of the present 

method. To show the accuracy of the present method, the 

Root Mean Square (RMS) error (
2E ), maximum absolute 

error ( E∞
) are used to measure the accuracy of the method. 

The RMS error and maximum absolute error are calculated 

as follows (Tatari M., 2010). 

2
2

1

1
( , ) ( , ) , 1(1)

N

i j i j
k

E U x t u x t i N
N =

= − =∑ ,     (30) 

1

( , ) ( , ) ,max i M i M
i N

E U x t u x t∞

≤ ≤
= −            (31) 

Here, ( , )i MU x t  and ( , )i Mu x t  are the exact and 

approximation solutions of Eqs. (1), (2), and (3), 

respectively. The condition number K(A) is obtained by using 

the formula 

1

2 2
( )k A A A−=                             (32) 

We also report the corresponding order of convergence. 

The order of convergence is calculated by: 



81 Kedir Aliyi Koroche:  Numerical Solution for One Dimensional Linear Types of Parabolic Partial   

Differential Equation and Application to Heat Equation 

( )2

2log
E

EOrd

∞

=                             (33) 

5. Numerical Experiments 

In order to test the validity of the proposed method, we 

have considered the following model problem. 

Example1: Consider the classical heat equation considered 

by (Tatari M., 2010) given by 

( , ) ( , )t xxu x t u x tε= , ( ) ( ) ( ], 0,1 0,x t T∈ ×  

with initial condition and boundary conditions 

( ,0) sin( )i iu x xπ=
, 

0 1ix≤ ≤
 

(0, ) (1, ) 0u t u t= = , 0 t T≤ ≤ , 

The unique exact solution of the above IBVP one-

dimensional heat equation is given by: 
2( )( ) sin( ) e ,t

i iU x x ππ −=
 

Example 2. Consider the parabolic equation considered by 

(Hikmet, 2008): 

( , ) ( , )t xxu x t u x tα= , ( ) ( ) ( ], 0,1 0,1x t ∈ ×  

with initial condition and boundary conditions 

( ,0) cos( )i iu x x
x

π= , 0 1ix≤ ≤  

2 2

4 4
2

(0, ) , (1, )
t t

u t e u t e
π π

π

− −

= = , 0 1t≤ ≤ , 

The unique exact solution of the above IBVP one-

dimensional heat equation is given by: 
2

4( ) cos( ) ,
t

i iU x x e
x

ππ −

=  

The numerical results are presented in tables in terms of 2 ,E

E ∞  and ( )AΚ as the means for measuring the accuracy of the 

present method.
 

Table 1. Maximum Absolute error E ∞ , Root mean square error 2
E , condition number (K(A)) and rate of convergence, Or dN of the solution for Example 1 with 

a uniform. mesh by using three present methods t∆ = 0.01. 

By: Present Method for any Shape parameter c, 

M ↓  E∞ ↓  2
E ↓  ( )A sκ ↓  

Ord ↓  

Foreword difference method     

10 3: 8324E-04 1.2119 E-4 1.7994E+03 1.6610 

Backward difference method     

10 7.1981 E-06 7.1980E-07 4.4650 3.3219 

20 5.1696E-06 5.1695E-07 15.3861 3.3219 

40 2.78166E-06 2.7816E-07 59.0740 3.3219 

80 1.4154E-06 1.41546E-07 233.8265 3.3219 

Crank Nicholson method     

10 1.80723 E-05 1.8072 E-06 2.8134 3.3219 

20 1.04313E-05 1.0431E-06 8.5306 3.32198 

40 5.39091E-06 5: 39093E-07 31.4019 3.32198 

80 2.71745E-06 2.7174E-07 122.8872 3.32197 

Tatari, M. and Dehghan, M., 2010 

 

Shape parameter c ⇓  2
E ⇓  E∞ ⇓  ( )A sκ ⇓

 

0.5 9.0651E+39 7.0000E+73 1.9676E+19 

1 3.3136E+17 2.0000E+29 2.0434E+17 
2 5.0227E+1 5.0001E+0 9.3751E+17 

3 1.0196E-01 7.1266E-03 6.6616E+17 

4 1.0384E-01 7.4346E-03 4.0811E+17 
5 1.0400E-03 7.6029E-03 1.1529E+16 

6 1.0150E-03 7.5571E-03 1.4832E+16 

7 9.5715E-03 7.3241E-03 3.0267E+15 

Table 2. Maximum Absolute error E ∞ , Root mean square error 2E , condition number (K(A)) and rate of convergence, Ord of the solution for Example 2 with a 

uniform. mesh by using three present methods t∆ = 0.025. 

By: Present Method 

M ⇓  E∞ ⇓  2
E ⇓  ( )A sκ ⇓  Ord ↓  

Backward difference method     
11 1.4491 E-06 2.2631 E-07 8.4903 2.6788 

21 3.1474 E-06 4: 9154 E-07 35.3020 2.6788 

41 3.9270 E-06 6.1329 E-07 132.8058 2.6788 
61 4.1981 E-06 6.5563 E-07 293.2158 2.6788 

Crank Nicholson method 

11 1.7561 E-06 2.7426 E-07 5.1445 2.6788 
21 3.4602E-06 5.4039E-7 19.9905 2.6788 

41 4.2425E-06 6.6257E-07 73.9798 2.6788 
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By: Present Method 

M ⇓  E∞ ⇓  2
E ⇓  ( )A sκ ⇓  Ord ↓  

61 4.5146E-06 7.0507E-07 162.8013 2.6788 

Hikmet C et. at, (2008)   E∞ ⇓  

21   6.1575E-03 
41   1.751E-03 
61   9.5842E-04 

 

Figure 1. Solution profile and graph of the exact solution for Example 1 with M = 40 and 0.01t∆ = . 

 

Figure 2. Surface graphs and Solution profile for the numerical solution of Example 1with M = 64 and & 0.01t∆ = . 
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Figure 3. Surface graphs and Solution profile for the numerical solution of Example 2 with M = 41 and & 0.025t∆ = . 

 

Figure 4. Solution profile of Example 2 with M= 64 and & 0.01t∆ = . 



 Mathematics and Computer Science 2020; 5(4): 76-85 84 

 

 

Figure 5. Stability profile of the present method for Example 1 with M = 64 and 0.01t∆ = . 

6. Discussion and Conclusion 

6.1. Discussion 

In these three methods, Forward difference, Backward 

difference, and Crank Nicholson is used to obtaining the 

scheme to solve one-dimensional linear parabolic differential 

equation. First, the domain is discretized using the uniform 

mesh and then discretizing partial derivative at each grid 

point. Then, the transformed system of equations can be 

solved by matrix inverse method. The stability and 

consistency of the method is well established. To validate the 

applicability of the method, two the model example has been 

considered and solved by varying the value step-length h and 

time-step t∆ . As can be seen from the numerical results and 

predicted in tables 1 and 2 the present method is superior to 

the method developed in [18] and approximate the exact 

solution very well. Since as depicted in Table 1, the present 

method is able to generate a convergent numerical solution at 

which the method presented by Tatari and Dehghan, 2010 

fails to produce the convergent solution. The condition 

number of the system matrix of the present method is in the 

range 2.8134 ≤ ( )Aκ ≤ 233.8265 whereas the condition 

number of the system matrix presented by Tatari and 

Dehghan, 20103.0267E+15 ≤ ( )Aκ ≤ 1.9676E+19. Thus, the 

effect of the condition number on the accuracy of the 

numerical solution is more significant on the method 

presented by Tatari and Dehghan, 2010 than on the numerical 

solution of the present method. The value E∞
in Table 1 

confirms this issue. That is the smaller the value of E∞
the 

less the effect of the condition number on the accuracy of the 

approximate solution. As can also be seen from Tables 1-

Table 2, the Order of convergence is kept constant for the 

same values of the meh-size in each table. This is because the 

condition number depends only on the step length of the 

spatial variable. From table 1 shows as the values of mesh 

sizes decrease, the maximum absolute error, root mean 

square error also decreases. But Condition number increases. 

This is formed as a trade-off or uncertainty principle in [5, 

14]. Again figure 2 shows, the surface plot of approximate 

solution of Example 1 is well established with an analytical 

solution. Again Figure 3 and 4 shows, the solution obtained 

by the present method for Example 2 is good agreement with 

the analytical solution. So the series solution of the 1D 

parabolic equation is a good approximation compared to the 

existing solution. Therefore we can conclude that a small 

number of arguments are sufficient to provide an accurate 

solution present method. Figure 5 shows the Stability profile 

of the present method for Example 1 and then Crank 

Nicholsonis more stable. Therefore, the present scheme that 

obtained from the finite difference methods and Crank 

Nicholson are more accurate and convergent method for 

solving the second order one-dimensional linear parabolic 

equation. 

6.2. Conclusion 

In this paper three methods, Forward difference, Backward 

difference, and Crank Nicholson is used to obtaining the 

scheme to solve one-dimensional linear parabolic differential 

equation. First, the domain is discretized using the uniform 

mesh and then discretizing partial derivative at each grid 

point. Then, the transformed system of equations can be 

solved by matrix inverse method. The stability and 

consistency of the method is well established. To validate the 

applicability of the method, two a model example has been 
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considered and solved by varying the value step-length h and 

time-step t∆ . Generally As can be seen from the numerical 

results presented in tables and graphs, the present method is 

superior over the method pre-existing method and 

approximates the exact solution very well. 
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