

Mathematics and Computer Science
2018; 3(4): 77-86

http://www.sciencepublishinggroup.com/j/mcs

doi: 10.11648/j.mcs.20180304.11

ISSN: 2575-6036 (Print); ISSN: 2575-6028 (Online)

Statistical Considerations on Software-Safety Estimation in
Licensing

Wolfgang Ehrenberger

Department of Applied Informatics, University of Applied Science, Fulda, Germany

Email address:

To cite this article:
Wolfgang Ehrenberger. Statistical Considerations on Software-Safety Estimation in Licensing. Mathematics and Computer Science.

Vol. 3, No. 4, 2018, pp. 77-86. doi: 10.11648/j.mcs.20180304.11

Received: May 15, 2018; Accepted: June 22, 2018; Published: July 25, 2018

Abstract: During the discussions in preparation of the new versions of the International Electrotechnical Commission (IEC)

standards IEC 61508-3 and IEC 61508-7, controversies regarding the proper roles of statistical validation or verification of

safety-related software have emerged. These controversies regard changing demand profiles and continuous operation versus

on-demand operation. This contribution derives a formula for calculating the failure probability per demand of software that

has been tested under a demand profile that is different from the profile of its intended use. It also explains how failure rates

can be expressed in terms of failure probabilities per demand, if the operational conditions are known. It further describes how

software that is alternately operated continuously and on demand can be characterized in statistical terms and how the two

operation modes can be recognized during a statistical evaluation. The notion of “mission” is suggested for sequences of

demands or mixtures of demand-driven and continuous operation of software. In order to allow statistical calculations many

requirements have to be met strictly. They are listed in the appendix. This article can hopefully facilitate licensing of software

in many cases. Remarks are invited.

Keywords: Software Safety, Statistical Testing, Operational Experience, One-Sided Confidence Interval,

Changing Demand Profile, On-Demand or Continuously Working, Missions

1. Introduction

Currently a team of the International Electrotechnical

Commission (IEC) is updating its standard about software in

safety-related systems. The existing version of IEC 61508-3

allows statistical arguments during licensing of safety-related

software [1, 2, 3]. IEC 61508-7-D describes what has to be

observed during the licensing process for a certain Safety

Integrity Level (SIL) as defined in its part 1 [1]. The existing

standard was developed during the 1980ies, for the then

prevailing small computers, simple safety-related computer

systems and simple tasks to be solved. Now both the tasks of

safety-related computers have become significantly more

complex and the capacity of the computers has increased

dramatically. Moreover the challenge has come up to use

operational experience of software from conventional

applications as an argument during the licensing procedure of

safety systems. In order to harmonize this with the existing

rules, a Technical Specification (TS) has been drafted: IEC

61508-3-1 [2]. In using this, it is desirable, to express the

value of operational experience quantitatively to substantiate

the Safety Integrity Level (SIL) classification of the software

under consideration. This leads to the problem of different

demand profiles of the old and new application and the

challenge of combining demand-based views and time-based

views.

Illustrating Example problems (Exp_i)

Exp_1: Software, whose demand numbers increase:

Software has been used in a factory for a long time every day

when work started and switched off after the working shift in

the evening; now it is planned to be used over one week

continuously. What reliability data are to be expected?

Exp_2: Chemical plant and Hospital: Software has been

used in a chemical plant for process control for a long time.

Now it is proposed to use it in a hospital. Its use in the

chemical plant was not safety-related, in the hospital the life

of patients may be endangered, in case of software failure

and the demand profile is different. What is the probability of

the undesired event of failure? What can we say, if the

software has been modified for the new application?

78 Wolfgang Ehrenberger: Statistical Considerations on Software-Safety Estimation in Licensing

Exp_3: Fukushima: After the loss of the main heat sink of

a nuclear power plant, the reactor has to be switched off, the

emergency coolant pumps have to be started, the emergency

cooling valves have to be opened after a while and then the

after-decay heat has to be removed during hours and days.

What is the probability of radio-active poisoning of the

environment?

Exp_4: Autonomous car driving on a motor way: The

computer takes over control from the driver upon entering

the motor way. The drive has to be controlled according to

the lanes known from the navigation system, the car has to be

steered to the desired exit and control has to be given back to

the driver. What is the probability of no accident during a

given time?

An important problem arises, if software is modified

between two applications. As more and more operational

experience of software becomes available, e.g. from software

in cars, profiting from the old operational experience can

make licensing of software cheaper. The insight gained from

statistical testing can be considered similar to the insight

from operational experience – to a certain degree. In

particular one wants to know, which statistical tests have to

be performed to complement any existing operational

experience. And last but not least we are interested to learn,

how reliability arguments change, when our view switches

from continuous operation to demand-based operation or vice

versa; i.e. how reliability arguments get a different form; and

what we have to conclude, if we have a mixture of both types

of operation. All this requires adapting the existing

formulations of the mentioned standard(s) to the new

circumstances. In trying to do so, controversies have come up

between the specialists who were included in the discussions.

2. Existing Views

It is not generally agreed yet, how changes of an

operational profile of a particular piece of software

influences its safety-capability. Closely connected to that is,

how software that has successfully fulfilled a certain number

of demands can be classified into the existing SIL system, as

this is essentially time-based, because it has to meet the

thinking of hardware reliability. The existing literature, has

not given clear guidance on either of these cases. [4, 5, 6, 7,

8, 9, 10, 11, 12].

Some publications emphasize the currently emerging new

problems, e.g. in autonomous driving and express the need of

related new testing concepts. [20, 21, 22]. Only few address

stratified sampling [11, 12]; but they do it without discussing

one-sided confidence intervals. The same applies for a

contribution on subdomain testing [25]. Also a recent

publication about awareness of the distribution of events in

the program’s input space does not refer to one-sided test

confidence [26]. And it is one-sided confidence intervals that

characterize our case, as we have operational experience or

experiments or test cases without observed failures. If any

failure had come up, license would not be granted. It is

surprising that these questions are still open, since scientific

interest in the validity of statistical observation has existed

since a long time. [5, 6, 7].

In addition to the mentioned aspects we have to recognize:

Many of those, who drafted the existing standard were very

familiar with statistics, because they came from physics.

Now colleagues, who have been educated mainly in

computer science enter the computer-safety area, and some

of them have little expertise in the mathematics of

probabilities. This has led to considerable confusion recently,

including mis-interpretation of the standard [3]. The

following text tries to start from the basic aspects. A pre-

publication about the area has been made in German. [19].

3. Software Working on Demand

The software of safety-related digital computers can in

most cases be understood as having paths that are started by a

specific event, e.g. by an interrupt. The input data are read,

the related results are evaluated and put out. The text below

is based on definitions that are not used in the same way by

all authors. Those that might be controversial are given here:

Path: Traversal or possible traversal of a piece of software

from its start to its end; or: program run from its starting

timer interrupt to its end; or: sequence of machine

instructions that is executed or can be executed;

Demand: Input condition or input conditions from the

Equipment under Control (EUC) that lead to the execution of

one or several paths with possible safety-related effects;

Demand profile: Set of all input conditions from the EUC

that lead to the execution of one or several paths with

possible safety-related effects and their number or frequency;

Failure: Output of the execution of a path or demand or of

a set of paths or demands that contradicts the specification of

the software; effect of a software fault; the random event in

this article.

3.1. The Simple Case: Constant Demand Profile

We are looking for the number of test cases or cases of

operational experience that are needed to demonstrate:

The failure probability per demand of our software is

below a certain limit. That limit shall be valid at a given level

of confidence. In other words: The probability Pr that the

failure probability per demand p’ is below an upper limit p

shall equal β i.e. be true at the level of confidence β.

Formally:

Pr (p’ ≤ p) = β

Here the random variable is p, as the upper limit is to be

evaluated. The failure probability p’ is fixed, but unknown.

The random event is software failure F. [24].

The formula we are after and its derivation have been

widely known. [6]. The derivation is repeated here, because a

further conclusion is drawn from an intermediate result.

p: upper limit of the probability of failure per demand;

1-p: lower limit of the probability of no failure per demand.

n: number of test cases or demands.

We follow the common way of the tests of hypotheses:

 Mathematics and Computer Science 2018; 3(4): 77-86 79

proof by falsification of the complement. Ideal circumstances

are assumed, as the requirements from the appendix below

prescribe. They are reported here shortly in slightly different

wording. We have:

(1) statistically independent test cases,

(2) no failures during test or pre-use operation,

(3) no failure masking,

(4) no internal states, or internal states are considered like

input variables;

(5) probability of one demand over a small interval is

approximately proportional to the size of that interval;

(6) if the software memorizes certain internal values over a

certain time, a single test case, run or operational traversal is

taken over that time;

(7) the software works purely deterministically.

For a collection of all requirements and their more precise

formulations see appendix.

Then it holds:

(1-p)
n
: probability of no failure at a test with n demands,

the complement to having at least 1 failure on n demands. As

we argue by falsification of the complement, it has to be

small, if a large level of confidence is to be demonstrated: If

the original hypothesis were wrong, we must have at least 1

failure.

α: level of significance of a statistical hypothesis; α = 1 –

β.

(1-p)
n
 = α (1)

level of significance of a test with n demands without failure;

to be small. See also [6] and theory of statistical sampling

[9]. Taking the logarithm yields n*ln (1-p) = lnα. This leads

to n and, because p is small:

n =
pp −

≈
−

αα ln

)1ln(

ln
;

n
p

αln−≈ (2)

 /*formula from IEC 61508-7 D

[3]*/

For the upper limit of the (fictive) number of failures to be

expected E(F) from n demands to the given level of

significance we get further:

E (F) = n*p. (3)

This is intuitively clear but can also be derived from the

Poisson distribution or the binomial distribution. It also

follows: E (F) = - lnα.

Should (2) be used for any prediction of future use of the

software, it must also hold:

1) Pre-existing or tested code and code of the future

application are identical.

2) The demand profile of the test or pre-operational

experience is identical to the demand profile of the

future application.

In many cases this requirement does not hold, as the way

the software is used differs more or less significantly from

that of its testing or pre-operation phase. We now examine,

which effects different demand profiles have.

3.2. Several Types of Executions, Changing Demand

Profile

The considerations of this article refer to conventional

digital computers. Their software is understood as being

executed sequentially, machine command per machine

command. A sequence of machine commands from program

start to its end is called a path. Our software is assumed to

have K different such paths. The ideal pre-requisites except

the last-mentioned requirement still apply for each of these;

path i is executed ni times.

With n = nt =
1

K

i

i

n
=
∑ total number of runs or executions

and p = ptotal = pt, we derive from (1):

1 2

1
(1) (1) (1) ...(1) ...(1) (1)

i
t i K

nKn nn n n

t t t t t ti
p p p p p pα

=
= − = − − − − = −∏

From (3) we can derive: E (F) = nt*pt, as a (fictive) upper

limit of the number of failures to be expected from nt

demands. If the same level of significance applies for each

path:

-lnα = E (Fi) = E (F) = ni*pi is the upper limit of the

number of failures to be expected from the ni demands of

path i to the given level of significance. We set:

pt := πi * pi (4)

with

()
*

()

t i i

i

i t t

p n nE F

p n E F n
π = = = (5)

to be valid for all paths i. πi is the probability of selecting

path i. This leads to:
1

(1) (1 *)
i

t

nKn

t i ii
p pα π

=
= − = −∏

Since all *i ipπ are small, it holds from (2):

lnα = nt*ln (1 - pt) ≈ nt (- pt)

1 1

ln(1) ()
K K

i i i i i i

i i

n p n pπ π
= =

≈ − ≈ −∑ ∑

and

pt
2

1

*
K

i i

i

pπ
=

≈ ∑ (6)

This has always some claim for being true, if the

requirements mentioned - and perhaps R13 from the

appendix are met. It can easily be validated by an example.

See Example 2. The set of the πi represents the demand

profile of the software. Therefore (6) can be used to evaluate

the change of the software failure probability, if the demand

profile changes.

If the demand profile changes the relations (4) and (5) do

not hold. As the failure properties of the individual paths did

not change for the new profile, pi_new = pi_old, is true for all

80 Wolfgang Ehrenberger: Statistical Considerations on Software-Safety Estimation in Licensing

paths, but since πi_new ≠ πi_old and consequently pt_new ≠ pt_old,

(4) can no longer be valid for the new demand profile. This

was a point during the discussions [24]. The old profile was

the “ideal” profile, since the test or operational experience

was designed or interpreted according to (4). Therefore we

get in all cases pt_new > pt_old for the new demand profile, as

illustrated by the following example.

Example 1: Originally we had 2 different paths, numbered

i and k, with identical properties: πi_old = πk_old = πold and

pi_old = pk_old = pold. So the influence of our pair of paths on

the total failure probability per demand is:

πi_old
2

*pi_old + πk_old
2
 *pi_old = 2 πi_old

2
*pi_old. For the new

application we assume that πi_new is larger than πi_old. We write

πi_new = πi_old + ∆. As the sum of all πi is always 1, we get on

the other hand a smaller selection probability of the same

size; we assume path k is affected. πk_new = πk_old – ∆.

Formula (6) consists of summands that always contain π
2
.

The relation transfers this into πi_new
2

*pold + πk_new
2
 *pold

which is (πi_old + ∆)2
*pold + (πk_old - ∆)2

 *pold =

pold*(πi_old
2
 +2 πi_old* ∆ + ∆

2
 + πi_old

2
 -2 πi_old * ∆ + ∆

2
) =

pold*(2πi_old
2
 + 2∆

2
) > 2πi_old

2
 pi_old from above.

Because of the quadratic relation in formula (6) any

deviation of the demand profile from the ideal one leads to an

increase of the failure probability per demand of the whole

software system. During a practical licensing procedure one

can estimate the effect of a profile change by (6) and decide

whether or not pt_new still meets the reliability requirements.

(6) also suggests that the effect of small changes is not

significant, since they influence the result only by squares of

numbers smaller than 1.

From (4) we calculate the value of pi_new that would be

sufficient to reach pt_new.

_

_

_

t new

i new

i new

p
p

π
=

The derivation of (6) is valid only, if a minimal number of

runs of each path have been executed, such that (2) is valid

for each path. This can be assumed,

1) if the pre-requisites of the Poisson distribution are met.

And, of course,

2) if the number of runs of each path is well known both

for the old and the new demand profile.

Example 2: A program part consists of 9 basic blocks as

depicted in Figure 1. They form 6 paths that are traversed

during testing according to the Tables 1and 2. Any Block Bi

is traversed purely sequentially.

Figure 1. Flow graph of a program part with 9 Basic Blocks and 6 paths.

Table 1. Path traversals of the flow graph of a program part according to

Figure 1; 9 Basic Blocks, 6 paths, nt = 30000 traversals or runs in total.

Traversals per Basic Block

Block Block traversals nij Paths

1 30000 All

21 20000 1, 2

22 10000 3, 4, 5, 6

31 2500 3, 4

32 7500 5, 6

4 30000 All

51 8000 1, 3, 5

52 22000 2, 4, 6

6 30000 All

Table 2. Path traversals of the flow graph of a program part according to

Figure 1; 9 Basic Blocks, 6 paths, nt = 30000 traversals or runs in total.

Traversals per path

Paths Path traversals ni Blocks

1 7000 1, 21, 4, 51, 6

2 13000 1, 21, 4, 52, 6,

3 500 1, 22, 31, 4, 51, 6

4 2000 1, 22, 31, 4, 52, 6

5 500 1, 22, 32, 4, 51, 6

6 7000 1, 22, 32, 4, 52, 6

If α = 0.05, ln 0.05 ≈ -3; from (2): pt =
ln

t
n

α
−

 ≈ 10
-4

Table 3. Probabilities of path traversals or runs and upper limits of failure probabilities; numbers from Table 2, calculations of rows 2 according to (4), row 3

according to (2), for -ln α = 3, corresponding to level of confidence of 95%. Row 4 according to (6).

Path number i 1 2 3 4 5 6 all, ∑

Path probability πi 0.23333 0.43333 0.01667 0.06667 0.01667 0.2333 1

Failure probability pi 4.28*10-4 2.31*10-4 60*10-4 15*10-4 60*10-4 4.28*10-4

πi
2*pi 2.333*10-5 4.43*10-5 1.666*10-6 6.67*10-6 1.666*10-6 2.333*10-5 10-4

If the demand profile as defined in the second row of Table 3 changes, the numbers of row 4 are no longer valid. The total

failure probability per demand is then higher, than the last number of its row 4 shows. See Table 4.

 Mathematics and Computer Science 2018; 3(4): 77-86 81

Table 4. Probabilities of path traversals changed, failure probabilities per demand of the paths as above; level of significance also unchanged.

Path number i 1 2 3 4 5 6 all, ∑

Path probability πi_new 0.2 0.01 0.6 0.05 0.05 0.09 1

Failure probability pi 4.28*10-4 2.31*10-4 60*10-4 15*10-4 60*10-4 4.28*10-4

πi_new
2*pi 1.71*10-5 2.31*10-8 21.6*10-4 3.75*10-6 1.5*10-5 3.47*10-6 2.2*10-3

Table 4 shows: The failure probability per demand of the

changed profile is higher than the original one.

The basic blocks B1 to B 6 of the Figure 1 together can be

understood as one module of a program. In both of the

considered cases (Tables 2 and 3) the number of demands

was identical, only the internal distribution was different.

And this led to a different total failure probability. We see

from that example: It is extremely difficult, if not impossible

to derive failure probabilities per demand from modules only.

It is much more accurate to derive these probabilities from

the traversed paths.

Memorizing paths and the execution numbers of the paths

has already been treated [18]. Gathering path data can be

expensive, in some cases impossible. Then one may perhaps

conservatively estimate the old and the new ni. A

conservative estimate would correspond to the habit of other

engineering disciplines to super-dimensioning the related

parts of the construction. Demand profiles can also be

estimated on the basis of the data that have been or are to be

processed in different operation modes. But: If a path that

has not been executed during test or pre-operation, it has to

be considered as failing, i.e. pi_new= 1, in the new application

and contributing to the total failure probability pt_new with

_i newπ and not with πi_new
2
.

3.3. Notes

During the discussion of this section it was put forward

that pt’ = i

1

* '
K

i

i

pπ
=
∑ as it applies “normally” in stratified

sampling [24]. See also related formulae in other publications

[11, 12]. They do, however, not consider one-sided

confidence intervals that characterize our problem. If e.g. all

pi’ were equal and since
1

K

i

i

π
=
∑ = 1, we would get: pt’ = pi’,

which contradicts (2) with respect to pt, as it does not

recognize that nt > ni applies for all paths i.
Counterexample 1: A colleague reports that licensing on

the basis of (6) is not suitable for the products of his

company. Many failures including stack overflows were

observed after a change of the demand profile.

Explanation: It was never checked whether the old demand

profile contained all paths of the new profile.

Counterexample 2: A colleague reports that licensing on

the basis of operational experience was not suitable for a

product used by his employer: The software had worked well

for a long time for a limited operational period during each

day. It failed due to overflow of a counter, as it was used

continuously for a longer period than a day.

Explanation: The individual executions of the software

were not statistically independent. They were coupled via a

counter and the user was not aware of this.

Licensing on the basis of the formulae given in this

contribution is only feasible if the mentioned pre-requisites

are met. See appendix. Demonstrating this may be time

consuming and costly. In some applications it is cheaper to

do verification in a systematic way.

4. Continuous Operation and Demand

Operation

In many cases several views on one and the same item are

possible: e.g. light can be considered as particles or waves; or

solving a particular task can be considered as a sequence of

single subtasks or as a continuous effort. So is it with the

work of digital computers. They can be considered as being

driven by sequences of events from the EUC or by

continuous input data from the EUC. All digital computers

work, however, more or less demand-driven; in contrast to

analog computers.

4.1. Operation on Demand

In industrial applications a digital computer operates

frequently on demand, say by polling, each reading cycle is

started by an interrupt; interrupts coming at constant time

intervals from outside. The safety-related functions of the

computer may act in case of danger to the EUC that is

supervised. A demand consists of a combination of input

parameters from the EUC that can cause danger; a software

failure would be an improper reaction to the demand.

Another view of this functionality may consider the input

data gained by polling as used for continuous control, in

keeping the output variables in pre-defined limits: After

each reading of the inputs the new outputs are evaluated

and sent.

4.2. Software Working Continuously

If continuous control is an issue, it is uncomfortable to

take the demand view. The demand view is not common for

hardware. Physical behavior is frequently considered as time

dependent, not event dependent. This applies also for

physical failures: Failures of chips, bulbs, tubes, wires,

amplifiers, sensors etc. are conceived as coming in course of

time, e.g. by wear out, Braun’s molecule movement, thermal

noise and the like. It is then convenient to characterize the

failure behavior by its failure rate λ, as defined in [16]. λ or

rather λ' can be conceived as the inverse of the Mean Time

Between Failure (MTBF) or as the number of failures per

time unit. Similar to the views taken for the demand case we

can also assume upper limits to failure rates, i.e. λ being the

upper limit to the failure rate λ’ and require a related level of

82 Wolfgang Ehrenberger: Statistical Considerations on Software-Safety Estimation in Licensing

confidence or significance, say

Pr (λ’ ≤ λ) = β = 1 – α.

Consequently, the upper limit of the number of failures E

(F) that is expected to a certain level of confidence during

operation time t can be estimated as

E(F) = t*λ. (7)

In the on-demand view we have the upper limit of the

number of failures according to (3). As the number of failures

cannot depend on the view on a system, it always holds for n

demands during operation time t:

n*p = t*λ, (8)

if the pre-requisites mentioned in the appendix apply. As t

and n have fixed values, λ is the upper limit of the real λ’ at

the same level of confidence as p is the upper limit to p’.

Under ideal circumstances one can use (8) for calculating λ

from n and p, if t is known, or deriving p from λ, n and t.

This consideration is plausible because we are dealing here

with digital computers and a digital computer is always

working on demand. It is, however, in some cases more

convenient to consider it as a continuously working device.

From (8), (3) and (7) it follows

ln
t

α
λ

= − , (9)

which is obviously similar to (2) and gives the necessary

testing time or time of operational experience to support a

certain failure rate at a certain level of significance.

If the claimed pre-requisites do not hold, the left hand side

of (8) cannot be evaluated and therefore the formula is not

applicable. Never the less its right-hand side may get a value

by applying the exponential distribution on the observed

data. More detailed considerations on the problem and its

terminology exist [14].

(8) can also be used to evaluate the effect of squeezing the

(fictive) operation time during testing if a certain value for λ

is to be demonstrated.

Example 3: A program has been executed under ideal

conditions with 30000 demands, each demand corresponding

to two operational hours, t = 2*30000 h. We get: from (3)

n*p = 3 = -lnα. (9) leads to:

* 3

2*30000

n p

t
λ = = and λ’ ≤ 0.5*10

-4
 1/h at a level of

significance of 0.05.

Should the program be used with a higher demand rate,

say 1 per hour, and should the same λ at the given confidence

level be required, one would need 60000 demands to

demonstrate that λ is still below the derived limit at the

mentioned level of significance. These 60000 demands need

not take 120000h. If all details are known, testing time can

perhaps be reduced to 120 hours, or even less by increasing

the demands per time unit.

If the real operational environment requires proper

reaction for each demand in more than 2 hours only, further

calculations on the level of the whole safety-related system

will just need a smaller λ.

Calculating failure rates from failure probabilities per

demand is important, since IEC 61508-1 defines SILs

essentially on the basis of failure rates [1]. In that standard

failure probabilities per demand are listed only for demands

that occur less than once per year. Many licensing processes

demonstrate the capabilities of the involved EUC hardware

by fault trees or Markov chains that use failure rates. So

deriving failure rates for digital computer software can be

helpful during licensing.

Using (6) and (8) one can estimate the failure rates for

applications, where several types of continuous demands

apply and change. One should, however, remind that (8) is

not easily applicable to analog computers. Some more

detailed considerations of the here discussed problems have

been published from other points of view, without

considering confidence limits, however [14, 27].

4.3. Software with Memory

Until now we have clandestinely assumed that the software

system examined is memory-less. If our software has to

control some EUC continuously it may be required to keep

some memory of what has happened before, as analog

controllers used to do. It is assumed that the software works

by polling, with constant intervals of ∆t, e.g. being started by

an external interrupt after each interval. So its control flow of

each case or path is:

1 Read sensor signals from EUC

2 Calculate results, considering earlier intermediary

results as far as needed

3 Issue control commands to EUC

In this case the timing of Figure 2 applies. A test case runs

over 5 time steps. The individual cases overlap and can be

evaluated independently, if they do not interact. If they do,

the time period of the influence of one such interaction has to

be taken into account. Then one test case runs over the whole

period of the possible influence of an input. It might then be

better to apply the notion of missions as the section 5

suggests.

Figure 2. Test cases for software with a memory of 6 time steps; i+1 test

suites shown.

 Mathematics and Computer Science 2018; 3(4): 77-86 83

4.4. Mixed Processes

In some applications one result can be affected by different

types of causes: continuous ones and demand-driven ones.

This is normally visible from the requirements specification

of the software. It is then difficult or impossible to apply the

formulae of this contribution directly. It may be necessary to

investigate the software code in detail.

5. Missions

In some cases neither the demand-oriented nor the

continuous view is the most appropriate one. Demands and

continua can appear in a mixed way. It is then reasonable to

take some super view: the mission.

Example 4: The Anti-Blocking System (ABS) of the

wheels of a car is triggered by blocking of one or several of

its wheels, if the driver brakes. If the ground is slippery, the

ABS may be needed for a certain time till the car stops. It is

reasonable to consider the whole sequences of actions on all

wheels of the car as one demand, better, as one mission.

Reliability considerations take care of the different types of

the individual missions that the breaking system has to

master and their frequency.

Example 5: Some cars switch off their motors, if the car stops

and start it again, if the driver wants to go on. The sequence of

actions that the investigated software system has to take between

a start and the next stop can be treated as a unity, as one mission.

Such missions can last for seconds or for hours.

The earlier considerations of this article suggest to treating

one mission as one super demand, consisting of several types

of “normal” demands mixed with several types of continua

and gather information on the different types of such super

demands. Should the (super-) demand profile change, e.g. a

car being used more frequently in another environment, (6)

can form a basis for estimating the safety or reliability

properties in that environment; e.g. different uses of the ABS

by people who use to go skiing or normal drivers. Of course

the paths that are traversed during the two types of operations

have to be identified and the number of their traversals need

to be known or conservatively estimated.

6. Conclusion

Statistical considerations can help in evaluating the safety

properties of software. In some circumstances they are the

preferred means for getting quantitative results. Their use

may, however, cause much effort in gathering data and do the

modelling that is required to get meaningful results. In

practical cases engineers will not only rely on the formulae

given here, but do what engineers always do, if reliability is

an issue: Consider a safety margin.

It is normally also quite time consuming to verify that the

pre-requisites are met that are needed to allow a statistical

approach. The efforts for statistical assessment may be larger

than the efforts needed to do program analysis, analysis-

based testing and related proving. Statistics can mainly be

helpful as a complementary venture to the deterministic way

of software validation and verification; in particular, if large

and well-documented operation experience exists. It can

never be the only way of verifying the correct or safe

behaviour of software.

In order to keep this article focused on the essential aspects,

some points that might be important to the reader have been

left out; like: How do inaccuracies of the knowledge of the

demand profile influence the desired result? Or: What is a

reasonable precise definition of a path, or: How can path

traversals or runs be characterised and stored and how can the

stored information be retrieved easily? See [18].

The illustrating example problems from the Introduction

can be solved as follows:

Exp_1 Use (8) and compare with the required safety margins.

Exp_2 Use (6) and (8)

Exp_3 Use (8) for calculating the resulting failure

probability (n=1) for after-decay heat removal; multiply the

complements of the failure probabilities per demand.

Exp_4 Use the applicable mixture of demand driven events

and continuous periods.

Deriving a whole safety case on the basis of statistical data

always causes a lot of calculation effort, similar to the effort

for preparing licensing documents for any type of hardware.

In particular demonstrating that all needed pre-requisites are

met can need deep understanding of the software at stake. In

some cases, however, applying statistics can safe work.

Acknowledgements

I thank my colleagues Oleg Taraszow, Anatol Badach and

Tim Grams for their critical review of the mathematics of this

text and many others for not agreeing with my views; they

have helped clarifying the thoughts of this article. I also

thank the reviewer of the publisher. Ian Pyle, Ron Pierce and

cooperators of the publisher have checked the correctness of

the English expressions; thank you!

Appendix

Collection of Pre-requisites and Assumptions

A.1 General Pre-requisites for Licensing on Proven in Use

Arguments from [2, 3]

The conditions of use (operational profile) of software

include all the factors that may trigger systematic faults. To

find out, whether one can use operating experience in a

safety case, one has to compare the old and the new operating

profile. To determine whether two operational profiles are

identical or sufficiently similar documentary evidence shall

demonstrate that the following features and phenomena of

previous use are identical in the intended use of the element

in the E/E/PE safety-related system:

a) Software environment (e.g. processor, memory, clock,

bus behavior, demand profile);

b) configuration (e.g., compiler options used in compiling

the source code for the proposed use, initialization of

84 Wolfgang Ehrenberger: Statistical Considerations on Software-Safety Estimation in Licensing

program variables and constants, the hardware

configuration on which the software will execute);

c) software interfaces;

d) libraries (including source code libraries as well as

libraries of binary code);

e) operating systems, interpreters (for example, those used

to emulate processor architectures on processors which

do not share that architecture);

f) translator (compiler), linker, code generators;

g) contain a complete description of the conditions of use

of the proven-in-use software.

A.2 Detailed Aspects About Software Functions (in Part

from [2, 3]).

The following rules, requirements and assumptions apply

for software functions of all safety-integrity levels (SILs).

They concern properties of the software, of operational

experience and statistical test cases. Operational experience

can supplement or replace statistical testing, and operational

experience from several sites may be combined (i.e. by

adding the number of treated demands or hours of operation).

The following text refers always to the code (software) of

functions and NOT to (software) modules or code parts.

Trivial aspects

R1 The codes of the pre-existing or tested functions for

which operating experience is claimed and the code of the

functions for the future intended application are identical.

Note 1: This can be demonstrated by proper use of hash

functions.

Note 2: Identity of software version means fundamentally

the identity of binaries. This can occasionally lead to

problems where a binary code runs in emulation mode. Then

hardware and emulator are to be taken into account.

R2 No failures have occurred during pre-operation or test.

This includes:

R2a The software has always worked correctly.

R2b Observation of information gathering has been so

strict and complete that any possible incorrect behavior has

been recognized.

R2c A specification has existed (and still exists) that has

allowed to decide whether any result was correct of incorrect.

Note: If this is not fulfilled, the software will not be

licensed for any safety-related application.

To be met by the software to be evaluated

R3 The software is a pure function of its input data; one

treatment of a subset of the actual set of input data that

causes an output is called one run or one traversal; each run

is represented by one path; sequence and number of runs of

any path cannot influence any future run; or see also R5, R6

and R7.

R4 No failure masking has occurred during testing or pre-

operation [15].

Note1: For example the software may be required to react

on two external events. It may have reacted correctly under

all tested circumstances, but event 1 was always faster than

event 2. So no experience exists on any possible failure to

react on event 2.

Note 2: Failure masking is always possible if one result is

calculated via an OR-decision.

R5 If the software has internal states, they have to be

considered like states of input variables.

R6 The probability of observing one demand over a small

interval is approximately proportional to the size of that

interval.

R7 If the software memorizes certain internal values over a

certain time, a single test case, run or operational traversal

shall be taken over that time.

Note1: This view can be helpful, if a control algorithm

uses data from the immediate past, e.g. by integration.

Note2: In some cases it may be reasonable not to consider

runs of the software but missions as a basis for safety

calculations.

R8 No software failure must be able to cause or hide any

other software failure (be free from interference).

R9 The software must be executed purely

deterministically.

Note: This is normally the case with a digital computer;

the software has no random number generator.

To be met by the test harness or the operational

environment that provides the experience

R10 During the operational experience or the tests the

individual runs have to be statistically independent from each

other.

Note: This means: No single run can influence the result of

any other run; or: The test harness or the application where

the operational experience has been gathered is or was

memory-less from path to path.

R11 Test cases or operational experience cases have been

selected according to the intended operational profile.

Note: This is not needed, if formula (6) can be applied for

correcting any mismatch.

R12 The distribution of input data that are processed in

one execution path of the software is similar between the

experience gathering during pre-operation or the testing

period and the future operation period (equal demand profile

within one path).

R13 The number of test cases in each path meet the

requirements to be fulfilled for the Poisson distribution. If

this is not the case, the related path shall be treated with pi =

1.

R14 The paths and their number of executions are known

from both the previous and the future demand profile.

A.3 Guidelines for Work and Evaluation of Results

G1 The paths shall be identified for the old and the future

demand profile.

Note 1: If the new demand profile is just a subset of the

old one, no problems exist.

Note 2: If the new profile is not a subset of the old one and

if re-calculation is not wanted, any possible short comings

can be compensated by additional tests of the paths that were

not tested sufficiently yet.

Note 3: Small discrepancies between the profiles can

perhaps be shown to be irrelevant by using the well-

established rules for dealing with inaccurate measurements.

G2 for estimating the demand profile of a new application,

 Mathematics and Computer Science 2018; 3(4): 77-86 85

model checking can help.

G3 the failure probabilities per demand and the number of

runs shall be evaluated or conservatively estimated for each

path.

G4 Each path that has not been traversed at all shall be

considered with failure probability 1 and the probability of

its traversal shall be considered without the square (i
π and

not 2

iπ).

G5 Concatenated subsequent paths over modules can be

considered in software system safety evaluation as one path, if

they do not interact; in his case the largest failure probability

per demand of any path of the chain shall be taken.

G6 If interacting modules are concatenated, the paths from

start to end of the whole software shall be taken.

G7 Paths whose correctness has been proven, shall be

considered with failure probability 0.

G8 It is recommendable to verify the correctness of loops

with varying repetition numbers deterministically, e.g. by proof.

G9 Separate considerations are required for complicated

logical expressions or for complicated algorithms.

Note: A logical expression can usually be decomposed into

a sequence of branches, and a sequence of branches can

sometimes be transferred into a logical expression for one

branching instruction.

G10 Some aspects, e.g. actions that shall be triggered by

the software at a specific future calendar date, need

deterministic verification and white box testing.

G11 When the software safety requirements can formally

and rigorously be separated from the overall software

requirements then the conditions from above may be applied

to safety-related failures of the software only.

G12 Due to the pre-requisites given, a pure random

evaluation of low failure probabilities or failure rates is

impossible; at least reading of the code and a minimum of

understanding is required for software that works on the EUC

immediately.

References

[1] ISO/IEC 61508-1: Functional Safety of electrical/electronic/
programmable electronic safety-related systems, Part 1:
General requirements (2010) Beuth Verlag Berlin or IEC
Geneva.

[2] IEC/TS 61508-3-1 Ed. 1.0: Functional safety of electrical/
electronic/programmable electronic safety-related systems -
Part 3-1: Software requirements - Reuse of pre-existing
software elements to implement all or part of a safety function,
(2015), IEC Geneva or Beuth Verlag Berlin.

[3] ISO/IEC 61508-7: Functional Safety of electrical/electronic/
programmable electronic safety-related systems, Part 7 Annex
D (2010), IEC Geneva or Beuth Verlag Berlin.

[4] Baldoni, Roberto; Giorgia Lodi, Luca Montanari, Guido
Mariotta, and Marco Rizzuto: Online Black-Box Failure
Prediction for Mission Critical Distributed Systems, 31.
International Conference Safecomp 2012, LNCS 7612, pp
111-123.

[5] Strigini, Lorenzo and Bev Littlewood, Guidelines for
Statistical Testing (Report No. PASCON/WO6-CCN2/TN12).
ESA/ESTEC project PASCON) London City University
(1997) to be received via the authors.

[6] Butler, Ricky W. and George B. Finelli: The Infeasibility of
Quantifying the Reliability of Life-Critical Real-Time
Software; IEEE Transactions on Software Engineering, Vol
19, No1 (1993).

[7] Littlewood, Bev and Lorenzo Strigini: Validation of Ultra-
high Dependability for Software-based Systems,
Communications of the ACM, 36(11), (1993).

[8] Kuball, Silke; John May and Gordon Hughes: Structural
Software Reliability Estimation; Safecomp 99, Lecture Notes
in Computer Science, Vol. 1698, Springer pp 336-349.

[9] Glaß, Michael; Heng Yu, Felix Reimann and Jürgen Teich:
Cross-Level Compositional Reliability Analysis for
Embedded Systems 31 International Conference Safecomp
2012, LNCS 7612, Springer pp 111-123.

[10] Cotroneo, Domenico; Domenico Di Leo, Roerto Natella and
Roerto Pietrantuono: A Case Study on State-Based
Robustness Testing of an Operating System for the Avionic
Domain, 30th International Conference, Safecomp 2011,
LNCS 6894, Springer, pp 213-227.

[11] Saifuddin, Ahmed: Methods in Survey Sampling Biostat 140.
640 – Stratified Sampling. pdf, (lecture notes) John Hopkins
University, Bloomberg, school of public health (2009).

[12] de Vries, Pieter G.: Sampling Theory for Forest Inventory –
Stratified Sampling, ISBN 978-3-642-7 1581-5 (1986) Springer.

[13] Gran, Björn Axel; Gustav Dahll, Siegfried Eisinger, Eivind. J.
Lund, Jan Gerhard Norstrom, Peter Strocka and Britt J.
Ystanes: Estimating Dependabilty of Programmable Systems
Using BBNs, 19 International Conference Safecomp 2000,
Springer LNCS 1943, pp 309-320.

[14] Fares Innal: Contribution to modelling safety instrumented
systems and assessing their performance – Critical analysis of
IEC 61508; University of Bordeaux; Doctoral school of
Physical and Engineering Sciences, presented 3rd July 2008;
pp 49-53.

[15] Bishop Peter G. et al.: STEM a project on Software Test and
Evaluation Methods; Proceedings Safety and Reliability
Symposium SARS 87, (1987). pp 100-117.

[16] ISO/IEC 61508-4: Functional Safety of electrical/electronic/
programmable electronic safety-related systems, Part4:
Definitions and Abbreviations (2010) Beuth Verlag Berlin or
IEC Geneva.

[17] Littlewood, Bev and David Wright: Some Conservative
Stopping Rules for the Operational Testing of Safety-Critical
Software, IEEE Transactions on Software Engineering, Vol.
23, NO 11, November 1997 pp 674-683.

[18] Ehrenberger, Wolfgang: Operating Experience and Changing
Demand Profile – Consideration of Paths, IFAC Congress
2014, Vol 19, pt1, ISBN 978-3-902823-62-5, pp 1619-1624.

[19] Ehrenberger, Wolfgang: Nachweis der Funktionsfähigkeit von
Software durch statistische Schlussweisen – Möglichkeiten,
Bedingungen, Grenzen; Informatik Spektrum (2016) Springer
Verlag, pp 384-392.

86 Wolfgang Ehrenberger: Statistical Considerations on Software-Safety Estimation in Licensing

[20] Eberhardinger, Benedikt; Hella Seebach, André Reichstaller,
Alexander Knapp and Wolfgang Reif: Adaptive Tests for
Adaptive Systems: The Need for New Concepts in Testing for
Future Software Systems Gesellschaft für Informatik,
Software Technik Trends Band 38, Heft 1 März 2018, pp. 61-
64.

[21] Hawkins, Richard; Alvaro Miyazawa, Ana Cavalcanti, Tim
Kelly and John Rolands: Assurance Cases for Block-
Configurable Software, LNCS 8666, Safecomp 2014, e-ISBN
978-3-319-10506-2, Springer, pp. 155-169.

[22] Macher, Georg; Eric Armengaud, Eugen Brenner and
Christian Kreiner: A Review of Threat Analysis and Risk
Assessment Methods in the Automotive Context; LNCS 9922,
Safecomp 2016, e-ISBN 978-3-319-45477-1, Springer, pp.
130-141

[23] Pyle, Ian: Developing Safety Systems, ISBN 0-13-204298-3,
section 4. 5. 2, p 40.

[24] From the discussions in the standardization group.

[25] Tsong Yueh Chen and Yuan Tak Yu: On the Expected
Number of Failures by Subdomain Testing and Random
Testing; (1996), IEEE Transactions on Software Engineering,
Vol. 22, NO 2.

[26] Borges, Mateus; Antonio Filieri, Marcelo d’Amorim and
Corina S. Pasareanu: Iterative Distribution-Aware Sampling
for Probabilistic Symbolic Execution; ESEC/FSE’ (2015)
ACM. 978-1-4503-3675-8/8/15/08 pp. 866-877.

[27] Braband, Jens; Rüdiger vom Hövel and Hendrik Schäbe:
Probability of Failure on Demand – The Why and the How;
Safecomp 2009, LNCS 5775 pp. 46-54, Springer Verlag
(2009).

