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Abstract: During the discussions in preparation of the new versions of the International Electrotechnical Commission (IEC) 

standards IEC 61508-3 and IEC 61508-7, controversies regarding the proper roles of statistical validation or verification of 

safety-related software have emerged. These controversies regard changing demand profiles and continuous operation versus 

on-demand operation. This contribution derives a formula for calculating the failure probability per demand of software that 

has been tested under a demand profile that is different from the profile of its intended use. It also explains how failure rates 

can be expressed in terms of failure probabilities per demand, if the operational conditions are known. It further describes how 

software that is alternately operated continuously and on demand can be characterized in statistical terms and how the two 

operation modes can be recognized during a statistical evaluation. The notion of “mission” is suggested for sequences of 

demands or mixtures of demand-driven and continuous operation of software. In order to allow statistical calculations many 

requirements have to be met strictly. They are listed in the appendix. This article can hopefully facilitate licensing of software 

in many cases. Remarks are invited. 

Keywords: Software Safety, Statistical Testing, Operational Experience, One-Sided Confidence Interval,  

Changing Demand Profile, On-Demand or Continuously Working, Missions 

 

1. Introduction 

Currently a team of the International Electrotechnical 

Commission (IEC) is updating its standard about software in 

safety-related systems. The existing version of IEC 61508-3 

allows statistical arguments during licensing of safety-related 

software [1, 2, 3]. IEC 61508-7-D describes what has to be 

observed during the licensing process for a certain Safety 

Integrity Level (SIL) as defined in its part 1 [1]. The existing 

standard was developed during the 1980ies, for the then 

prevailing small computers, simple safety-related computer 

systems and simple tasks to be solved. Now both the tasks of 

safety-related computers have become significantly more 

complex and the capacity of the computers has increased 

dramatically. Moreover the challenge has come up to use 

operational experience of software from conventional 

applications as an argument during the licensing procedure of 

safety systems. In order to harmonize this with the existing 

rules, a Technical Specification (TS) has been drafted: IEC 

61508-3-1 [2]. In using this, it is desirable, to express the 

value of operational experience quantitatively to substantiate 

the Safety Integrity Level (SIL) classification of the software 

under consideration. This leads to the problem of different 

demand profiles of the old and new application and the 

challenge of combining demand-based views and time-based 

views. 

Illustrating Example problems (Exp_i) 

Exp_1: Software, whose demand numbers increase: 

Software has been used in a factory for a long time every day 

when work started and switched off after the working shift in 

the evening; now it is planned to be used over one week 

continuously. What reliability data are to be expected? 

Exp_2: Chemical plant and Hospital: Software has been 

used in a chemical plant for process control for a long time. 

Now it is proposed to use it in a hospital. Its use in the 

chemical plant was not safety-related, in the hospital the life 

of patients may be endangered, in case of software failure 

and the demand profile is different. What is the probability of 

the undesired event of failure? What can we say, if the 

software has been modified for the new application? 
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Exp_3: Fukushima: After the loss of the main heat sink of 

a nuclear power plant, the reactor has to be switched off, the 

emergency coolant pumps have to be started, the emergency 

cooling valves have to be opened after a while and then the 

after-decay heat has to be removed during hours and days. 

What is the probability of radio-active poisoning of the 

environment? 

Exp_4: Autonomous car driving on a motor way: The 

computer takes over control from the driver upon entering 

the motor way. The drive has to be controlled according to 

the lanes known from the navigation system, the car has to be 

steered to the desired exit and control has to be given back to 

the driver. What is the probability of no accident during a 

given time? 

An important problem arises, if software is modified 

between two applications. As more and more operational 

experience of software becomes available, e.g. from software 

in cars, profiting from the old operational experience can 

make licensing of software cheaper. The insight gained from 

statistical testing can be considered similar to the insight 

from operational experience – to a certain degree. In 

particular one wants to know, which statistical tests have to 

be performed to complement any existing operational 

experience. And last but not least we are interested to learn, 

how reliability arguments change, when our view switches 

from continuous operation to demand-based operation or vice 

versa; i.e. how reliability arguments get a different form; and 

what we have to conclude, if we have a mixture of both types 

of operation. All this requires adapting the existing 

formulations of the mentioned standard(s) to the new 

circumstances. In trying to do so, controversies have come up 

between the specialists who were included in the discussions. 

2. Existing Views 

It is not generally agreed yet, how changes of an 

operational profile of a particular piece of software 

influences its safety-capability. Closely connected to that is, 

how software that has successfully fulfilled a certain number 

of demands can be classified into the existing SIL system, as 

this is essentially time-based, because it has to meet the 

thinking of hardware reliability. The existing literature, has 

not given clear guidance on either of these cases. [4, 5, 6, 7, 

8, 9, 10, 11, 12].  

Some publications emphasize the currently emerging new 

problems, e.g. in autonomous driving and express the need of 

related new testing concepts. [20, 21, 22]. Only few address 

stratified sampling [11, 12]; but they do it without discussing 

one-sided confidence intervals. The same applies for a 

contribution on subdomain testing [25]. Also a recent 

publication about awareness of the distribution of events in 

the program’s input space does not refer to one-sided test 

confidence [26]. And it is one-sided confidence intervals that 

characterize our case, as we have operational experience or 

experiments or test cases without observed failures. If any 

failure had come up, license would not be granted. It is 

surprising that these questions are still open, since scientific 

interest in the validity of statistical observation has existed 

since a long time. [5, 6, 7]. 

In addition to the mentioned aspects we have to recognize: 

Many of those, who drafted the existing standard were very 

familiar with statistics, because they came from physics. 

Now colleagues, who have been educated mainly in 

computer science enter the computer-safety area, and some 

of them have little expertise in the mathematics of 

probabilities. This has led to considerable confusion recently, 

including mis-interpretation of the standard [3]. The 

following text tries to start from the basic aspects. A pre-

publication about the area has been made in German. [19]. 

3. Software Working on Demand 

The software of safety-related digital computers can in 

most cases be understood as having paths that are started by a 

specific event, e.g. by an interrupt. The input data are read, 

the related results are evaluated and put out. The text below 

is based on definitions that are not used in the same way by 

all authors. Those that might be controversial are given here: 

Path: Traversal or possible traversal of a piece of software 

from its start to its end; or: program run from its starting 

timer interrupt to its end; or: sequence of machine 

instructions that is executed or can be executed; 

Demand:  Input condition or input conditions from the 

Equipment under Control (EUC) that lead to the execution of 

one or several paths with possible safety-related effects; 

Demand profile:  Set of all input conditions from the EUC 

that lead to the execution of one or several paths with 

possible safety-related effects and their number or frequency; 

Failure:  Output of the execution of a path or demand or of 

a set of paths or demands that contradicts the specification of 

the software; effect of a software fault; the random event in 

this article. 

3.1. The Simple Case: Constant Demand Profile 

We are looking for the number of test cases or cases of 

operational experience that are needed to demonstrate: 

The failure probability per demand of our software is 

below a certain limit. That limit shall be valid at a given level 

of confidence. In other words: The probability Pr that the 

failure probability per demand p’ is below an upper limit p 

shall equal β i.e. be true at the level of confidence β. 

Formally: 

Pr (p’ ≤ p) = β 

Here the random variable is p, as the upper limit is to be 

evaluated. The failure probability p’ is fixed, but unknown. 

The random event is software failure F. [24]. 

The formula we are after and its derivation have been 

widely known. [6]. The derivation is repeated here, because a 

further conclusion is drawn from an intermediate result. 

p:    upper limit of the probability of failure per demand; 

1-p: lower limit of the probability of no failure per demand. 

n:    number of test cases or demands. 

We follow the common way of the tests of hypotheses: 
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proof by falsification of the complement. Ideal circumstances 

are assumed, as the requirements from the appendix below 

prescribe. They are reported here shortly in slightly different 

wording. We have: 

(1) statistically independent test cases, 

(2) no failures during test or pre-use operation, 

(3) no failure masking, 

(4) no internal states, or internal states are considered like 

input variables; 

(5) probability of one demand over a small interval is 

approximately proportional to the size of that interval; 

(6) if the software memorizes certain internal values over a 

certain time, a single test case, run or operational traversal is 

taken over that time; 

(7) the software works purely deterministically. 

For a collection of all requirements and their more precise 

formulations see appendix. 

Then it holds: 

(1-p)
n
: probability of no failure at a test with n demands, 

the complement to having at least 1 failure on n demands. As 

we argue by falsification of the complement, it has to be 

small, if a large level of confidence is to be demonstrated: If 

the original hypothesis were wrong, we must have at least 1 

failure. 

α: level of significance of a statistical hypothesis; α = 1 – 

β. 

(1-p)
n
 = α                                   (1) 

level of significance of a test with n demands without failure; 

to be small. See also [6] and theory of statistical sampling 

[9]. Taking the logarithm yields n*ln (1-p) = lnα. This leads 

to n and, because p is small: 

n = 
pp −

≈
−

αα ln

)1ln(

ln
; 

n
p

αln−≈            (2) 

            /*formula from IEC 61508-7 D 

[3]*/ 

For the upper limit of the (fictive) number of failures to be 

expected E(F) from n demands to the given level of 

significance we get further: 

E (F) = n*p.                                (3) 

This is intuitively clear but can also be derived from the 

Poisson distribution or the binomial distribution. It also 

follows: E (F) = - lnα. 

Should (2) be used for any prediction of future use of the 

software, it must also hold: 

1) Pre-existing or tested code and code of the future 

application are identical. 

2) The demand profile of the test or pre-operational 

experience is identical to the demand profile of the 

future application. 

In many cases this requirement does not hold, as the way 

the software is used differs more or less significantly from 

that of its testing or pre-operation phase. We now examine, 

which effects different demand profiles have. 

3.2. Several Types of Executions, Changing Demand 

Profile 

The considerations of this article refer to conventional 

digital computers. Their software is understood as being 

executed sequentially, machine command per machine 

command. A sequence of machine commands from program 

start to its end is called a path. Our software is assumed to 

have K different such paths. The ideal pre-requisites except 

the last-mentioned requirement still apply for each of these; 

path i is executed ni times. 

With n = nt = 
1

K

i

i

n
=
∑  total number of runs or executions 

and p = ptotal = pt, we derive from (1): 

1 2

1
(1 ) (1 ) (1 ) ...(1 ) ...(1 ) (1 )

i
t i K

nKn nn n n

t t t t t ti
p p p p p pα

=
= − = − − − − = −∏  

From (3) we can derive: E (F) = nt*pt, as a (fictive) upper 

limit of the number of failures to be expected from nt 

demands. If the same level of significance applies for each 

path: 

-lnα = E (Fi ) = E (F ) = ni*pi is the upper limit of the 

number of failures to be expected from the ni demands of 

path i to the given level of significance. We set: 

pt := πi * pi                                      (4) 

with 

( )
*

( )

t i i

i

i t t

p n nE F

p n E F n
π = = =                      (5) 

to be valid for all paths i. πi is the probability of selecting     

path i. This leads to:
1

(1 ) (1 * )
i

t

nKn

t i ii
p pα π

=
= − = −∏  

Since all *i ipπ  are small, it holds from (2): 

lnα = nt*ln (1 - pt) ≈  nt (- pt) 

1 1

ln(1 ) ( )
K K

i i i i i i

i i

n p n pπ π
= =

≈ − ≈ −∑ ∑  

and 

pt 
2

1

*
K

i i

i

pπ
=

≈ ∑                              (6) 

This has always some claim for being true, if the 

requirements mentioned - and perhaps R13 from the 

appendix are met. It can easily be validated by an example. 

See Example 2. The set of the πi represents the demand 

profile of the software. Therefore (6) can be used to evaluate 

the change of the software failure probability, if the demand 

profile changes. 

If the demand profile changes the relations (4) and (5) do 

not hold. As the failure properties of the individual paths did 

not change for the new profile, pi_new = pi_old, is true for all 
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paths, but since πi_new ≠ πi_old and consequently pt_new ≠ pt_old, 

(4) can no longer be valid for the new demand profile. This 

was a point during the discussions [24]. The old profile was 

the “ideal” profile, since the test or operational experience 

was designed or interpreted according to (4). Therefore we 

get in all cases pt_new > pt_old for the new demand profile, as 

illustrated by the following example. 

Example 1: Originally we had 2 different paths, numbered 

i and k, with identical properties: πi_old = πk_old = πold and            

pi_old = pk_old = pold. So the influence of our pair of paths on 

the total failure probability per demand is:                                         

πi_old
2 

*pi_old + πk_old
2
 *pi_old = 2 πi_old

2 
*pi_old. For the new 

application we assume that πi_new is larger than πi_old. We write 

πi_new = πi_old + ∆. As the sum of all πi is always 1, we get on 

the other hand a smaller selection probability of the same 

size; we assume path k is affected. πk_new = πk_old – ∆. 

Formula (6) consists of summands that always contain π
2
. 

The relation transfers this into πi_new
2 

*pold + πk_new
2
 *pold 

which is (πi_old + ∆)2 
*pold + (πk_old - ∆)2

 *pold =                                  

pold*(πi_old
2
 +2 πi_old* ∆ + ∆

2
 + πi_old

2
 -2 πi_old * ∆ + ∆

2
 ) = 

pold*(2πi_old
2
 + 2∆

2
) > 2πi_old

2
 pi_old from above. 

Because of the quadratic relation in formula (6) any 

deviation of the demand profile from the ideal one leads to an 

increase of the failure probability per demand of the whole 

software system. During a practical licensing procedure one 

can estimate the effect of a profile change by (6) and decide 

whether or not pt_new still meets the reliability requirements. 

(6) also suggests that the effect of small changes is not 

significant, since they influence the result only by squares of 

numbers smaller than 1. 

From (4) we calculate the value of pi_new that would be 

sufficient to reach pt_new. 

_

_

_

t new

i new

i new

p
p

π
=

 

The derivation of (6) is valid only, if a minimal number of 

runs of each path have been executed, such that (2) is valid 

for each path. This can be assumed, 

1) if the pre-requisites of the Poisson distribution are met. 

And, of course, 

2) if the number of runs of each path is well known both 

for the old and the new demand profile. 

Example 2: A program part consists of 9 basic blocks as 

depicted in Figure 1. They form 6 paths that are traversed 

during testing according to the Tables 1and 2. Any Block Bi 

is traversed purely sequentially. 

 

Figure 1. Flow graph of a program part with 9 Basic Blocks and 6 paths. 

Table 1. Path traversals of the flow graph of a program part according to 

Figure 1; 9 Basic Blocks, 6 paths, nt = 30000 traversals or runs in total. 

Traversals per Basic Block 

Block Block traversals nij Paths 

1 30000 All 

21 20000 1, 2 

22 10000 3, 4, 5, 6 

31 2500 3, 4 

32 7500 5, 6 

4 30000 All 

51 8000 1, 3, 5 

52 22000 2, 4, 6 

6 30000 All 

Table 2. Path traversals of the flow graph of a program part according to 

Figure 1; 9 Basic Blocks, 6 paths, nt = 30000 traversals or runs in total. 

Traversals per path 

Paths Path traversals ni Blocks 

1 7000 1, 21, 4, 51, 6 

2 13000 1, 21, 4, 52, 6, 

3 500 1, 22, 31, 4, 51, 6 

4 2000 1, 22, 31, 4, 52, 6 

5 500 1, 22, 32, 4, 51, 6 

6 7000 1, 22, 32, 4, 52, 6 

If α = 0.05, ln 0.05 ≈ -3; from (2): pt = 
ln

t
n

α
−

 ≈  10
-4 

Table 3. Probabilities of path traversals or runs and upper limits of failure probabilities; numbers from Table 2, calculations of rows 2 according to (4), row 3 

according to (2), for   -ln α = 3, corresponding to level of confidence of 95%. Row 4 according to (6). 

Path number i 1 2 3 4 5 6 all, ∑ 

Path probability πi 0.23333 0.43333 0.01667 0.06667 0.01667 0.2333 1 

Failure probability pi 4.28*10-4 2.31*10-4 60*10-4 15*10-4 60*10-4 4.28*10-4  

πi
2*pi 2.333*10-5 4.43*10-5 1.666*10-6 6.67*10-6 1.666*10-6 2.333*10-5 10-4 

If the demand profile as defined in the second row of Table 3 changes, the numbers of row 4 are no longer valid. The total 

failure probability per demand is then higher, than the last number of its row 4 shows. See Table 4. 
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Table 4. Probabilities of path traversals changed, failure probabilities per demand of the paths as above; level of significance also unchanged. 

Path number i 1 2 3 4 5 6 all, ∑ 

Path probability πi_new 0.2 0.01 0.6 0.05 0.05 0.09 1 

Failure probability pi 4.28*10-4 2.31*10-4 60*10-4 15*10-4 60*10-4 4.28*10-4  

πi_new
2*pi 1.71*10-5 2.31*10-8 21.6*10-4 3.75*10-6 1.5*10-5 3.47*10-6 2.2*10-3 

 

Table 4 shows: The failure probability per demand of the 

changed profile is higher than the original one. 

The basic blocks B1 to B 6 of the Figure 1 together can be 

understood as one module of a program. In both of the 

considered cases (Tables 2 and 3) the number of demands 

was identical, only the internal distribution was different. 

And this led to a different total failure probability. We see 

from that example: It is extremely difficult, if not impossible 

to derive failure probabilities per demand from modules only. 

It is much more accurate to derive these probabilities from 

the traversed paths. 

Memorizing paths and the execution numbers of the paths 

has already been treated [18]. Gathering path data can be 

expensive, in some cases impossible. Then one may perhaps 

conservatively estimate the old and the new ni. A 

conservative estimate would correspond to the habit of other 

engineering disciplines to super-dimensioning the related 

parts of the construction. Demand profiles can also be 

estimated on the basis of the data that have been or are to be 

processed in different operation modes. But: If a path that 

has not been executed during test or pre-operation, it has to 

be considered as failing, i.e. pi_new= 1, in the new application 

and contributing to the total failure probability pt_new with 

_i newπ  and not with πi_new
2
. 

3.3. Notes 

During the discussion of this section it was put forward 

that pt’ = i

1

* '
K

i

i

pπ
=
∑  as it applies “normally” in stratified 

sampling [24]. See also related formulae in other publications 

[11, 12]. They do, however, not consider one-sided 

confidence intervals that characterize our problem. If e.g. all 

pi’ were equal and since 
1

K

i

i

π
=
∑ = 1, we would get: pt’ = pi’, 

which contradicts (2) with respect to pt, as it does not 

recognize that nt  > ni applies for all paths i. 
Counterexample 1: A colleague reports that licensing on 

the basis of (6) is not suitable for the products of his 

company. Many failures including stack overflows were 

observed after a change of the demand profile. 

Explanation: It was never checked whether the old demand 

profile contained all paths of the new profile. 

Counterexample 2: A colleague reports that licensing on 

the basis of operational experience was not suitable for a 

product used by his employer: The software had worked well 

for a long time for a limited operational period during each 

day. It failed due to overflow of a counter, as it was used 

continuously for a longer period than a day. 

Explanation: The individual executions of the software 

were not statistically independent. They were coupled via a 

counter and the user was not aware of this. 

Licensing on the basis of the formulae given in this 

contribution is only feasible if the mentioned pre-requisites 

are met. See appendix. Demonstrating this may be time 

consuming and costly. In some applications it is cheaper to 

do verification in a systematic way. 

4. Continuous Operation and Demand 

Operation 

In many cases several views on one and the same item are 

possible: e.g. light can be considered as particles or waves; or 

solving a particular task can be considered as a sequence of 

single subtasks or as a continuous effort. So is it with the 

work of digital computers. They can be considered as being 

driven by sequences of events from the EUC or by 

continuous input data from the EUC. All digital computers 

work, however, more or less demand-driven; in contrast to 

analog computers. 

4.1. Operation on Demand 

In industrial applications a digital computer operates 

frequently on demand, say by polling, each reading cycle is 

started by an interrupt; interrupts coming at constant time 

intervals from outside. The safety-related functions of the 

computer may act in case of danger to the EUC that is 

supervised. A demand consists of a combination of input 

parameters from the EUC that can cause danger; a software 

failure would be an improper reaction to the demand. 

Another view of this functionality may consider the input 

data gained by polling as used for continuous control, in 

keeping the output variables in pre-defined limits: After 

each reading of the inputs the new outputs are evaluated 

and sent. 

4.2. Software Working Continuously 

If continuous control is an issue, it is uncomfortable to 

take the demand view. The demand view is not common for 

hardware. Physical behavior is frequently considered as time 

dependent, not event dependent. This applies also for 

physical failures: Failures of chips, bulbs, tubes, wires, 

amplifiers, sensors etc. are conceived as coming in course of 

time, e.g. by wear out, Braun’s molecule movement, thermal 

noise and the like. It is then convenient to characterize the 

failure behavior by its failure rate λ, as defined in [16]. λ or 

rather λ' can be conceived as the inverse of the Mean Time 

Between Failure (MTBF) or as the number of failures per 

time unit. Similar to the views taken for the demand case we 

can also assume upper limits to failure rates, i.e. λ being the 

upper limit to the failure rate λ’ and require a related level of 
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confidence or significance, say 

Pr (λ’ ≤ λ) = β = 1 – α. 

Consequently, the upper limit of the number of failures E 

(F) that is expected to a certain level of confidence during 

operation time t can be estimated as 

E(F) = t*λ.                                    (7) 

In the on-demand view we have the upper limit of the 

number of failures according to (3). As the number of failures 

cannot depend on the view on a system, it always holds for n 

demands during operation time t: 

n*p = t*λ,                                       (8) 

if the pre-requisites mentioned in the appendix apply. As t 

and n have fixed values, λ is the upper limit of the real λ’ at 

the same level of confidence as p is the upper limit to p’. 

Under ideal circumstances one can use (8) for calculating λ 

from n and p, if t is known, or deriving p from λ, n and t. 

This consideration is plausible because we are dealing here 

with digital computers and a digital computer is always 

working on demand. It is, however, in some cases more 

convenient to consider it as a continuously working device. 

From (8), (3) and (7) it follows 

ln
t

α
λ

= − ,                                      (9) 

which is obviously similar to (2) and gives the necessary 

testing time or time of operational experience to support a 

certain failure rate at a certain level of significance. 

If the claimed pre-requisites do not hold, the left hand side 

of (8) cannot be evaluated and therefore the formula is not 

applicable. Never the less its right-hand side may get a value 

by applying the exponential distribution on the observed 

data. More detailed considerations on the problem and its 

terminology exist [14].  

(8) can also be used to evaluate the effect of squeezing the 

(fictive) operation time during testing if a certain value for λ 

is to be demonstrated. 

Example 3: A program has been executed under ideal 

conditions with 30000 demands, each demand corresponding 

to two operational hours, t = 2*30000 h. We get: from (3) 

n*p = 3 = -lnα. (9) leads to: 

* 3

2*30000

n p

t
λ = =  and λ’ ≤ 0.5*10

-4
 1/h at a level of 

significance of 0.05. 

Should the program be used with a higher demand rate, 

say 1 per hour, and should the same λ at the given confidence 

level be required, one would need 60000 demands to 

demonstrate that λ is still below the derived limit at the 

mentioned level of significance. These 60000 demands need 

not take 120000h. If all details are known, testing time can 

perhaps be reduced to 120 hours, or even less by increasing 

the demands per time unit. 

If the real operational environment requires proper 

reaction for each demand in more than 2 hours only, further 

calculations on the level of the whole safety-related system 

will just need a smaller λ. 

Calculating failure rates from failure probabilities per 

demand is important, since IEC 61508-1 defines SILs 

essentially on the basis of failure rates [1]. In that standard 

failure probabilities per demand are listed only for demands 

that occur less than once per year. Many licensing processes 

demonstrate the capabilities of the involved EUC hardware 

by fault trees or Markov chains that use failure rates. So 

deriving failure rates for digital computer software can be 

helpful during licensing. 

Using (6) and (8) one can estimate the failure rates for 

applications, where several types of continuous demands 

apply and change. One should, however, remind that (8) is 

not easily applicable to analog computers. Some more 

detailed considerations of the here discussed problems have 

been published from other points of view, without 

considering confidence limits, however [14, 27]. 

4.3. Software with Memory 

Until now we have clandestinely assumed that the software 

system examined is memory-less. If our software has to 

control some EUC continuously it may be required to keep 

some memory of what has happened before, as analog 

controllers used to do. It is assumed that the software works 

by polling, with constant intervals of ∆t, e.g. being started by 

an external interrupt after each interval. So its control flow of 

each case or path is: 

1 Read sensor signals from EUC 

2 Calculate results, considering earlier intermediary 

results as far as needed  

3 Issue control commands to EUC 

In this case the timing of Figure 2 applies. A test case runs 

over 5 time steps. The individual cases overlap and can be 

evaluated independently, if they do not interact. If they do, 

the time period of the influence of one such interaction has to 

be taken into account. Then one test case runs over the whole 

period of the possible influence of an input. It might then be 

better to apply the notion of missions as the section 5 

suggests. 

 

Figure 2. Test cases for software with a memory of 6 time steps; i+1 test 

suites shown. 
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4.4. Mixed Processes 

In some applications one result can be affected by different 

types of causes: continuous ones and demand-driven ones. 

This is normally visible from the requirements specification 

of the software. It is then difficult or impossible to apply the 

formulae of this contribution directly. It may be necessary to 

investigate the software code in detail. 

5. Missions 

In some cases neither the demand-oriented nor the 

continuous view is the most appropriate one. Demands and 

continua can appear in a mixed way. It is then reasonable to 

take some super view: the mission. 

Example 4: The Anti-Blocking System (ABS) of the 

wheels of a car is triggered by blocking of one or several of 

its wheels, if the driver brakes. If the ground is slippery, the 

ABS may be needed for a certain time till the car stops. It is 

reasonable to consider the whole sequences of actions on all 

wheels of the car as one demand, better, as one mission. 

Reliability considerations take care of the different types of 

the individual missions that the breaking system has to 

master and their frequency. 

Example 5: Some cars switch off their motors, if the car stops 

and start it again, if the driver wants to go on. The sequence of 

actions that the investigated software system has to take between 

a start and the next stop can be treated as a unity, as one mission. 

Such missions can last for seconds or for hours. 

The earlier considerations of this article suggest to treating 

one mission as one super demand, consisting of several types 

of “normal” demands mixed with several types of continua 

and gather information on the different types of such super 

demands. Should the (super-) demand profile change, e.g. a 

car being used more frequently in another environment, (6) 

can form a basis for estimating the safety or reliability 

properties in that environment; e.g. different uses of the ABS 

by people who use to go skiing or normal drivers. Of course 

the paths that are traversed during the two types of operations 

have to be identified and the number of their traversals need 

to be known or conservatively estimated. 

6. Conclusion 

Statistical considerations can help in evaluating the safety 

properties of software. In some circumstances they are the 

preferred means for getting quantitative results. Their use 

may, however, cause much effort in gathering data and do the 

modelling that is required to get meaningful results. In 

practical cases engineers will not only rely on the formulae 

given here, but do what engineers always do, if reliability is 

an issue: Consider a safety margin. 

It is normally also quite time consuming to verify that the 

pre-requisites are met that are needed to allow a statistical 

approach. The efforts for statistical assessment may be larger 

than the efforts needed to do program analysis, analysis-

based testing and related proving. Statistics can mainly be 

helpful as a complementary venture to the deterministic way 

of software validation and verification; in particular, if large 

and well-documented operation experience exists. It can 

never be the only way of verifying the correct or safe 

behaviour of software. 

In order to keep this article focused on the essential aspects, 

some points that might be important to the reader have been 

left out; like: How do inaccuracies of the knowledge of the 

demand profile influence the desired result? Or: What is a 

reasonable precise definition of a path, or: How can path 

traversals or runs be characterised and stored and how can the 

stored information be retrieved easily? See [18]. 

The illustrating example problems from the Introduction 

can be solved as follows: 

Exp_1 Use (8) and compare with the required safety margins. 

Exp_2 Use (6) and (8) 

Exp_3 Use (8) for calculating the resulting failure 

probability (n=1) for after-decay heat removal; multiply the 

complements of the failure probabilities per demand. 

Exp_4 Use the applicable mixture of demand driven events 

and continuous periods. 

Deriving a whole safety case on the basis of statistical data 

always causes a lot of calculation effort, similar to the effort 

for preparing licensing documents for any type of hardware. 

In particular demonstrating that all needed pre-requisites are 

met can need deep understanding of the software at stake. In 

some cases, however, applying statistics can safe work. 
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Appendix 

Collection of Pre-requisites and Assumptions 

A.1 General Pre-requisites for Licensing on Proven in Use 

Arguments from [2, 3] 

The conditions of use (operational profile) of software 

include all the factors that may trigger systematic faults. To 

find out, whether one can use operating experience in a 

safety case, one has to compare the old and the new operating 

profile. To determine whether two operational profiles are 

identical or sufficiently similar documentary evidence shall 

demonstrate that the following features and phenomena of 

previous use are identical in the intended use of the element 

in the E/E/PE safety-related system: 

a) Software environment (e.g. processor, memory, clock, 

bus behavior, demand profile); 

b) configuration (e.g., compiler options used in compiling 

the source code for the proposed use, initialization of 
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program variables and constants, the hardware 

configuration on which the software will execute); 

c) software interfaces; 

d) libraries (including source code libraries as well as 

libraries of binary code); 

e) operating systems, interpreters (for example, those used 

to emulate processor architectures on processors which 

do not share that architecture); 

f) translator (compiler), linker, code generators; 

g) contain a complete description of the conditions of use 

of the proven-in-use software. 

A.2 Detailed Aspects About Software Functions (in Part 

from [2, 3]). 

The following rules, requirements and assumptions apply 

for software functions of all safety-integrity levels (SILs). 

They concern properties of the software, of operational 

experience and statistical test cases. Operational experience 

can supplement or replace statistical testing, and operational 

experience from several sites may be combined (i.e. by 

adding the number of treated demands or hours of operation). 

The following text refers always to the code (software) of 

functions and NOT to (software) modules or code parts. 

Trivial aspects 

R1 The codes of the pre-existing or tested functions for 

which operating experience is claimed and the code of the 

functions for the future intended application are identical. 

Note 1: This can be demonstrated by proper use of hash 

functions. 

Note 2: Identity of software version means fundamentally 

the identity of binaries. This can occasionally lead to 

problems where a binary code runs in emulation mode. Then 

hardware and emulator are to be taken into account. 

R2 No failures have occurred during pre-operation or test. 

This includes: 

R2a The software has always worked correctly. 

R2b Observation of information gathering has been so 

strict and complete that any possible incorrect behavior has 

been recognized. 

R2c A specification has existed (and still exists) that has 

allowed to decide whether any result was correct of incorrect. 

Note: If this is not fulfilled, the software will not be 

licensed for any safety-related application. 

To be met by the software to be evaluated 

R3 The software is a pure function of its input data; one 

treatment of a subset of the actual set of input data that 

causes an output is called one run or one traversal; each run 

is represented by one path; sequence and number of runs of 

any path cannot influence any future run; or see also R5, R6 

and R7. 

R4 No failure masking has occurred during testing or pre-

operation [15]. 

Note1: For example the software may be required to react 

on two external events. It may have reacted correctly under 

all tested circumstances, but event 1 was always faster than 

event 2. So no experience exists on any possible failure to 

react on event 2. 

Note 2: Failure masking is always possible if one result is 

calculated via an OR-decision. 

R5 If the software has internal states, they have to be 

considered like states of input variables. 

R6 The probability of observing one demand over a small 

interval is approximately proportional to the size of that 

interval. 

R7 If the software memorizes certain internal values over a 

certain time, a single test case, run or operational traversal 

shall be taken over that time.  

Note1: This view can be helpful, if a control algorithm 

uses data from the immediate past, e.g. by integration. 

Note2: In some cases it may be reasonable not to consider 

runs of the software but missions as a basis for safety 

calculations. 

R8 No software failure must be able to cause or hide any 

other software failure (be free from interference). 

R9 The software must be executed purely 

deterministically.  

Note: This is normally the case with a digital computer; 

the software has no random number generator. 

To be met by the test harness or the operational 

environment that provides the experience 

R10 During the operational experience or the tests the 

individual runs have to be statistically independent from each 

other.  

Note: This means: No single run can influence the result of 

any other run; or: The test harness or the application where 

the operational experience has been gathered is or was 

memory-less from path to path. 

R11 Test cases or operational experience cases have been 

selected according to the intended operational profile. 

Note: This is not needed, if formula (6) can be applied for 

correcting any mismatch. 

R12 The distribution of input data that are processed in 

one execution path of the software is similar between the 

experience gathering during pre-operation or the testing 

period and the future operation period (equal demand profile 

within one path). 

R13 The number of test cases in each path meet the 

requirements to be fulfilled for the Poisson distribution. If 

this is not the case, the related path shall be treated with pi = 

1. 

R14 The paths and their number of executions are known 

from both the previous and the future demand profile. 

A.3 Guidelines for Work and Evaluation of Results 

G1 The paths shall be identified for the old and the future 

demand profile. 

Note 1: If the new demand profile is just a subset of the 

old one, no problems exist. 

Note 2: If the new profile is not a subset of the old one and 

if re-calculation is not wanted, any possible short comings 

can be compensated by additional tests of the paths that were 

not tested sufficiently yet. 

Note 3: Small discrepancies between the profiles can 

perhaps be shown to be irrelevant by using the well-

established rules for dealing with inaccurate measurements. 

G2 for estimating the demand profile of a new application, 
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model checking can help. 

G3 the failure probabilities per demand and the number of 

runs shall be evaluated or conservatively estimated for each 

path. 

G4 Each path that has not been traversed at all shall be 

considered with failure probability 1 and the probability of 

its traversal shall be considered without the square ( i
π  and 

not 2

iπ ). 

G5 Concatenated subsequent paths over modules can be 

considered in software system safety evaluation as one path, if 

they do not interact; in his case the largest failure probability 

per demand of any path of the chain shall be taken. 

G6 If interacting modules are concatenated, the paths from 

start to end of the whole software shall be taken. 

G7 Paths whose correctness has been proven, shall be 

considered with failure probability 0. 

G8 It is recommendable to verify the correctness of loops 

with varying repetition numbers deterministically, e.g. by proof. 

G9 Separate considerations are required for complicated 

logical expressions or for complicated algorithms. 

Note: A logical expression can usually be decomposed into 

a sequence of branches, and a sequence of branches can 

sometimes be transferred into a logical expression for one 

branching instruction. 

G10 Some aspects, e.g. actions that shall be triggered by 

the software at a specific future calendar date, need 

deterministic verification and white box testing. 

G11 When the software safety requirements can formally 

and rigorously be separated from the overall software 

requirements then the conditions from above may be applied 

to safety-related failures of the software only. 

G12 Due to the pre-requisites given, a pure random 

evaluation of low failure probabilities or failure rates is 

impossible; at least reading of the code and a minimum of 

understanding is required for software that works on the EUC 

immediately. 
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